1
|
Ke A, Yang W, Zhang W, Chen Y, Meng X, Liu J, Dai D. The cardiac glycoside periplocymarin sensitizes gastric cancer to ferroptosis via the ATP1A1-Src-YAP/TAZ-TFRC axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156804. [PMID: 40311597 DOI: 10.1016/j.phymed.2025.156804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Targeting ferroptosis vulnerabilities in tumors has become an increasingly promising therapeutic strategy. While the regulatory effects of natural products on ferroptosis are progressively being elucidated, the role of cardiac glycosides in modulating ferroptosis remains poorly understood. PURPOSE This study aims to investigate the ferroptosis-sensitizing effects of periplocymarin (PPM), a cardiac glycoside derived from the traditional plant Periploca sepium, and to elucidate the underlying molecular mechanisms. METHODS The effects of PPM on ferroptosis regulation were comprehensively assessed through functional assays, followed by sequencing analysis to identify associated signaling pathways. Subsequent mechanistic validation experiments were conducted to confirm the upstream and downstream regulatory components involved in this ferroptosis-modulating axis. RESULTS PPM induced slow and mild apoptosis in gastric cancer cells through the inhibition of glycolysis. However, when combined with ferroptosis inducers, it promoted rapid and robust ferroptosis. In vivo, PPM sensitized gastric cancer xenografts to cisplatin-induced ferroptosis with no observable cardiotoxicity or renal impairment. Mechanistically, PPM targeted the α1 subunit of the Na+/K+-ATPase (ATP1A1), leading to the activation of Src, which subsequently induced tyrosine phosphorylation of YAP/TAZ in a Hippo-independent manner, promoting their nuclear translocation. The YAP/TAZ-TEAD transcriptional complex directly bound to the TFRC promoter region between nucleotides 401-409 upstream of the transcription start site, thereby activating TFRC transcription. This resulted in increased iron influx, elevated lipid peroxidation, and heightened sensitivity to ferroptosis. Notably, ATP1A1 was essential for ferroptosis resistance, as its knockdown mimicked the sensitizing effect of PPM on ferroptosis. Moreover, the oncogenic Src-YAP/TAZ-TFRC axis may have represented a ferroptosis vulnerability and a potential biomarker in ferroptosis therapy for cancer. Importantly, other cardiac glycosides targeting Na+/K+-ATPase, such as digitoxin and bufalin, also enhanced ferroptosis sensitivity in gastric cancer cells through activation of YAP/TAZ signaling. CONCLUSION Our findings establish the cardiac glycoside PPM as a novel ferroptosis sensitizer that targets ATP1A1 to activate the Src-YAP/TAZ-TFRC axis, providing mechanistic insights for repurposing cardiac glycosides as ferroptosis modulators in precision combinatorial cancer therapy.
Collapse
Affiliation(s)
- Angting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Weiguang Yang
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wanchuan Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yibin Chen
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xiangyu Meng
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Jie Liu
- Translational Research Experiment Department, Science Experiment Center, China Medical University, Shenyang 110122, China
| | - Dongqiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
2
|
Qu G, Han X, Ma L, Feng S, Li Y, Zhang X. Cyclodextrins as non-viral vectors in cancer theranostics: A review. Int J Biol Macromol 2025; 313:143697. [PMID: 40348237 DOI: 10.1016/j.ijbiomac.2025.143697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/14/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Cancer ranks as the top cause of death following cardiovascular diseases. Identifying cancer patients at early stages presents significant challenges due to the asymptomatic nature of early-stage tumors. Conversely, the advancement of therapy resistance has led to a reduction in cancer treatment efficacy. Consequently, utilizing nanoparticles for the diagnosis and treatment of cancer can greatly enhance the prognosis and results for patients. CDs are recognized entities in the pharmaceutical domain and have been extensively used for therapeutic purposes in disease treatment. These non-viral vectors have shown efficacy in inhibiting both solid tumors and hematological malignancies through targeted drug delivery. CDs can enhance the administration of medications and genes in cancer treatment by ensuring their continuous release. The stimuli-responsive CDs have enhanced the targeted delivery of payloads at the tumor location, responding to the stimuli in TME such as pH, redox and light. CDs can serve as effective carriers that enhance the efficacy of phototherapy by improving the solubility and delivery of phototherapeutic agents, enabling integration with chemotherapy and immunotherapy. The administration of immunomodulators through CDs can enhance cancer immunotherapy and boost the infiltration of immune cells. Ultimately, CDs can aid in cancer diagnosis and the identification of biomarkers.
Collapse
Affiliation(s)
- Ge Qu
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Xu Han
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Lianghua Ma
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Numata Y, Fujii T, Toda C, Okumura T, Manabe T, Takeda N, Shimizu T, Tabuchi Y, Fujii T, Sakai H. Digoxin promotes anoikis of circulating cancer cells by targeting Na +/K +-ATPase α3-isoform. Cell Death Dis 2025; 16:373. [PMID: 40350473 PMCID: PMC12066707 DOI: 10.1038/s41419-025-07703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/19/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Circulating cancer cells (CCCs) are closely related to the process of distant metastasis. In early step of the metastasis cascade, CCCs must evade the detachment-induced cell death (anoikis) for their survival. Here, we examined whether Na+/K+-ATPase α3-isoform (α3NaK) in CCCs contributes to avoidance of anoikis. In CCCs isolated from gastric cancer patients, α3NaK was predominantly localized in the plasma membrane (PM), but it moved to the cytoplasm when the CCCs were attached to culture dishes. The CCCs showed significant expression of integrin α5 but not fibronectin, one of components of the extracellular matrix (ECM). In human gastric cancer MKN45 cells, digoxin (20 and 50 nM), a cardiac glycoside, significantly inhibited the enzyme activity and translocation (from cytoplasm to PM) of α3NaK, while they had no significant effect on ubiquitous Na+/K+-ATPase α1-isoform (α1NaK) in the PM. The translocation of α3NaK required the loss of ECM components from the cells. Additionally, digoxin significantly enhanced caspase 3/7 activity, as well as the expression of cleaved caspase 3, while reducing the viability of detached (floating) cells. In the MKN45 xenograft mouse model, intraperitoneal administration of digoxin (2 mg/kg/day) significantly decreased the number of CCCs and suppressed their liver metastasis. Our results suggest that α3NaK plays an essential role in the survival of CCCs in gastric cancer, and that digoxin enhances anoikis in detached (metastatic) gastric cancer cells by inhibiting the α3NaK translocation from cytoplasm to PM, thereby reducing CCCs. Targeting α3NaK may be a promising therapeutic strategy against CCC survival.
Collapse
Affiliation(s)
- Yoshihisa Numata
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Chihiro Toda
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan
| | - Takahiro Manabe
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan
| | - Naoya Takeda
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan.
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
4
|
Yin X, Zhao X, Shen Y, Xie W, He C, Guo J, Li Z, Xuan F, Zeng S, Zeng X, Fang C. Nanoparticle-mediated dual targeting of stromal and immune components to overcome fibrotic and immunosuppressive barriers in hepatocellular carcinoma. J Control Release 2025; 383:113783. [PMID: 40306574 DOI: 10.1016/j.jconrel.2025.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are key drivers of hepatocellular carcinoma (HCC) through their promotion of fibrosis and immune suppression activity. To overcome this stroma-immune barrier, we developed D/F@MRL, a stroma-immune co-targeting nanoplatform that enables the spatiotemporal coordination of CAF reprogramming and immune activation. In D/F@MRL, MMP-2-responsive hybrid liposomes (MRL) was employed to co-load digoxin (Dig) and PD-L1-degrading nanofibers (NFs). Upon encountering the MMP-2-enriched HCC stroma, D/F@MRL undergoes enzymatic cleavage, thereby enabling the targeted release of Dig and NFs within the HCC microenvironment. Mechanistically, Dig inhibits the phosphorylation of SMAD3 in CAFs, while PD-L1 degradation destabilizes the TGFβ receptor, synergistically silencing TGF-β/Smad signaling to reprogram CAFs. This combination not only disrupts the fibrotic barrier but also creates a feed-forward loop that further enhances drug penetration, while reinforcing the immune activation driven by Dig-induced immunogenic cell death (ICD) and PD-L1 degradation. In the humanized immune PDX model, D/F@MRL successfully reprogrammed CAFs and robustly remodeled the stromal and immune microenvironments without causing systemic toxicity, highlighting its promising potential for clinical translation. By integrating CAF reprogramming with ICD and immune checkpoint inhibition, this strategy overcame the limitations of single-target therapies, induced robust immune activation, further provided a clinic-transformative approach for fibrotic malignancies.
Collapse
Affiliation(s)
- Xiangyi Yin
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xingyang Zhao
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiming Shen
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weizhong Xie
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Cheng He
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianan Guo
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zirong Li
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Feichao Xuan
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Silue Zeng
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaojun Zeng
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chihua Fang
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Institute of Digital Intelligent Minimally Invasive Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China; South China Institute of National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Guangzhou 510280, China.
| |
Collapse
|
5
|
Zou JX, Chang MR, Kuznetsov NA, Kee JX, Babak MV, Ang WH. Metal-based immunogenic cell death inducers for cancer immunotherapy. Chem Sci 2025; 16:6160-6187. [PMID: 40160356 PMCID: PMC11949249 DOI: 10.1039/d4sc08495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunogenic cell death (ICD) has attracted enormous attention over the past decade due to its unique characteristics in cancer cell death and its role in activating innate and adaptive immune responses against tumours. Many efforts have been dedicated to screening, identifying and discovering ICD inducers, resulting in the validation of several based on metal complexes. In this review, we provide a comprehensive summary of current metal-based ICD inducers, their molecular mechanisms for triggering ICD initiation and subsequent protective antitumour immune responses, along with considerations for validating ICD both in vitro and in vivo. We also aim to offer insights into the future development of metal complexes with enhanced ICD-inducing properties and their applications in potentiating antitumour immunity.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Nikita A Kuznetsov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- NUS Graduate School - Integrative Science and Engineering Programme (ISEP), National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| |
Collapse
|
6
|
Li Z, Liu XM, Tan F, Wang JQ, Qiao X, Feng YK, Xu JY, Hao JH. Novel Indoleamine-2,3-Dioxygenase-Targeted Pt(IV) Prodrugs Regulate the Tumor Immune Microenvironment to Achieve Chemoimmunotherapy In Vitro and In Vivo. J Med Chem 2025; 68:4352-4372. [PMID: 39918588 DOI: 10.1021/acs.jmedchem.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Convincing evidence revealed that some platinum-based drugs could stimulate immunological recognition, thereby inducing immunogenic cell death (ICD). Indoleamine-2,3-dioxygenase (IDO) is overexpressed in tumors, which caused exhaustion of tryptophan (T-cell energy) and constructed an immunosuppressive tumor microenvironment. Herein, considering IDO inhibition to improve chemotherapy, a series of IDOi-Pt(IV) prodrugs were designed to not only target DNA and IDO but also facilitate tumor-antigen exposure and immunomodulation. The optimal IDOi-Pt(IV) prodrugs (named compound 10) significantly enhanced intracellular accumulation 22.4-fold and cytotoxicity 61.75-fold superior to cisplatin in HeLa cells. Moreover, immunofluorescence and enzyme-linked immunosorbent assays revealed that 10 induced reactive oxygen species-mediated endoplasmic reticulum stress and secretion of damage-associated molecular patterns, thereby presenting ICD effects. Molecular docking, enzyme inhibition, and Western blot assays demonstrated that 10 could effectively inhibit IDO1 and reverse immunosuppression, as further verified by mixed leukocyte reactions. In vivo tests showed that 10 exhibited high-efficiency and low-toxicity antitumor effects compared to cisplatin, presenting successful chemoimmunotherapy.
Collapse
Affiliation(s)
- Zhe Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Meng Liu
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Fei Tan
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Qian Wang
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Kuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jing-Yuan Xu
- Department of Chemical Biology, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ji-Hui Hao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
7
|
Gui L, Chen K, Yan J, Chen P, Gao WQ, Ma B. Targeting the mevalonate pathway potentiates NUAK1 inhibition-induced immunogenic cell death and antitumor immunity. Cell Rep Med 2025; 6:101913. [PMID: 39824180 PMCID: PMC11866496 DOI: 10.1016/j.xcrm.2024.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/19/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025]
Abstract
The induction of immunogenic cell death (ICD) impedes tumor progression via both tumor cell-intrinsic and -extrinsic mechanisms, representing a robust therapeutic strategy. However, ICD-targeted therapy remains to be explored and optimized. Through kinome-wide CRISPR-Cas9 screen, NUAK family SNF1-like kinase 1 (NUAK1) is identified as a potential target. The ICD-provoking effect of NUAK1 inhibition depends on the production of reactive oxygen species (ROS), consequent to the downregulation of nuclear factor erythroid 2-related factor 2 (NRF2)-mediated antioxidant gene expression. Moreover, the mevalonate pathway/cholesterol biosynthesis, activated by spliced form of X-box binding protein 1 (XBP1s) downstream of ICD-induced endoplasmic reticulum (ER) stress, functions as a negative feedback mechanism. Targeting the mevalonate pathway with CRISPR knockout or the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitor simvastatin amplifies NUAK1 inhibition-mediated ICD and antitumor activity, while cholesterol dampens ROS and ICD, and therefore also dampens tumor suppression. The combination of NUAK1 inhibitor and statin enhances the efficacy of anti-PD-1 therapy. Collectively, our study unveils the promise of blocking the mevalonate-cholesterol pathway in conjunction with ICD-targeted immunotherapy.
Collapse
Affiliation(s)
- Liming Gui
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kaiwen Chen
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingjing Yan
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ping Chen
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei-Qiang Gao
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Bin Ma
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
8
|
Han C, Xiao S, Xing Z, Xu X, Wang M, Han X, Adeli M, Qiu L, Ye L, Cheng C. NADPH Oxidases-Inspired Reactive Oxygen Biocatalysts with Electron-Rich Pt Sites to Potently Amplify Immune Checkpoint Blockade Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2407644. [PMID: 39400421 DOI: 10.1002/adma.202407644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Indexed: 10/15/2024]
Abstract
Clinical immune checkpoint blockade (ICB)-based immunotherapy of malignant tumors only elicits durable responses in a minority of patients, primarily due to the highly immunosuppressive tumor microenvironment. Although inducing immunogenic cell death (ICD) through reactive oxygen biocatalyst represents an attractive therapeutic strategy to amplify ICB, currently reported biocatalysts encounter insurmountable challenges in achieving high ROS-generating activity to induce potent ICD. Here, inspired by the natural catalytic characteristics of NADPH oxidases, the design of efficient, robust, and electron-rich Pt-based redox centers on the non-stoichiometric W18O49 substrates (Pt─WOx) to serve as bioinspired reactive oxygen biocatalysts to potently activate the ICD, which eventually enhance cancer immune responses and amplifies the ICB-based immunotherapy is reported. These studies demonstrate that the Pt─WOx exhibits rapid electron transfer capability and can promote the formation of electron-rich and low oxophilic Pt redox centers for superior reactive oxygen biocatalysis, which enables the Pt─WOx-based inducers to trigger endoplasmic reticulum stress directly and stimulate immune responses potently for amplifying the anti-PD-L1-based ICB therapy. This bioinspired design provides a straightforward strategy to engineer efficient, robust, and electron-rich reactive oxygen biocatalysts and also opens up a new avenue to create efficient ICD inducers for primary/metastatic tumor treatments.
Collapse
Affiliation(s)
- Chuyi Han
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Sutong Xiao
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaohui Xu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglong Han
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Ye
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Teng Y, Yang Z, Peng Y, Yang Y, Chen S, Li J, Gao D, Sun W, Wu Z, Zhou Y, Li X, Qi X. Endoplasmic Reticulum Stress Nano-Orchestrators for Precisely Regulated Immunogenic Cell Death as Potent Cancer Vaccines. Adv Healthc Mater 2025; 14:e2401851. [PMID: 39449212 DOI: 10.1002/adhm.202401851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Dying tumor cells regulated by immunogenic cell death (ICD) inducers are promising candidates for cancer vaccine development because of their comprehensive antigen spectrum. However, their limited immunogenicity and potential tumorigenicity hinder clinical translation. To address these challenges, a nano-orchestrator is developed that targets the endoplasmic reticulum (ER) stress, a critical pre-ICD event, to optimize the "precise dose" of ER stress. Using a clinical-range irradiation fluence (50‒200 J cm-2) with an 808 nm laser, the release of damage associated molecular patterns (DAMPs) and antigens are precisely regulated. A fluence of 150 J cm-2 (2 W cm-2 for 75 s) increases dendritic cell maturation and antitumor T cell proliferation, providing valuable clinical insights. The ER stress nano-orchestrator enhances both adjuvanticity and antigenicity via the protein kinase R-like endoplasmic reticulum kinase (PERK)-C/EBP homologous protein (CHOP) pathway to regulate ICD-induced DAMPs and promote tumor cell apoptosis. These optimized ER stress phototherapeutic dying tumor cells can serve as prophylactic vaccines, achieving a remarkable 100% success rate against tumor rechallenge in vivo. Additionally, the nano-orchestrator shows the potential to develop in situ therapeutic tumor vaccines when combined with anti-PD-L1 treatment, providing important insights into enhancing the efficacy of immune checkpoint regulators by modulating endogenous immune responses.
Collapse
Affiliation(s)
- Yulu Teng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Drug Clinical Trial Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Yiwei Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiliang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Siyu Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiajia Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Datong Gao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wen Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zinan Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yanxia Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xinru Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
10
|
Cerrato G, Liu P, Zhao L, Petrazzuolo A, Humeau J, Schmid ST, Abdellatif M, Sauvat A, Kroemer G. AI-based classification of anticancer drugs reveals nucleolar condensation as a predictor of immunogenicity. Mol Cancer 2024; 23:275. [PMID: 39702289 DOI: 10.1186/s12943-024-02189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) inducers are often identified in phenotypic screening campaigns by the release or surface exposure of various danger-associated molecular patterns (DAMPs) from malignant cells. This study aimed to streamline the identification of ICD inducers by leveraging cellular morphological correlates of ICD, specifically the condensation of nucleoli (CON). METHODS We applied artificial intelligence (AI)-based imaging analyses to Cell Paint-stained cells exposed to drug libraries, identifying CON as a marker for ICD. CON was characterized using SYTO 14 fluorescent staining and holotomographic microscopy, and visualized by AI-deconvoluted transmitted light microscopy. A neural network-based quantitative structure-activity relationship (QSAR) model was trained to link molecular descriptors of compounds to the CON phenotype, and the classifier was validated using an independent dataset from the NCI-curated mechanistic collection of anticancer agents. RESULTS CON strongly correlated with the inhibition of DNA-to-RNA transcription. Cytotoxic drugs that inhibit RNA synthesis without causing DNA damage were as effective as conventional cytotoxicants in inducing ICD, as demonstrated by DAMPs release/exposure and vaccination efficacy in mice. The QSAR classifier successfully predicted drugs with a high likelihood of inducing CON. CONCLUSIONS We developed AI-based algorithms for predicting CON-inducing drugs based on molecular descriptors and their validation using automated micrographs analysis, offering a new approach for screening ICD inducers with minimized adverse effects in cancer therapy.
Collapse
Affiliation(s)
- Giulia Cerrato
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Adriana Petrazzuolo
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- International Centre for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Juliette Humeau
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), Equipe Oncopharmacologie, Faculté Rockfeller, Lyon, France
| | - Sophie Theresa Schmid
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- Centre de Recherche des Cordeliers, 15 Rue de l'École de Médecine, Paris, 75006, France.
| |
Collapse
|
11
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. The modulation of immune cell death in connection to microRNAs and natural products. Front Immunol 2024; 15:1425602. [PMID: 39759512 PMCID: PMC11695430 DOI: 10.3389/fimmu.2024.1425602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
Immunogenic cell death (ICD) spatiotemporally regulates damage-associated molecular patterns (DAMPs) derived from dying cancer cells to signal the immune response. Intriguingly, these DAMPs and cytokines also induce cellular responses in non-immune cells, particularly cancer cells. Several ICD-modulating natural products and miRNAs have been reported to regulate the DAMP, cytokine, and cell death responses, but they lack systemic organization and connection. This review summarizes the impacts of natural products and miRNAs on the DAMP and cytokine responses and cancer cell death responses (apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis). We establish the rationale that ICD inducers of natural products have modulating effects on miRNAs, targeting DAMPs and cytokines for immune and cancer cell death responses. In conclusion, DAMP, cytokine, and cell death responses are intricately linked in cancer cells, and they are influenced by ICD-modulating natural products and miRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
12
|
He YL, Yang HY, Zhang L, Gong Z, Li GL, Gao K. Research Progress on Plant-Derived Cardenolides (2010-2023). Chem Biodivers 2024; 21:e202401460. [PMID: 39152549 DOI: 10.1002/cbdv.202401460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
Cardenolides are a class of steroidal glycoside compounds that are mainly distributed in plants, have significant physiological activity in the heart, and have been used clinically for over 200 years. To provide a reference for further research and development of these compounds, the phytochemical and biological properties of natural cardenolides (295 compounds in total) isolated between 2010 and 2023 from 17 families and hundreds of species belonging to 70-80 genera were reviewed. In vitro and in vivo studies have indicated that antitumor, antibacterial, and antiviral activities are the most commonly reported pharmacological properties of cardenolides. Antitumor activities have been thoroughly studied to understand their structure-activity relationships, revealing numerous potential anticancer molecules that lay the theoretical foundation for further development of traditional Chinese medicinal herbs and the creation of new drugs.
Collapse
Affiliation(s)
- Yi-Lin He
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hong-Ying Yang
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Zhang
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Zheng Gong
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Guo-Li Li
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
13
|
Calvillo-Rodriguez KM, Rivera-Lazarin AL, Tamez-Guerra R, Martinez-Torres AC, Rodriguez-Padilla C. Splenocytes antitumor cytotoxicity assessment after prophylactic vaccination or drug treatment of tumor-bearing mice. Methods Cell Biol 2024; 191:197-210. [PMID: 39824556 DOI: 10.1016/bs.mcb.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Affiliation(s)
- Kenny Misael Calvillo-Rodriguez
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Ana Luisa Rivera-Lazarin
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico
| | - Reyes Tamez-Guerra
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico
| | - Ana Carolina Martinez-Torres
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Cristina Rodriguez-Padilla
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
14
|
Calvillo-Rodriguez KM, Gonzalez-Flores MN, Tamez-Guerra R, Rodriguez-Padilla C, Antunes-Ricardo M, Martinez-Torres AC. Use of drug-killed cancer cells: A method to assess the therapeutic effectiveness of immunogenic cell death. Methods Cell Biol 2024; 191:211-220. [PMID: 39824557 DOI: 10.1016/bs.mcb.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Cancer immunotherapy has revolutionized cancer treatment by harnessing the immune system's potential to combat cancer. Among the various strategies in this field, the use of killed tumor cells (KC) induced by immunogenic cell death (ICD) inducers has gained attraction. This approach involves the treatment of cancer cells in vitro, followed by the subcutaneous injection of these killed cells into tumor-bearing mice. ICD induction triggers the exposure and release of damage-associated molecular patterns (DAMPs) and neoantigens, activating both innate and adaptive immune responses against cancer. Vaccination assays with immunocompetent mice and syngeneic cancer cells are considered the gold standard for identifying ICD inductors, as they effectively demonstrate the immunized host's capacity to achieve tumor rejection, typically showing more than 50% of protection. Despite significant progress in understanding ICD mechanisms, translating these findings into clinical practice faces challenges. Controversially, some reports indicate ICD induction with <50% protection in prophylactic vaccination. This variability in ICD interpretation can lead to "false positives" or overestimations of the immunogenicity of cell death induced by antitumor treatments, potentially complicating its clinical translation. Thus, rigorous adherence to the gold standard is necessary, and complementary experiments to assess the immunogenicity of cell death are advantageous. Here, we present a protocol to confirm the immunogenicity and therapeutic effectiveness of cell death induced by an ICD-inducer and evaluate its ability to reduce tumor burden in an established syngeneic mouse model.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodriguez
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Maria Norma Gonzalez-Flores
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico; Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Centro de Biotecnologia-FEMSA, Monterreey, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo León, Mexico
| | - Reyes Tamez-Guerra
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico
| | - Cristina Rodriguez-Padilla
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Centro de Biotecnologia-FEMSA, Monterreey, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo León, Mexico
| | - Ana Carolina Martinez-Torres
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
15
|
Huang H, Tong QS, Chen Y, Liu XY, Liu R, Shen S, Du JZ, Wang J. PAMAM-Based Polymeric Immunogenic Cell Death Inducer To Potentiate Cancer Immunotherapy. J Am Chem Soc 2024; 146:29189-29198. [PMID: 39387453 DOI: 10.1021/jacs.4c11636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Immunogenic cell death (ICD) has been widely employed to potentiate cancer immunotherapy due to its capability to activate the anticancer immune response. Although various ICD inducers have been described, the development of synthetic materials with intrinsic ICD-inducing competency has rarely been reported. Herein, we identify a derivative of the fourth generation polyamidoamine (PAMAM) modified with multiple seven-membered heterocyclic rings, G4P-C7A, as a robust ICD inducer. G4P-C7A evokes characteristic release of damage-associated molecular patterns in tumor cells and induces efficient dendritic cell maturation. Mechanistic studies suggest that G4P-C7A can selectively accumulate in the endoplasmic reticulum and mitochondria to generate reactive oxygen species. G4P-C7A-treated tumor cells can work as potent vaccines to protect against secondary tumor implantation. Either local or systemic injection of G4P-C7A alone can effectively inhibit tumor growth by eliciting robust antitumor immune response. The combination of G4P-C7A with immunotherapeutic antibodies such as anti-PD1 (aPD-1) and anti-CD47 (aCD47) further potentiates the antitumor effect in either CT26 or 4T1 tumor model. This study offers a simple but effective strategy to induce ICD to boost cancer immunotherapy.
Collapse
Affiliation(s)
- Hua Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Qi-Song Tong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yang Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xiao-Yue Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Rong Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
17
|
Nik Nabil WN, Dai R, Liu M, Xi Z, Xu H. Repurposing cardiac glycosides for anticancer treatment: a review of clinical studies. Drug Discov Today 2024; 29:104129. [PMID: 39098384 DOI: 10.1016/j.drudis.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cardiac glycosides (CGs), which are traditionally used for heart disease, show promise for cancer therapy. However, there is a lack of a comprehensive review of clinical studies in this area, and so far, CGs have not been widely integrated into clinical cancer treatment. This review covers clinical studies from the past five years, highlighting the potential of CGs to reduce cancer risk, enhance chemotherapy effectiveness, mitigate chemotherapy-induced side effects and improve quality of life. Future clinical trials should personalize the dosage of CGs, integrate molecular testing and investigate immunogenic cell death induction and the potential of CGs for treating bone cancer and metastasis. Optimizing the repurposing of CGs for anticancer treatment requires consideration of specific CGs, cancer types and concurrent medications.
Collapse
Affiliation(s)
- Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China; National Pharmaceutical Regulatory Agency, Ministry of Health, Lot 36, Jalan University, Petaling Jaya, Selangor 46200, Malaysia
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
18
|
Kuo CL, Lin YC, Lo YK, Lu YZ, Babuharisankar AP, Lien HW, Chou HY, Lee AYL. The mitochondrial stress signaling tunes immunity from a view of systemic tumor microenvironment and ecosystem. iScience 2024; 27:110710. [PMID: 39262792 PMCID: PMC11388186 DOI: 10.1016/j.isci.2024.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Mitochondria play important roles in cell fate, calcium signaling, mitophagy, and the signaling through reactive oxygen species (ROS). Recently, mitochondria are considered as a signaling organelle in the cell and communicate with other organelles to constitute the mitochondrial information processing system (MIPS) that transduce input-to-output biological information. The success in immunotherapy, a concept of systemic therapy, has been proved to be dependent on paracrine interactions within the tumor microenvironment (TME) and distant organs including microbiota and immune components. We will adopt a broader view from the concept of TME to tumor micro- and macroenvironment (TM 2 E) or tumor-organ ecosystem (TOE). In this review, we will discuss the role of mitochondrial signaling by mitochondrial ROS, calcium flux, metabolites, mtDNA, vesicle transportation, and mitochondria-derived peptide in the TME and TOE, in particular immune regulation and effective cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ying-Chen Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu-Zhi Lu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | | | - Hui-Wen Lien
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Department of Life Sciences, College of Health Sciences & Technology, National Central University, Zhongli, Taoyuan 32001, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
19
|
Ha DP, Shin WJ, Liu Z, Doche ME, Lau R, Leli NM, Conn CS, Russo M, Lorenzato A, Koumenis C, Yu M, Mumenthaler SM, Lee AS. Targeting stress induction of GRP78 by cardiac glycoside oleandrin dually suppresses cancer and COVID-19. Cell Biosci 2024; 14:115. [PMID: 39238058 PMCID: PMC11378597 DOI: 10.1186/s13578-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19. RESULTS Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na+/K+-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release. CONCLUSION Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, 34987, USA
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael E Doche
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Roy Lau
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Crystal S Conn
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariangela Russo
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Annalisa Lorenzato
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Constantinos Koumenis
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Min Yu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shannon M Mumenthaler
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
20
|
Zhang LL, Zhang DJ, Shi JX, Huang MY, Yu JM, Chen XJ, Wei X, Zou L, Lu JJ. Immunogenic cell death inducers for cancer therapy: An emerging focus on natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155828. [PMID: 38905847 DOI: 10.1016/j.phymed.2024.155828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Immunogenic cell death (ICD) is a specific form of regulated cell death induced by a variety of stressors. During ICD, the dying cancer cells release damage-associated molecular patterns (DAMPs), which promote dendritic cell maturation and tumor antigen presentation, subsequently triggering a T-cell-mediated anti-tumor immune response. In recent years, a growing number of studies have demonstrated the potential of natural products to induce ICD and enhance tumor cell immunogenicity. Moreover, there is an increasing interest in identifying new ICD inducers from natural products. PURPOSE This study aimed to emphasize the potential of natural products and their derivatives as ICD inducers to promote research on using natural products in cancer therapy and provide ideas for future novel immunotherapies based on ICD induction. METHOD This review included a thorough search of the PubMed, Web of Science, Scopus, and Google Scholar databases to identify natural products with ICD-inducing capabilities. A comprehensive search for clinical trials on natural ICD inducers was also conducted using ClinicalTrials.gov, as well as the approved patents using the Espacenet and CNKI Patent Database. RESULTS Natural compounds that induce ICD can be categorized into several groups, such as polyphenols, flavonoids, terpenoids, and alkaloids. Natural products can induce the release of DAMPs by triggering endoplasmic reticulum stress, activation of autophagy-related pathways, and reactive oxygen species generation, etc. Ultimately, they activate anti-tumor immune response and improve the efficacy of cancer treatments. CONCLUSION A growing number of ICD inducers from natural products with promising anti-cancer potential have been identified. The detailed information presented in this review will contribute to the further development of natural ICD inducers and cancer treatment strategies based on ICD-induced responses.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Du-Juan Zhang
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jia-Xin Shi
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jia-Mei Yu
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xu-Jia Chen
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiao Wei
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
21
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
22
|
Virard F, Giraud S, Bonnet M, Magadoux L, Martin L, Pham TH, Skafi N, Deneuve S, Frem R, Villoutreix BO, Sleiman NH, Reboulet J, Merabet S, Chaptal V, Chaveroux C, Hussein N, Aznar N, Fenouil T, Treilleux I, Saintigny P, Ansieau S, Manié S, Lebecque S, Renno T, Coste I. Targeting ERK-MYD88 interaction leads to ERK dysregulation and immunogenic cancer cell death. Nat Commun 2024; 15:7037. [PMID: 39147750 PMCID: PMC11327251 DOI: 10.1038/s41467-024-51275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
The quest for targeted therapies is critical in the battle against cancer. The RAS/MAP kinase pathway is frequently implicated in neoplasia, with ERK playing a crucial role as the most distal kinase in the RAS signaling cascade. Our previous research demonstrated that the interaction between ERK and MYD88, an adaptor protein in innate immunity, is crucial for RAS-dependent transformation and cancer cell survival. In this study, we examine the biological consequences of disrupting the ERK-MYD88 interaction through the ERK D-recruitment site (DRS), while preserving ERK's kinase activity. Our results indicate that EI-52, a small-molecule benzimidazole targeting ERK-MYD88 interaction induces an HRI-mediated integrated stress response (ISR), resulting in immunogenic apoptosis specific to cancer cells. Additionally, EI-52 exhibits anti-tumor efficacy in patient-derived tumors and induces an anti-tumor T cell response in mice in vivo. These findings suggest that inhibiting the ERK-MYD88 interaction may be a promising therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- François Virard
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculté d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Giraud
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- Center for Drug Discovery and Development, Synergy Lyon Cancer Foundation, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Mélanie Bonnet
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Léa Magadoux
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Laetitia Martin
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- Center for Drug Discovery and Development, Synergy Lyon Cancer Foundation, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Thuy Ha Pham
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Najwa Skafi
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Sophie Deneuve
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Rita Frem
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Bruno O Villoutreix
- Université de Paris, NeuroDiderot, Inserm, Hôpital Robert Debré, 75019, Paris, France
| | - Nawal Hajj Sleiman
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242-CNRS/ENSL, Université Claude Bernard Lyon 1, Lyon, France
| | - Jonathan Reboulet
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242-CNRS/ENSL, Université Claude Bernard Lyon 1, Lyon, France
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242-CNRS/ENSL, Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Chaptal
- Drug Resistance & Membrane Proteins group, Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, Lyon, France
| | - Cédric Chaveroux
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Nader Hussein
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Nicolas Aznar
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Tanguy Fenouil
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculté de Médecine, Hospices Civils de Lyon, Lyon, France
| | | | - Pierre Saintigny
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Stéphane Ansieau
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Serge Manié
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Serge Lebecque
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculté de Médecine, Hospices Civils de Lyon, Lyon, France
| | - Toufic Renno
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France.
| | - Isabelle Coste
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
23
|
Li Y, Ma P, Li J, Wu F, Guo M, Zhou E, Song S, Wang S, Zhang S, Jin Y. Dihydroartemisinin restores the immunogenicity and enhances the anticancer immunosurveillance of cisplatin by activating the PERK/eIF2α pathway. Cell Biosci 2024; 14:100. [PMID: 39090653 PMCID: PMC11295430 DOI: 10.1186/s13578-024-01254-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Immunosurveillance is pivotal in the effectiveness of anticancer therapies and tumor control. The ineffectiveness of cisplatin in activating the immunosurveillance is attributed to its lack of adjuvanticity resulting from its inability to stimulate endoplasmic reticulum stress. Dihydroartemisinin demonstrates the anti-tumor effects through various mechanisms, including the activation of the endoplasmic reticulum stress. This study aimed to develop a novel strategy to enhance the immunogenicity of dying tumor cells by combining cisplatin with dihydroartemisinin, thereby triggering effective anti-tumor immunosurveillance and improving the efficacy of cisplatin in clinical practice. METHODS Lewis lung carcinoma (LLC) and CT26 colon cancer cell lines and subcutaneous tumor models were used in this study. The importance of immunosurveillance was validated in both immunocompetent and immunodeficient mouse models. The ability of dihydroartemisinin and cisplatin therapy to induce immunogenic cell death and tumor growth control in vivo was validated by prophylactic tumor vaccination and therapeutic tumor models. The underlying mechanism was elucidated through the pharmaceutical or genetic intervention of the PERK/eIF2α pathway in vitro and in vivo. RESULTS Dihydroartemisinin enhanced the generation of reactive oxygen species in cisplatin-treated LLC and CT26 cancer cells. The combination treatment of dihydroartemisinin with cisplatin promoted cell death and ensured an optimal release of damage-associated molecular patterns from dying cancer cells, promoting the phagocytosis of dendritic cells. In the tumor vaccination model, we confirmed that dihydroartemisinin plus cisplatin treatment induced immunogenic cell death. Utilizing immunocompetent and immunodeficient mouse models, we further demonstrated that the combination treatment suppressed the tumor growth of CT26 colon cancer and LLC lung cancer, leading to an improved prognosis through the restoration of cytotoxic T lymphocyte responses and reinstatement of anti-cancer immunosurveillance in vivo. Mechanistically, dihydroartemisinin restored the immunogenicity of cisplatin by activating the adjuvanticity of damage-associated molecular patterns, such as calreticulin exposure, through the PERK/eIF2α pathway. Additionally, the inhibition of eIF2α phosphorylation attenuated the anti-tumor efficiency of C + D in vivo. CONCLUSIONS We highlighted that dihydroartemisinin acts as an immunogenic cell death rescuer for cisplatin, activating anticancer immunosurveillance in a PERK/eIF2α-dependent manner and offering a strategy to enhance the anti-tumor efficacy of cisplatin in clinical practice.
Collapse
Affiliation(s)
- Yumei Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingxia Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siwei Song
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Yang LJ, Han T, Liu RN, Shi SM, Luan SY, Meng SN. Plant-derived natural compounds: A new frontier in inducing immunogenic cell death for cancer treatment. Biomed Pharmacother 2024; 177:117099. [PMID: 38981240 DOI: 10.1016/j.biopha.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Immunogenic cell death (ICD) can activate adaptive immune response in the host with normal immune system. Some synthetic chemotherapeutic drugs and natural compounds have shown promising results in cancer treatment by triggering the release of damage-associated molecules (DAMPs) to trigger ICD. However, most chemotherapeutic drugs exhibit non-selective cytotoxicity and may also induce and promote metastasis, thereby significantly reducing their clinical efficacy. Among the natural compounds that can induce ICD, plant-derived compounds account for the largest proportion, which are of increasing value in the treatment of cancer. Understanding which plant-derived natural compounds can induce ICD and how they induce ICD is crucial for developing strategies to improve chemotherapy outcomes. In this review, we focus on the recent findings regarding plant-derived natural compounds that induce ICD according to the classification of flavonoids, alkaloids, glycosides, terpenoids and discuss the potential mechanisms including endoplasmic reticulum (ER) stress, DNA damage, apoptosis, necroptosis autophagy, ferroptosis. In addition, plant-derived natural compounds that can enhance the ICD induction ability of conventional therapies for cancer treatment is also elaborated. The rational use of plant-derived natural compounds to induce ICD is helpful for the development of new cancer treatment methods.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ting Han
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ruo-Nan Liu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shu-Ming Shi
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shi-Yun Luan
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Sheng-Nan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
25
|
Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola FM. Targeting immunogenic cell stress and death for cancer therapy. Nat Rev Drug Discov 2024; 23:445-460. [PMID: 38622310 PMCID: PMC11153000 DOI: 10.1038/s41573-024-00920-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD - either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions - are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | | |
Collapse
|
26
|
Cullen JK, Yap PY, Ferguson B, Bruce ZC, Koyama M, Handoko H, Hendrawan K, Simmons JL, Brooks KM, Johns J, Wilson ES, de Souza MMA, Broit N, Stewart P, Shelley D, McMahon T, Ogbourne SM, Nguyen TH, Lim YC, Pagani A, Appendino G, Gordon VA, Reddell PW, Boyle GM, Parsons PG. Tigilanol tiglate is an oncolytic small molecule that induces immunogenic cell death and enhances the response of both target and non-injected tumors to immune checkpoint blockade. J Immunother Cancer 2024; 12:e006602. [PMID: 38658031 PMCID: PMC11043783 DOI: 10.1136/jitc-2022-006602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Tigilanol tiglate (TT) is a protein kinase C (PKC)/C1 domain activator currently being developed as an intralesional agent for the treatment of various (sub)cutaneous malignancies. Previous work has shown that intratumoral (I.T.) injection of TT causes vascular disruption with concomitant tumor ablation in several preclinical models of cancer, in addition to various (sub)cutaneous tumors presenting in the veterinary clinic. TT has completed Phase I dose escalation trials, with some patients showing signs of abscopal effects. However, the exact molecular details underpinning its mechanism of action (MoA), together with its immunotherapeutic potential in oncology remain unclear. METHODS A combination of microscopy, luciferase assays, immunofluorescence, immunoblotting, subcellular fractionation, intracellular ATP assays, phagocytosis assays and mixed lymphocyte reactions were used to probe the MoA of TT in vitro. In vivo studies with TT used MM649 xenograft, CT-26 and immune checkpoint inhibitor refractory B16-F10-OVA tumor bearing mice, the latter with or without anti-programmed cell death 1 (PD-1)/anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) mAb treatment. The effect of TT at injected and non-injected tumors was also assessed. RESULTS Here, we show that TT induces the death of endothelial and cancer cells at therapeutically relevant concentrations via a caspase/gasdermin E-dependent pyroptopic pathway. At therapeutic doses, our data demonstrate that TT acts as a lipotoxin, binding to and promoting mitochondrial/endoplasmic reticulum (ER) dysfunction (leading to unfolded protein responsemt/ER upregulation) with subsequent ATP depletion, organelle swelling, caspase activation, gasdermin E cleavage and induction of terminal necrosis. Consistent with binding to ER membranes, we found that TT treatment promoted activation of the integrated stress response together with the release/externalization of damage-associated molecular patterns (HMGB1, ATP, calreticulin) from cancer cells in vitro and in vivo, characteristics indicative of immunogenic cell death (ICD). Confirmation of ICD in vivo was obtained through vaccination and rechallenge experiments using CT-26 colon carcinoma tumor bearing mice. Furthermore, TT also reduced tumor volume, induced immune cell infiltration, as well as improved survival in B16-F10-OVA tumor bearing mice when combined with immune checkpoint blockade. CONCLUSIONS These data demonstrate that TT is an oncolytic small molecule with multiple targets and confirms that cell death induced by this compound has the potential to augment antitumor responses to immunotherapy.
Collapse
Affiliation(s)
- Jason K Cullen
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
- QBiotics Group Limited, Brisbane, Queensland, Australia
| | - Pei-Yi Yap
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Blake Ferguson
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Zara C Bruce
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Motoko Koyama
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Herlina Handoko
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kevin Hendrawan
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jacinta L Simmons
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | - Kelly M Brooks
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jenny Johns
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Emily S Wilson
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Natasa Broit
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Praphaporn Stewart
- University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Daniel Shelley
- University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tracey McMahon
- University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Steven M Ogbourne
- QBiotics Group Limited, Brisbane, Queensland, Australia
- University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tam Hong Nguyen
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Yi Chieh Lim
- Danish Cancer Society Research Centre, Copenhagen DK, Denmark
| | - Alberto Pagani
- Dipartimento di Scienze del Farmaco, Università Degli Studi del Piemonte Orientale, Novara, Italy
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università Degli Studi del Piemonte Orientale, Novara, Italy
| | | | | | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | - Peter G Parsons
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- QBiotics Group Limited, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Katoh M, Fujii T, Tabuchi Y, Shimizu T, Sakai H. Negative regulation of thyroid adenoma-associated protein (THADA) in the cardiac glycoside-induced anti-cancer effect. J Physiol Sci 2024; 74:23. [PMID: 38561668 PMCID: PMC10985892 DOI: 10.1186/s12576-024-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Cardiac glycosides, known as inhibitors of Na+,K+-ATPase, have anti-cancer effects such as suppression of cancer cell proliferation and induction of cancer cell death. Here, we examined the signaling pathway elicited by cardiac glycosides in the human hepatocellular carcinoma HepG2 cells and human epidermoid carcinoma KB cells. Three kinds of cardiac glycosides (ouabain, oleandrin, and digoxin) inhibited the cancer cell proliferation and decreased the expression level of thyroid adenoma-associated protein (THADA). Interestingly, the knockdown of THADA inhibited cancer cell proliferation, and the proliferation was significantly rescued by re-expression of THADA in the THADA-knockdown cells. In addition, the THADA-knockdown markedly decreased the expression level of L-type amino acid transporter LAT1. Cardiac glycosides also reduced the LAT1 expression. The LAT1 inhibitor, JPH203, significantly weakened the cancer cell proliferation. These results suggest that the binding of cardiac glycosides to Na+,K+-ATPase negatively regulates the THADA-LAT1 pathway, exerting the anti-proliferative effect in cancer cells.
Collapse
Affiliation(s)
- Mizuki Katoh
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
28
|
Pan H, Liu P, Zhao L, Pan Y, Mao M, Kroemer G, Kepp O. Immunogenic cell stress and death in the treatment of cancer. Semin Cell Dev Biol 2024; 156:11-21. [PMID: 37977108 DOI: 10.1016/j.semcdb.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The successful treatment of oncological malignancies which results in long-term disease control or the complete eradication of cancerous cells necessitates the onset of adaptive immune responses targeting tumor-specific antigens. Such desirable anticancer immunity can be triggered via the induction of immunogenic cell death (ICD) of cancer cells, thus converting malignant cells into an in situ vaccine that elicits T cell mediated adaptive immune responses and establishes durable immunological memory. The exploration of ICD for cancer treatment has been subject to extensive research. However, functional heterogeneity among ICD activating therapies in many cases requires specific co-medications to achieve full-blown efficacy. Here, we described the hallmarks of ICD and classify ICD activators into three distinct functional categories namely, according to their mode of action: (i) ICD inducers, which increase the immunogenicity of malignant cells, (ii) ICD sensitizers, which prime cellular circuitries for ICD induction by conventional cytotoxic agents, and (iii) ICD enhancers, which improve the perception of ICD signals by antigen presenting dendritic cells. Altogether, ICD induction, sensitization and enhancement offer the possibility to convert well-established conventional anticancer therapies into immunotherapeutic approaches that activate T cell-mediated anticancer immunity.
Collapse
Affiliation(s)
- Hui Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France; Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France.
| |
Collapse
|
29
|
Hu J, Ascierto P, Cesano A, Herrmann V, Marincola FM. Shifting the paradigm: engaging multicellular networks for cancer therapy. J Transl Med 2024; 22:270. [PMID: 38475820 PMCID: PMC10936124 DOI: 10.1186/s12967-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 03/14/2024] Open
Abstract
Most anti-cancer modalities are designed to directly kill cancer cells deploying mechanisms of action (MOAs) centered on the presence of a precise target on cancer cells. The efficacy of these approaches is limited because the rapidly evolving genetics of neoplasia swiftly circumvents the MOA generating therapy-resistant cancer cell clones. Other modalities engage endogenous anti-cancer mechanisms by activating the multi-cellular network (MCN) surrounding neoplastic cells in the tumor microenvironment (TME). These modalities hold a better chance of success because they activate numerous types of immune effector cells that deploy distinct cytotoxic MOAs. This in turn decreases the chance of developing treatment-resistance. Engagement of the MCN can be attained through activation of immune effector cells that in turn kill cancer cells or when direct cancer killing is complemented by the production of proinflammatory factors that secondarily recruit and activate immune effector cells. For instance, adoptive cell therapy (ACT) supplements cancer cell killing with the release of homeostatic and pro-inflammatory cytokines by the immune cells and damage associated molecular patterns (DAMPs) by dying cancer cells. The latter phenomenon, referred to as immunogenic cell death (ICD), results in an exponential escalation of anti-cancer MOAs at the tumor site. Other approaches can also induce exponential cancer killing by engaging the MCN of the TME through the release of DAMPs and additional pro-inflammatory factors by dying cancer cells. In this commentary, we will review the basic principles that support emerging paradigms likely to significantly improve the efficacy of anti-cancer therapy.
Collapse
Affiliation(s)
- Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA.
| | - Paolo Ascierto
- Cancer Immunotherapy and Innovative Therapy, National Tumor Institute, Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | | |
Collapse
|
30
|
Samolej J, White IJ, Strang BL, Mercer J. Cardiac glycosides inhibit early and late vaccinia virus protein expression. J Gen Virol 2024; 105:001971. [PMID: 38546099 PMCID: PMC10995631 DOI: 10.1099/jgv.0.001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiac glycosides (CGs) are natural steroid glycosides, which act as inhibitors of the cellular sodium-potassium ATPase pump. Although traditionally considered toxic to human cells, CGs are widely used as drugs for the treatment of cardiovascular-related medical conditions. More recently, CGs have been explored as potential anti-viral drugs and inhibit replication of a range of RNA and DNA viruses. Previously, a compound screen identified CGs that inhibited vaccinia virus (VACV) infection. However, no further investigation of the inhibitory potential of these compounds was performed, nor was there investigation of the stage(s) of the poxvirus lifecycle they impacted. Here, we investigated the anti-poxvirus activity of a broad panel of CGs. We found that all CGs tested were potent inhibitors of VACV replication. Our virological experiments showed that CGs did not impact virus infectivity, binding, or entry. Rather, experiments using recombinant viruses expressing reporter proteins controlled by VACV promoters and arabinoside release assays demonstrated that CGs inhibited early and late VACV protein expression at different concentrations. Lack of virus assembly in the presence of CGs was confirmed using electron microscopy. Thus, we expand our understanding of compounds with anti-poxvirus activity and highlight a yet unrecognized mechanism by which poxvirus replication can be inhibited.
Collapse
Affiliation(s)
- Jerzy Samolej
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Blair L. Strang
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jason Mercer
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
31
|
Li F, Wen Z, Wu C, Yang Z, Wang Z, Diao W, Chen D, Xu Z, Lu Y, Liu W. Simultaneous Activation of Immunogenic Cell Death and cGAS-STING Pathway by Liver- and Mitochondria-Targeted Gold(I) Complexes for Chemoimmunotherapy of Hepatocellular Carcinoma. J Med Chem 2024; 67:1982-2003. [PMID: 38261008 DOI: 10.1021/acs.jmedchem.3c01785] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Induction of immunogenic cell death (ICD) and activation of the cyclic GMP-AMP synthase stimulator of interferon gene (cGAS-STING) pathway are two potent anticancer immunotherapeutic strategies in hepatocellular carcinoma (HCC). Herein, 12 liver- and mitochondria-targeting gold(I) complexes (9a-9l) were designed and synthesized. The superior complex 9b produced a considerable amount of reactive oxygen species (ROS) and facilitated DNA excretion, the ROS-induced ICD and DNA activated the cGAS-STING pathway, both of which evoked an intense anticancer immune response in vitro and in vivo. Importantly, 9b strongly inhibited tumor growth in a patient-derived xenograft model of HCC. Overall, we present the first case of simultaneous ICD induction and cGAS-STING pathway activation within the same gold-based small molecule, which may provide an innovative strategy for designing chemoimmunotherapies for HCC.
Collapse
Affiliation(s)
- Fuwei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chuanxing Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 210011, P. R. China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, P. R. China
| | - Zhaoran Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wenjing Diao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 210011, P. R. China
| | - Dahong Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 210011, P. R. China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
32
|
Heiser RA, Cao AT, Zeng W, Ulrich M, Younan P, Anderson ME, Trueblood ES, Jonas M, Thurman R, Law CL, Gardai SJ. Brentuximab Vedotin-Driven Microtubule Disruption Results in Endoplasmic Reticulum Stress Leading to Immunogenic Cell Death and Antitumor Immunity. Mol Cancer Ther 2024; 23:68-83. [PMID: 37775098 PMCID: PMC10762337 DOI: 10.1158/1535-7163.mct-23-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Brentuximab vedotin, a CD30-directed antibody-drug conjugate (ADC), is approved for clinical use in multiple CD30-expressing lymphomas. The cytotoxic payload component of brentuximab vedotin is monomethyl auristatin E (MMAE), a highly potent microtubule-disrupting agent. Preclinical results provided here demonstrate that treatment of cancer cells with brentuximab vedotin or free MMAE leads to a catastrophic disruption of the microtubule network eliciting a robust endoplasmic reticulum (ER) stress response that culminates in the induction of the classic hallmarks of immunogenic cell death (ICD). In accordance with the induction of ICD, brentuximab vedotin-killed lymphoma cells drove innate immune cell activation in vitro and in vivo. In the "gold-standard" test of ICD, vaccination of mice with brentuximab vedotin or free MMAE-killed tumor cells protected animals from tumor rechallenge; in addition, T cells transferred from previously vaccinated animals slowed tumor growth in immunodeficient mice. Immunity acquired from killed tumor cell vaccination was further amplified by the addition of PD-1 blockade. In a humanized model of CD30+ B-cell tumors, treatment with brentuximab vedotin drove the expansion and recruitment of autologous Epstein-Barr virus-reactive CD8+ T cells potentiating the activity of anti-PD-1 therapy. Together, these data support the ability of brentuximab vedotin and MMAE to drive ICD in tumor cells resulting in the activation of antigen-presenting cells and augmented T-cell immunity. These data provide a strong rationale for the clinical combination of brentuximab vedotin and other MMAE-based ADCs with checkpoint inhibitors.
Collapse
|
33
|
Liu P, Zhao L, Zitvogel L, Kepp O, Kroemer G. Immunogenic cell death (ICD) enhancers-Drugs that enhance the perception of ICD by dendritic cells. Immunol Rev 2024; 321:7-19. [PMID: 37596984 DOI: 10.1111/imr.13269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
The search for immunostimulatory drugs applicable to cancer immunotherapy may profit from target-agnostic methods in which agents are screened for their functional impact on immune cells cultured in vitro without any preconceived idea on their mode of action. We have built a synthetic mini-immune system in which stressed and dying cancer cells (derived from standardized cell lines) are confronted with dendritic cells (DCs, derived from immortalized precursors) and CD8+ T-cell hybridoma cells expressing a defined T-cell receptor. Using this system, we can identify three types of immunostimulatory drugs: (i) pharmacological agents that stimulate immunogenic cell death (ICD) of malignant cells; (ii) drugs that act on DCs to enhance their response to ICD; and (iii) drugs that act on T cells to increase their effector function. Here, we focus on strategies to develop drugs that enhance the perception of ICD by DCs and to which we refer as "ICD enhancers." We discuss examples of ICD enhancers, including ligands of pattern recognition receptors (exemplified by TLR3 ligands that correct the deficient function of DCs lacking FPR1) and immunometabolic modifiers (exemplified by hexokinase-2 inhibitors), as well as methods for target deconvolution applicable to the mechanistic characterization of ICD enhancers.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Laurence Zitvogel
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Gustave Roussy, ClinicObiome, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
34
|
Zhou M, Boulos JC, Klauck SM, Efferth T. The cardiac glycoside ZINC253504760 induces parthanatos-type cell death and G2/M arrest via downregulation of MEK1/2 phosphorylation in leukemia cells. Cell Biol Toxicol 2023; 39:2971-2997. [PMID: 37322258 PMCID: PMC10693532 DOI: 10.1007/s10565-023-09813-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Overcoming multidrug resistance (MDR) represents a major obstacle in cancer chemotherapy. Cardiac glycosides (CGs) are efficient in the treatment of heart failure and recently emerged in a new role in the treatment of cancer. ZINC253504760, a synthetic cardenolide that is structurally similar to well-known GCs, digitoxin and digoxin, has not been investigated yet. This study aims to investigate the cytotoxicity of ZINC253504760 on MDR cell lines and its molecular mode of action for cancer treatment. Four drug-resistant cell lines (P-glycoprotein-, ABCB5-, and EGFR-overexpressing cells, and TP53-knockout cells) did not show cross-resistance to ZINC253504760 except BCRP-overexpressing cells. Transcriptomic profiling indicated that cell death and survival as well as cell cycle (G2/M damage) were the top cellular functions affected by ZINC253504760 in CCRF-CEM cells, while CDK1 was linked with the downregulation of MEK and ERK. With flow cytometry, ZINC253504760 induced G2/M phase arrest. Interestingly, ZINC253504760 induced a novel state-of-the-art mode of cell death (parthanatos) through PARP and PAR overexpression as shown by western blotting, apoptosis-inducing factor (AIF) translocation by immunofluorescence, DNA damage by comet assay, and mitochondrial membrane potential collapse by flow cytometry. These results were ROS-independent. Furthermore, ZINC253504760 is an ATP-competitive MEK inhibitor evidenced by its interaction with the MEK phosphorylation site as shown by molecular docking in silico and binding to recombinant MEK by microscale thermophoresis in vitro. To the best of our knowledge, this is the first time to describe a cardenolide that induces parthanatos in leukemia cells, which may help to improve efforts to overcome drug resistance in cancer. A cardiac glycoside compound ZINC253504760 displayed cytotoxicity against different multidrug-resistant cell lines. ZINC253504760 exhibited cytotoxicity in CCRF-CEM leukemia cells by predominantly inducing a new mode of cell death (parthanatos). ZINC253504760 downregulated MEK1/2 phosphorylation and further affected ERK activation, which induced G2/M phase arrest.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Disease (NCT), 69120, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
35
|
Liu P, Zhao L, Kroemer G, Kepp O. Conventional type 1 dendritic cells (cDC1) in cancer immunity. Biol Direct 2023; 18:71. [PMID: 37907944 PMCID: PMC10619282 DOI: 10.1186/s13062-023-00430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer immunotherapy, alone or in combination with conventional therapies, has revolutionized the landscape of antineoplastic treatments, with dendritic cells (DC) emerging as key orchestrators of anti-tumor immune responses. Among the distinct DC subsets, conventional type 1 dendritic cells (cDC1) have gained prominence due to their unique ability to cross-present antigens and activate cytotoxic T lymphocytes. This review summarizes the distinctive characteristics of cDC1, their pivotal role in anticancer immunity, and the potential applications of cDC1-based strategies in immunotherapy.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France.
| |
Collapse
|
36
|
Zhang X, Shang C, Qiao X, Guo Y. Role and clinical significance of immunogenic cell death biomarkers in chemoresistance and immunoregulation of head and neck squamous cell carcinoma. Biomed Pharmacother 2023; 167:115509. [PMID: 37722193 DOI: 10.1016/j.biopha.2023.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in the whole world, with little improvement in the 5-year survival rate due to the occurrence of chemoresistance. With the increasing interests in tumor immune microenvironment, immunogenic cell death (ICD)-induced chemotherapy has shown promising results in enhancing sensitivity to immune checkpoint inhibitors (ICI) and improving the efficiency of tumor immunotherapy. This review summarizes the role of key ICD biomarkers and their underlying molecular mechanisms in HNSCC chemoresistance. The results showed that ICD initiation could significantly improve the survival and prognosis of patients. ICD and its biomarker could also serve as molecular markers for tumor diagnosis and prognosis. Moreover, key components of DAMPs including CALR, HGMB1, and ATP are involved in the regulation of HNSCC chemo-sensitivity, confirming that the key biomarkers of ICD can also be developed into new targets for regulating HNSCC chemoresistance. This review clearly illustrates the theoretical basis for the hypothesis that ICD biomarkers are therapeutic targets involved in HNSCC progression, chemoresistance, and even immune microenvironment regulation. The compilation and investigation may provide new insights into the molecular therapy of HNSCC.
Collapse
Affiliation(s)
- Xuanyu Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Chao Shang
- Department of Neurobiology, China Medical University, Shenyang, Liaoning, China
| | - Xue Qiao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China.
| | - Yan Guo
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China.
| |
Collapse
|
37
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Ren E, Wang Y, Liang T, Zheng H, Shi J, Cheng Z, Li H, Gu Z. Local Drug Delivery Techniques for Triggering Immunogenic Cell Death. SMALL METHODS 2023; 7:e2300347. [PMID: 37259275 DOI: 10.1002/smtd.202300347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Immunogenic cell death (ICD), a dying state of the cells, encompasses the changes in the conformations of cell surface and the release of damage-associated molecular patterns, which could initiate an adaptive immune response by stimulating the dendritic cells to present antigens to T cells. Advancements in biomaterials, nanomedicine, and micro- and nano-technologies have facilitated the development of effective ICD inducers, but the potential toxicity of these vesicles encountered in drug delivery via intravenous administration hampers their further application. As alternatives, the local drug delivery systems have gained emerging attention due to their ability to prolong the retention of high payloads at the lesions, sequester drugs from harsh environments, overcome biological barriers to exert optimal efficacy, and minimize potential side effects to guarantee bio-safety. Herein, a brief overview of the local drug delivery techniques used for ICD inducers is provided, explaining how these techniques broaden, alter, and enhance the therapeutic capability while circumventing systemic toxicity at the same time. The historical context and prominent examples of the local administration of ICD inducers are introduced. The complexities, potential pitfalls, and opportunities for local drug delivery techniques in cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- En Ren
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yanfang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tingxizi Liang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hanqi Zheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiaqi Shi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zesheng Cheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, P. R. China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321299, P. R. China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, P. R. China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321299, P. R. China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P. R. China
- The National Laboratory of Advanced Drug Delivery and Release Systems, Hangzhou, 310058, P. R. China
| |
Collapse
|
39
|
Oliyapour Y, Dabiri S, Molavi O, Hejazi MS, Davaran S, Jafari S, Montazersaheb S. Chrysin and chrysin-loaded nanocarriers induced immunogenic cell death on B16 melanoma cells. Med Oncol 2023; 40:278. [PMID: 37624439 DOI: 10.1007/s12032-023-02145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
Induction of immunogenic cell death (ICD) is a promising strategy for cancer immunotherapy. Chrysin, which has potential anticancer effects, faces limitations in clinical applications due to its poor water solubility. This study aimed to formulate chrysin with PEG-poly(α-benzylcarboxylate-ε-caprolactone) (PBCL) nanoparticles (NPs) and assess their anticancer and ICD-inducing potency in melanoma cells, comparing with free chrysin. The co-solvent evaporation method was employed to develop chrysin-loaded NPs. UV spectroscopy, dynamic light scattering, and the dialysis bag method were used to evaluate the encapsulation efficiency (EE), particle size, polydispersity index (PDI), and drug release profile, respectively. The anticancer effects of the drugs were assessed using the MTT and trypan blue exclusion assays. Flow cytometry was employed to evaluate apoptosis and calreticulin (CRT) expression. ELISA and western blotting were used to detect heat shock protein 90 (HSP90), Annexin A1, GRP78 (Glucose-related protein78), and activated protein kinase R-like endoplasmic reticulum kinase (p-PERK). Chrysin-loaded PEG-PBCL NPs (chrysin-PEG-PBCL) showed an EE of 97 ± 1%. Chrysin-PEG-PBCL was 38.18 ± 3.96 nm in size, with a PDI being 0.62 ± 0.23. Chrysin-PEG-PBCL showed an initial burst release, followed by sustained release over 24 h. Chrysin-PEG-PBCL exhibited a significantly stronger anticancer effect in B16 cells. Chrysin-PEG-PBCL was found to be more potent in inducing apoptosis. Both free chrysin and chrysin NPs induced ICD as indicated by an increase in the levels of ICD biomarkers. Interestingly, chrysin NPs were found to be more potent inducers of ICD than the free drug. These findings demonstrate that chrysin and chrysin-PEG-PBCL NPs can induce ICD in B16 cells. PEG-PBCL NPs significantly enhanced the potency of chrysin in inducing ICD compared to its free form.
Collapse
Affiliation(s)
- Yasaman Oliyapour
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheida Dabiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Soodabeh Davaran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| |
Collapse
|
40
|
Harich OO, Gavriliuc OI, Ordodi VL, Tirziu A, Paunescu V, Panaitescu C, Bojin MF. In Vitro Study of the Multimodal Effect of Na +/K + ATPase Blocker Ouabain on the Tumor Microenvironment and Malignant Cells. Biomedicines 2023; 11:2205. [PMID: 37626702 PMCID: PMC10452365 DOI: 10.3390/biomedicines11082205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Na+/K+ ATPase is a protein involved in the active transport of ions across the cellular membrane. Ouabain is a cardiotonic glycoside that, by inhibiting the Na+/K+ pump, interferes with cell processes mediated directly by the pump, but also indirectly influences other cellular processes such as cell cycle and proliferation, growth, cell differentiation, angiogenesis, migration, adhesion, and invasion. We used the SK-BR-3 breast cancer cell line, mesenchymal stem cells (MSCs), and tumor-associated fibroblasts (TAFs) in vitro to determine the effects of ouabain exposure on these cellular types. The results showed a multi-level effect of ouabain mainly on tumor cells, in a dose-dependent manner, while the TAFs and their normal counterparts were not significantly influenced. Following exposure to ouabain, the SK-BR-3 cells changed their morphologic appearance, decreased the expression of immunophenotypic markers (CD29, Her2, VEGF), the proliferation rate was significantly decreased (Ki67 index), the cells were blocked in the G0 phase of the cell cycle and suffered necrosis. These data were correlated with the variable expression of α and β Na+/K+ pump subunits in tumor cells, resulting in decreased ability to adhere to the VCAM-1 substrate in functional flow chamber studies. Being indicative of the pro-apoptotic and inhibitory effect of ouabain on tumor invasion and metastasis, the results support the addition of ouabain to the oncological therapeutic arsenal, trailing the "repurposing drugs" approach.
Collapse
Affiliation(s)
- Octavia-Oana Harich
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
| | - Oana-Isabella Gavriliuc
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
| | - Valentin-Laurentiu Ordodi
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Faculty of Industrial Chemistry and Environmental Engineering, “Politehnica” University Timisoara, No 2 Victoriei Square, 300006 Timisoara, Romania
| | - Alexandru Tirziu
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
| | - Virgil Paunescu
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Maria-Florina Bojin
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
41
|
Yang X, Yang J, Gu X, Tao Y, Ji H, Miao X, Shen S, Zang H. (-)-Guaiol triggers immunogenic cell death and inhibits tumor growth in non-small cell lung cancer. Mol Cell Biochem 2023; 478:1611-1620. [PMID: 36441354 PMCID: PMC10209243 DOI: 10.1007/s11010-022-04613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
(-)-Guaiol is a sesquiterpenoid found in many traditional Chinese medicines with potent antitumor activity. However, its therapeutic effect and mechanism in non-small cell lung cancer (NSCLC) have not been fully elucidated. In this study, (-)-Guaiol was found to induce immunogenic cell death (ICD) in NSCLC in vitro. Using (-)-Guaiol in vivo, we found that (-)-Guaiol could suppress tumor growth, increase dendritic cell activation, and enhance T-cell infiltration. Vaccination experiments suggest that cellular immunoprophylaxis after (-)-Guaiol intervention can suppress tumor growth. Previous studies have found that (-)-Guaiol induces apoptosis and autophagy in NSCLC. Apoptosis and autophagy are closely related to ICD. To explore whether autophagy and apoptosis are involved in (-)-Guaiol-induced ICD, we used inhibitors of apoptosis and autophagy. The results showed that the release of damage-associated molecular patterns (DAMPs) was partly reversed after inhibition of apoptosis and autophagy. In conclusion, these results suggested that the (-)-Guaiol triggers immunogenic cell death and inhibits tumor growth in NSCLC.
Collapse
Affiliation(s)
- Xiaohui Yang
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province China
| | - Xiaoxia Gu
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Yuhua Tao
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Hongjuan Ji
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Xian Miao
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Shuijie Shen
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Haiyang Zang
- Department of Spleen and Stomach, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| |
Collapse
|
42
|
Takada Y, Kaneko K. Automated machine learning approach for developing a quantitative structure-activity relationship model for cardiac steroid inhibition of Na +/K +-ATPase. Pharmacol Rep 2023:10.1007/s43440-023-00508-x. [PMID: 37354314 DOI: 10.1007/s43440-023-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Quantitative structure-activity relationship (QSAR) modeling is a method of characterizing the relationship between chemical structures and biological activity. Automated machine learning enables computers to learn from large datasets and can be used for chemoinformatics. Cardiac steroids (CSs) inhibit the activity of Na+/K+-ATPase (NKA) in several species, including humans, since the binding pocket in which NKA binds to CSs is highly conserved. CSs are used to treat heart disease and have been developed into anticancer drugs for use in clinical trials. Novel CSs are, therefore, frequently synthesized and their activities evaluated. The purpose of this study is to develop a QSAR model via automated machine learning to predict the potential inhibitory activity of compounds without performing experiments. METHODS The chemical structures and inhibitory activities of 215 CS derivatives were obtained from the scientific literature. Predictive QSAR models were constructed using molecular descriptors, fingerprints, and biological activities. RESULTS The best predictive QSAR models were selected based on the LogLoss value. Using these models, the Matthews correlation coefficient, F1 score, and area under the curve of the test dataset were 0.6729, 0.8813, and 0.8812, respectively. Next, we showed automated construction of the predictive models for CS derivatives, which may be useful for identifying novel CSs suitable for candidate drug development. CONCLUSION The automated machine learning-based QSAR method developed here should be applicable for the time-efficient construction of predictive models using only a small number of compounds.
Collapse
Affiliation(s)
- Yohei Takada
- Corporate Planning Department, Otsuka Holdings Co., Ltd, Shinagawa Grand Central Tower 2-16-4 Konan, Minato-ku, Tokyo, 108-8241, Japan.
| | - Kazuhiro Kaneko
- Headquarters of Clinical Development, Otsuka Pharmaceutical Co., Ltd, Shinagawa Grand Central Tower 2-16-4 Konan, Minato-ku, Tokyo, 108-8241, Japan
| |
Collapse
|
43
|
Tseng LM, Lau KY, Chen JL, Chu PY, Huang TT, Lee CH, Wang WL, Chang YY, Huang CT, Huang CC, Chao TC, Tsai YF, Lai JI, Dai MS, Liu CY. Regorafenib induces damage-associated molecular patterns, cancer cell death and immune modulatory effects in a murine triple negative breast cancer model. Exp Cell Res 2023; 429:113652. [PMID: 37209991 DOI: 10.1016/j.yexcr.2023.113652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Damage associated molecular patterns (DAMPs), including calreticulin (CRT) exposure, high-mobility group box 1 protein (HMGB1) elevation, and ATP release, characterize immunogenic cell death (ICD) and may play a role in cancer immunotherapy. Triple negative breast cancer (TNBC) is an immunogenic subtype of breast cancer with higher lymphocyte infiltration. Here, we found that regorafenib, a multi-target angiokinase inhibitor previously known to suppress STAT3 signaling, induced DAMPs and cell death in TNBC cells. Regorafenib induced the expression of HMGB1 and CRT, and the release of ATP. Regorafenib-induced HMGB1 and CRT were attenuated following STAT3 overexpression. In a 4T1 syngeneic murine model, regorafenib treatment increased HMGB1 and CRT expression in xenografts, and effectively suppressed 4T1 tumor growth. Immunohistochemical staining revealed increased CD4+ and CD8+ tumor-infiltrating T cells in 4T1 xenografts following regorafenib treatment. Regorafenib treatment or programmed death-1 (PD-1) blockade using anti-PD-1 monoclonal antibody reduced lung metastasis of 4T1 cells in immunocompetent mice. While regorafenib increases the proportion of MHC II high expression on dendritic cells in mice with smaller tumors, the combination of regorafenib and PD-1 blockade did not show a synergistic effect on anti-tumor activity. These results suggest that regorafenib induces ICD and suppresses tumor progression in TNBC. It should be carefully evaluated when developing a combination therapy with an anti-PD-1 antibody and a STAT3 inhibitor.
Collapse
Affiliation(s)
- Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ka-Yi Lau
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Health Food, Chung Chou University of Science and Technology, Changhua, Taiwan
| | - Tzu-Ting Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Han Lee
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Lun Wang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Ya Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ta-Chung Chao
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Chemotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Fang Tsai
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiun-I Lai
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Shen Dai
- Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
44
|
Yin M, Dong J, Sun C, Liu X, Liu Z, Liu L, Kuang Z, Zhang N, Xiao D, Zhou X, Deng H. Raddeanin A Enhances Mitochondrial DNA-cGAS/STING Axis-Mediated Antitumor Immunity by Targeting Transactive Responsive DNA-Binding Protein 43. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206737. [PMID: 36876644 PMCID: PMC10161045 DOI: 10.1002/advs.202206737] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/29/2023] [Indexed: 05/06/2023]
Abstract
Immune checkpoint therapies (ICT) have achieved unprecedented efficacy in multiple cancer treatments, but are still limited by low clinical response rates. Identification of immunogenic cell death (ICD)-inducing drugs that can induce tumor cell immunogenicity and reprogram the tumor microenvironment is an attractive approach to enhance antitumor immunity. In the present study, Raddeanin A (RA), an oleanane class triterpenoid saponin isolated from Anemone raddeana Regel, is uncovered as a potent ICD inducer through an ICD reporter assay combined with a T cell activation assay. RA significantly increases high-mobility group box 1 release in tumor cells and promotes dendritic cell (DC) maturation and CD8+ T cell activation for tumor control. Mechanistically, RA directly binds to transactive responsive DNA-binding protein 43 (TDP-43) and induces TDP-43 localization to mitochondria and mtDNA leakage, leading to cyclic GMP-AMP synthase/stimulator of interferon gene-dependent upregulation of nuclear factor κB and type I interferon signaling, thereby potentiating the DC-mediated antigen cross-presentation and T cell activation. Moreover, combining RA with anti-programmed death 1 antibody effectively enhances the efficacy of ICT in animals. These findings highlight the importance of TDP-43 in ICD drug-induced antitumor immunity and reveal a potential chemo-immunotherapeutic role of RA in enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Mingxiao Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Cuicui Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaojia Liu
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Zhirui Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Lu Liu
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, 266034, P. R. China
| | - Zean Kuang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
45
|
Guo J, Zou Y, Huang L. Nano Delivery of Chemotherapeutic ICD Inducers for Tumor Immunotherapy. SMALL METHODS 2023; 7:e2201307. [PMID: 36604976 DOI: 10.1002/smtd.202201307] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD, also known as immunogenic apoptosis) of malignant cells is confirmed to activate the host immune system to prevent, control, and eliminate tumors. Recently, a range of chemotherapeutic drugs have been repurposed as ICD inducers and applied for tumor immunotherapy. However, several hurdles to the widespread application of chemotherapeutic ICD inducers remain, namely poor water solubility, short blood circulation, non-specific tissue distribution, and severe toxicity. Recent advances in nanotechnology and pharmaceutical formulation foster the development of nano drug delivery systems to tackle the aforementioned hurdles and expedite safe, effective, and specific delivery. This review will describe delivery barriers to chemical ICD inducers and highlight recent nanoformulations for these drugs in tumor immunotherapy.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
46
|
Wu PJ, Chiou HL, Hsieh YH, Lin CL, Lee HL, Liu IC, Ying TH. Induction of immunogenic cell death effect of licoricidin in cervical cancer cells by enhancing endoplasmic reticulum stress-mediated high mobility group box 1 expression. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37013980 DOI: 10.1002/tox.23793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Licoricidin (LCD) is an activity compound of the roots of Glycyrrhiza uralensis, which has therapeutic efficacy, including anti-virus, anti-cancer, and enhanced immunity in Traditional Chinese Medicine. Herein, this study aimed to clarify the effect of LCD on cervical cancer cells. In the present study, we found that LCD significantly inhibited cell viability via inducing cell apoptosis and companies with cleaved-PARP protein expression and caspase-3/-9 activity. Cell viability was markedly reversed these effects by pan-caspase inhibitor Z-VAD-FMK treatment. Furthermore, we showed that LCD-induced ER (endoplasmic reticulum) stress triggers upregulating the protein level of GRP78 (Bip), CHOP, and IRE1α, and subsequently confirmed the mRNA level by quantitative real-time polymerase chain reaction. In addition, LCD exhibited the release of danger-associated molecular patterns from cervical cancer cells, such as the release of high-mobility group box 1 (HMGB1), secretion of ATP, and exposure of calreticulin (CRT) on the cell surface, which led to immunogenic cell death (ICD). These results provide a novel foundation that LCD induces ICD via triggering ER stress in human cervical cancer cells. LCD might be an ICD inducer of immunotherapy in progressive cervical cancer.
Collapse
Affiliation(s)
- Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - I-Chun Liu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
47
|
Kalami A, Shahgolzari M, Khosroushahi AY, Fiering S. Combining in situ vaccination and immunogenic apoptosis to treat cancer. Immunotherapy 2023; 15:367-381. [PMID: 36852419 DOI: 10.2217/imt-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Immunization approaches are designed to stimulate the immune system and eliminate the tumor. Studies indicate that cancer immunization combined with certain chemotherapeutics and immunostimulatory agents can improve outcomes. Chemotherapeutics-based immunogenic cell death makes the tumor more recognizable by the immune system. In situ vaccination (ISV) utilizes established tumors as antigen sources and directly applies an immune adjuvant to the tumor to reverse a cold tumor microenvironment to a hot one. Immunogenic cell death and ISV highlight for the immune system the tumor antigens that are recognizable by immune cells and support a T-cell attack of the tumor cells. This review presents the concept of immunogenic apoptosis and ISV as a powerful platform for cancer immunization.
Collapse
Affiliation(s)
- Arman Kalami
- Biotechnology Research Center, Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth & Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
48
|
Xiong X, Wang Y, Zou T. Towards Understanding the Molecular Mechanisms of Immunogenic Cell Death. Chembiochem 2023; 24:e202200621. [PMID: 36445798 DOI: 10.1002/cbic.202200621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
The discovery of immunogenic cell death (ICD) by small molecules (e. g., chemotherapeutic drugs) intrigued medicinal chemists and led them to exploit anticancer agents with such a trait because ICD agents provoke anticancer immune responses in addition to their cytotoxicity. However, the unclear molecular mechanism of ICD hampers further achievements in drug development. Fortunately, increasing efforts have been made in this area in recent years by using either chemical or biological approaches. Here, we review the current achievements towards understanding the mechanisms of small molecule-induced ICD effects. Based on the established role of the unfolded protein response (UPR) in ICD, we classify the mechanisms of different inducers by their dependency on UPR. Key proteins and pathways with important implications are discussed in depth. We also give our perspectives on the research strategies for future investigation in this field.
Collapse
Affiliation(s)
- Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
49
|
Aria H, Rezaei M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother 2023; 161:114503. [PMID: 36921539 DOI: 10.1016/j.biopha.2023.114503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Immunogenic Cell Death (ICD) is a type of cell death that kills tumor cells by stimulating the adaptive immune response against other tumor cells. ICD depends on the endoplasmic reticulum (ER) stress and the secretion of Damage-Associated Molecular Patterns (DAMP) by the dying tumor cell. DAMPs recruit innate immune cells such as Dendritic Cells (DC), triggering a cancer-specific immune response such as cytotoxic T lymphocytes (CTLs) to eliminate remaining cancer cells. ICD is accompanied by several hallmarks in dying cells, such as surface translocation of ER chaperones, calreticulin (CALR), and extracellular secretion of DAMPs such as high mobility group protein B1 (HMGB1) and adenosine triphosphate (ATP). Therapeutic peptides can kill bacteria and tumor cells thus affecting the immune system. They have high specificity and affinity for their targets, small size, appropriate cell membrane penetration, short half-life, and simple production processes. Peptides are interesting agents for immunomodulation since they may overcome the limitations of other therapeutics. Thus, the development of peptides affecting the TME and active antitumoral immunity has been actively pursued. On the other hand, several peptides have been recently identified to trigger ICD and anti-cancer responses. In the present review, we review previous studies on peptide-induced ICD, their mechanism, their targets, and markers. They include anti-microbial peptides (AMPs), cationic or mitochondrial targeting, checkpoint inhibitors, antiapoptotic inhibitors, and "don't eat me" inhibitor peptides. Also, peptides will be investigated potentially inducing ICD that is divided into ER stressors, ATPase inhibitors, and anti-microbial peptides.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
50
|
Li W, Jiang Y, Lu J. Nanotechnology-enabled immunogenic cell death for improved cancer immunotherapy. Int J Pharm 2023; 634:122655. [PMID: 36720448 PMCID: PMC9975075 DOI: 10.1016/j.ijpharm.2023.122655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Tumor immunotherapy has revolutionized the field of oncology treatments in recent years. As one of the promising strategies of cancer immunotherapy, tumor immunogenic cell death (ICD) has shown significant potential for tumor therapy. Nanoparticles are widely used for drug delivery due to their versatile characteristics, such as stability, slow blood elimination, and tumor-targeting ability. To increase the specificity of ICD inducers and improve the efficiency of ICD induction, functionally specific nanoparticles, such as liposomes, nanostructured lipid carriers, micelles, nanodiscs, biomembrane-coated nanoparticles and inorganic nanoparticles have been widely reported as the vehicles to deliver ICD inducers in vivo. In this review, we summarized the strategies of different nanoparticles for ICD-induced cancer immunotherapy, and systematically discussed their advantages and disadvantages as well as provided feasible strategies for solving these problems. We believe that this review will offer some insights into the design of effective nanoparticulate systems for the therapeutic delivery of ICD inducers, thus, promoting the development of ICD-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States; NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States; Southwest Environmental Health Sciences Center, The University of Arizona, Tucson 85721, United States.
| |
Collapse
|