Thomas S, Thirumalapura NR, Crocquet-Valdes PA, Luxon BA, Walker DH. Structure-based vaccines provide protection in a mouse model of ehrlichiosis.
PLoS One 2011;
6:e27981. [PMID:
22114733 PMCID:
PMC3219711 DOI:
10.1371/journal.pone.0027981]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND
Recent advances in bioinformatics have made it possible to predict the B cell and T cell epitopes of antigenic proteins. This has led to design of peptide based vaccines that are more specific, safe, and easy to produce. The obligately intracellular gram negative bacteria Ehrlichia cause ehrlichioses in humans and animals. As yet there are no vaccines to protect against Ehrlichia infection.
METHODOLOGY/PRINCIPAL FINDINGS
We applied the principle of structural vaccinology to design peptides to the epitopes of Ehrlichia muris outer membrane P28-19 (OMP-1/P28) and Ehrlichia Heat shock protein 60 (Hsp60/GroEL) antigenic proteins. Both P28-19 and Ehrlichia Hsp60 peptides reacted with polyclonal antibodies against E. canis and E. chaffeensis and could be used as a diagnostic tool for ehrlichiosis. In addition, we demonstrated that mice vaccinated with Ehrlichia P28-19 and Hsp60 peptides and later challenged with E. muris were protected against the pathogen.
CONCLUSIONS/SIGNIFICANCE
Our results demonstrate the power of structural vaccines and could be a new strategy in the development of vaccines to provide protection against pathogenic microorganisms.
Collapse