1
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
2
|
Ray SK, Mukherjee S. Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional in vitro Cellular Models: Impressive Tool in Drug Discovery. Recent Pat Anticancer Drug Discov 2021; 17:80-91. [PMID: 34323197 DOI: 10.2174/1574892816666210728115605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
The heterogeneous tumor microenvironment is exceptionally perplexing and not wholly comprehended. Different multifaceted alignments lead to the generation of oxygen destitute situations within the tumor niche that modulate numerous intrinsic tumor microenvironments. Disentangling these communications is vital for scheming practical therapeutic approaches that can successfully decrease tumor allied chemotherapy resistance by utilizing the innate capability of the immune system. Several research groups have concerned with a protruding role for oxygen metabolism along with hypoxia in the immunity of healthy tissue. Hypoxia in addition to hypoxia-inducible factors (HIFs) in the tumor microenvironment plays an important part in tumor progression and endurance. Although numerous hypoxia-focused therapies have shown promising outcomes both in vitro and in vivo these outcomes have not effectively translated into clinical preliminaries. Distinctive cell culture techniques have utilized as an in vitro model for tumor niche along with tumor microenvironment and proficient in more precisely recreating tumor genomic profiles as well as envisaging therapeutic response. To study the dynamics of tumor immune evasion, three-dimensional (3D) cell cultures are more physiologically important to the hypoxic tumor microenvironment. Recent research has revealed new information and insights into our fundamental understanding of immune systems, as well as novel results that have been established as potential therapeutic targets. There are a lot of patented 3D cell culture techniques which will be highlighted in this review. At present notable 3D cell culture procedures in the hypoxic tumor microenvironment, discourse open doors to accommodate both drug repurposing, advancement, and divulgence of new medications and will deliberate the 3D cell culture methods into standard prescription disclosure especially in the field of cancer biology which will be discussing here.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences. Indira Gandhi Technological and Medical Sciences University, Ziro, Arunachal Pradesh-791120, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
3
|
Dessauge F, Schleder C, Perruchot MH, Rouger K. 3D in vitro models of skeletal muscle: myopshere, myobundle and bioprinted muscle construct. Vet Res 2021; 52:72. [PMID: 34011392 PMCID: PMC8136231 DOI: 10.1186/s13567-021-00942-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Typical two-dimensional (2D) culture models of skeletal muscle-derived cells cannot fully recapitulate the organization and function of living muscle tissues, restricting their usefulness in in-depth physiological studies. The development of functional 3D culture models offers a major opportunity to mimic the living tissues and to model muscle diseases. In this respect, this new type of in vitro model significantly increases our understanding of the involvement of the different cell types present in the formation of skeletal muscle and their interactions, as well as the modalities of response of a pathological muscle to new therapies. This second point could lead to the identification of effective treatments. Here, we report the significant progresses that have been made the last years to engineer muscle tissue-like structures, providing useful tools to investigate the behavior of resident cells. Specifically, we interest in the development of myopshere- and myobundle-based systems as well as the bioprinting constructs. The electrical/mechanical stimulation protocols and the co-culture systems developed to improve tissue maturation process and functionalities are presented. The formation of these biomimetic engineered muscle tissues represents a new platform to study skeletal muscle function and spatial organization in large number of physiological and pathological contexts.
Collapse
|
4
|
Vollmer T, Ljungberg B, Jankowski V, Jankowski J, Glorieux G, Stegmayr BG. An in-vitro assay using human spermatozoa to detect toxicity of biologically active substances. Sci Rep 2019; 9:14525. [PMID: 31601841 PMCID: PMC6787250 DOI: 10.1038/s41598-019-50929-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Identifying the key toxic players within an in-vivo toxic syndrome is crucial to develop targeted therapies. Here, we established a novel method that characterizes the effect of single substances by means of an ex-vivo incubation set-up. We found that primary human spermatozoa elicit a distinct motile response on a (uremic) toxic milieu. Specifically, this approach describes the influence of a bulk toxic environment (uremia) as well as single substances (uremic toxins) by real-time analyzing motile cellular behavior. We established the human spermatozoa-based toxicity testing (HSTT) for detecting single substance-induced toxicity to be used as a screening tool to identify in-vivo toxins. Further, we propose an application of the HSTT as a method of clinical use to evaluate toxin-removing interventions (hemodialysis).
Collapse
Affiliation(s)
- Tino Vollmer
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden. .,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin-Brandenburg School for Regenerative Therapies (BSRT) & Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umea University, Umea, Sweden
| | - Vera Jankowski
- Institute for Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany.,School for Cardiovascular Diseases, University of Maastricht, Maastricht, The Netherlands
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Bernd G Stegmayr
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| |
Collapse
|
5
|
Abstract
The past decades have witnessed significant efforts toward the development of three-dimensional (3D) cell cultures as systems that better mimic in vivo physiology. Today, 3D cell cultures are emerging, not only as a new tool in early drug discovery but also as potential therapeutics to treat disease. In this review, we assess leading 3D cell culture technologies and their impact on drug discovery, including spheroids, organoids, scaffolds, hydrogels, organs-on-chips, and 3D bioprinting. We also discuss the implementation of these technologies in compound identification, screening, and development, ranging from disease modeling to assessment of efficacy and safety profiles.
Collapse
Affiliation(s)
- Ye Fang
- 1 Biochemical Technologies, Corning Research and Development Corporation, Corning Incorporated, Corning, NY, USA
| | - Richard M Eglen
- 2 Corning Life Sciences, Corning Incorporated, Tewksbury, MA, USA
| |
Collapse
|
6
|
Chung HH, Mireles M, Kwarta BJ, Gaborski TR. Use of porous membranes in tissue barrier and co-culture models. LAB ON A CHIP 2018; 18:1671-1689. [PMID: 29845145 PMCID: PMC5997570 DOI: 10.1039/c7lc01248a] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Porous membranes enable the partitioning of cellular microenvironments in vitro, while still allowing physical and biochemical crosstalk between cells, a feature that is often necessary for recapitulating physiological functions. This article provides an overview of the different membranes used in tissue barrier and cellular co-culture models with a focus on experimental design and control of these systems. Specifically, we discuss how the structural, mechanical, chemical, and even the optical and transport properties of different membranes bestow specific advantages and disadvantages through the context of physiological relevance. This review also explores how membrane pore properties affect perfusion and solute permeability by developing an analytical framework to guide the design and use of tissue barrier or co-culture models. Ultimately, this review offers insight into the important aspects one must consider when using porous membranes in tissue barrier and lab-on-a-chip applications.
Collapse
Affiliation(s)
- Henry H Chung
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| | | | | | | |
Collapse
|
7
|
Fang Y, Eglen RM. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS DISCOVERY 2017. [DOI: 10.1177/2472555217696795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Corning Research and Development Corporation, Corning Incorporated, Corning, NY, USA
| | | |
Collapse
|
8
|
Dambach DM, Misner D, Brock M, Fullerton A, Proctor W, Maher J, Lee D, Ford K, Diaz D. Safety Lead Optimization and Candidate Identification: Integrating New Technologies into Decision-Making. Chem Res Toxicol 2015; 29:452-72. [DOI: 10.1021/acs.chemrestox.5b00396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Donna M. Dambach
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dinah Misner
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Aaron Fullerton
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - William Proctor
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Jonathan Maher
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dong Lee
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Kevin Ford
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dolores Diaz
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| |
Collapse
|
9
|
Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 2015; 14:248-60. [PMID: 25792263 DOI: 10.1038/nrd4539] [Citation(s) in RCA: 761] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Improving the effectiveness of preclinical predictions of human drug responses is critical to reducing costly failures in clinical trials. Recent advances in cell biology, microfabrication and microfluidics have enabled the development of microengineered models of the functional units of human organs - known as organs-on-chips - that could provide the basis for preclinical assays with greater predictive power. Here, we examine the new opportunities for the application of organ-on-chip technologies in a range of areas in preclinical drug discovery, such as target identification and validation, target-based screening, and phenotypic screening. We also discuss emerging drug discovery opportunities enabled by organs-on-chips, as well as important challenges in realizing the full potential of this technology.
Collapse
Affiliation(s)
- Eric W Esch
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
10
|
Madden L, Juhas M, Kraus WE, Truskey GA, Bursac N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. eLife 2015; 4:e04885. [PMID: 25575180 PMCID: PMC4337710 DOI: 10.7554/elife.04885] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7+ cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders. DOI:http://dx.doi.org/10.7554/eLife.04885.001 Scientists have developed realistic models of the human liver, lung, and heart that allow them to observe living tissue in the laboratory. These models have helped us to better understand how these organs work and what goes wrong in diseases that affect these organs. The models can also be used to test how new drugs may affect a particular organ without the risk of exposing patients to the drug. Efforts to develop a realistic laboratory model of human muscle tissues that can contract like real muscles have not been as successful to date. This shortcoming has potentially hindered the development of drugs to treat numerous disorders that affect muscles and movement in humans—such as muscular dystrophies, which are diseases in which people progressively lose muscle strength. Some important drugs, like cholesterol-lowering statins, have detrimental effects on muscle tissue; one statin was so harmful to muscles that it had to be withdrawn from the market. As such, it would be useful to have experimental models that would allow scientists to test whether potential drugs damage or treat muscle tissue. Madden et al. have now bioengineered a three-dimensional laboratory model of living muscle tissue made of cells taken from biopsies of several different human patients. These tissues were grown into bundles of muscle fibers on special polymer frames in the laboratory. The bioengineered muscle bundles respond to electrical and chemical signals and contract just like normal muscle. They also exhibit the same structure and signaling as healthy muscle tissue in humans. Madden et al. exposed the muscle tissue bundles to three drugs known to affect muscles to determine if the model could be used to test whether drugs have harmful effects. This revealed that the bundles had weaker contractions in response to statins and the malaria drug chloroquine, just like normal muscles do—and that this effect worsened if more of each drug was used. Madden et al. also found that a drug that strengthens muscle contractions at low doses and damages muscle at high doses in humans has similar effects in the model. As well as this model being used to screen for harmful effects of drugs before clinical trials, the technique used to create the model could be used to grow muscle tissue from patients with muscle diseases. This would help researchers and doctors to better understand the patient's condition and potentially develop more efficient therapies. Also, the technique could be eventually developed to grow healthy muscle tissue to implant in patients who have been injured. DOI:http://dx.doi.org/10.7554/eLife.04885.002
Collapse
Affiliation(s)
- Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Mark Juhas
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - William E Kraus
- Department of Medicine, Duke University School of Medicine, Durham, United States
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, United States
| |
Collapse
|
11
|
McLean L. Drug development. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
|
13
|
Pierson JB, Berridge BR, Brooks MB, Dreher K, Koerner J, Schultze AE, Sarazan RD, Valentin JP, Vargas HM, Pettit SD. A public-private consortium advances cardiac safety evaluation: achievements of the HESI Cardiac Safety Technical Committee. J Pharmacol Toxicol Methods 2013; 68:7-12. [PMID: 23567075 DOI: 10.1016/j.vascn.2013.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The evaluation of cardiovascular side-effects is a critical element in the development of all new drugs and chemicals. Cardiac safety issues are a major cause of attrition and withdrawal due to adverse drug reactions (ADRs) in pharmaceutical drug development. METHODS The evolution of the HESI Technical Committee on Cardiac Safety from 2000-2013 is presented as an example of an effective international consortium of academic, government, and industry scientists working to improve cardiac safety. RESULTS AND DISCUSSION The HESI Technical Committee Working Groups facilitated the development of a variety of platforms for resource sharing and communication among experts that led to innovative strategies for improved drug safety. The positive impacts arising from these Working Groups are described in this article.
Collapse
Affiliation(s)
- Jennifer B Pierson
- Health and Environmental Sciences Institute, 1156 15th Street, Northwest, Suite 200, Washington, DC 20005, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|