1
|
Zhu L, Peng Q, Li J, Wu Y, Wang J, Zhou D, Ma L, Yao X. scRNA-seq revealed the special TCR β & α V(D)J allelic inclusion rearrangement and the high proportion dual (or more) TCR-expressing cells. Cell Death Dis 2023; 14:487. [PMID: 37524693 PMCID: PMC10390570 DOI: 10.1038/s41419-023-06004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Allelic exclusion, one lymphocyte expresses one antigen receptor, is a fundamental mechanism of immunological self-tolerance and highly specific immune responses to pathogens. However, the phenomenon of V(D)J allelic inclusion (incomplete allelic exclusion or allelic escape) rearrangement and dual TCR T cells have been discovered by multiple laboratories. Despite continuous new discoveries, the proportion and underlying mechanism of dual TCR has been puzzling immunologists. In this study, we observed the presence of single T cells expressing multiple TCR chains in all samples, with the proportion of 15%, 10%, and 20% in the human thymus, human peripheral blood, and mouse lymphoid organs, respectively. The proportion of T cells possessing multiple T-cell receptors (TCR) varied significantly in different physiological states and developmental stages. By analyzing RSS category, RSS direction, and V(D)J gene position at TR locus of T cells which contain multiple TCR chains, we creatively found that one of TCR β (or TCR α) should originate from the transcription of V(D)J combination in T-cell receptor excision circle (TREC) formed after the twice successful rearrangement in the same chromosome. Moreover, human V30 (or mouse V31) gene may participate in reverse recombination and transcription to prevent allelic exclusion. In general, high proportion of T cells with multiple TCR at the transcriptome level was first made public, and we proposed a novel mechanism of secondary (or more) TCR rearrangement on a single chromosome. Our findings also indicated that the single-cell sequencing data should be classified according to the single, multiple, and abnormal TCR when analyzing the T-cell repertoire.
Collapse
Affiliation(s)
- Lanwei Zhu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qi Peng
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yingjie Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jiayi Wang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Dewei Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Schuldt NJ, Binstadt BA. Dual TCR T Cells: Identity Crisis or Multitaskers? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:637-644. [PMID: 30670579 PMCID: PMC11112972 DOI: 10.4049/jimmunol.1800904] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 05/25/2024]
Abstract
Dual TCR T cells are a common and natural product of TCR gene rearrangement and thymocyte development. As much as one third of the T cell population may have the capability to express two different TCR specificities on the cell surface. This discovery provoked a reconsideration of the classic model of thymic selection. Many potential roles for dual TCR T cells have since been hypothesized, including posing an autoimmune hazard, dominating alloreactive T cell responses, inducing allergy, and expanding the TCR repertoire to improve protective immunity. Yet, since the initial wave of publications following the discovery of dual TCR T cells, research in the area has slowed. In this study, we aim to provide a brief but comprehensive history of dual TCR T cell research, re-evaluate past observations in the context of current knowledge of the immune system, and identify key issues for future study.
Collapse
Affiliation(s)
- Nathaniel J Schuldt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Bryce A Binstadt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|