1
|
Rodríguez-Carlos A, Martinez-Gutierrez F, Torres-Juarez F, Rivas-Santiago B. Antimicrobial Peptides-based Nanostructured Delivery Systems: An Approach for Leishmaniasis Treatment. Curr Pharm Des 2019; 25:1593-1603. [PMID: 31264542 DOI: 10.2174/1381612825666190628152842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leishmaniasis is a major health problem mainly in tropical and subtropical areas worldwide, although in the last decades it has been treated with the use of conventional drugs such as amphotericin, the emergence of multidrug-resistant strains has raised a warning signal to the public health systems thus a new call for the creation of new leishmanicidal drugs is needed. METHODS The goal of this review was to explore the potential use of antimicrobial peptides-based nanostructured delivery systems as an approach for leishmaniasis treatment. RESULTS Within these new potential drugs, human host defense peptides (HDP) can be included given their remarkable antimicrobial activity and their outstanding immunomodulatory functions for the therapy of leishmaniasis. CONCLUSION Though several approaches have been done using these peptides, new ways for delivering HDPs need to be analyzed, such is the case for nanotechnology.
Collapse
Affiliation(s)
- Adrian Rodríguez-Carlos
- Medical Research Unit- Zacatecas-IMSS, Zacatecas, Mexico.,División de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí. Mexico
| | - Fidel Martinez-Gutierrez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, Centro 78300, San Luis, S.L.P, Mexico
| | | | | |
Collapse
|
2
|
Joshi S, Yadav NK, Rawat K, Kumar V, Ali R, Sahasrabuddhe AA, Siddiqi MI, Haq W, Sundar S, Dube A. Immunogenicity and Protective Efficacy of T-Cell Epitopes Derived From Potential Th1 Stimulatory Proteins of Leishmania (Leishmania) donovani. Front Immunol 2019; 10:288. [PMID: 30873164 PMCID: PMC6403406 DOI: 10.3389/fimmu.2019.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/04/2019] [Indexed: 11/24/2022] Open
Abstract
Development of a suitable vaccine against visceral leishmaniasis (VL), a fatal parasitic disease, is considered to be vital for maintaining the success of kala-azar control programs. The fact that Leishmania-infected individuals generate life-long immunity offers a viable proposition in this direction. Our prior studies demonstrated that T-helper1 (Th1) type of cellular response was generated by six potential recombinant proteins viz. elongation factor-2 (elF-2), enolase, aldolase, triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and p45, derived from a soluble antigenic fraction (89.9–97.1 kDa) of Leishmania (Leishmania) donovani promastigote, in treated Leishmania patients and golden hamsters and showed significant prophylactic potential against experimental VL. Moreover, since, it is well-known that our immune system, in general, triggers production of specific protective immunity in response to a small number of amino acids (peptide), this led to the identification of antigenic epitopes of the above-stated proteins utilizing immunoinformatics. Out of thirty-six, three peptides-P-10 (enolase), P-14, and P-15 (TPI) elicited common significant lymphoproliferative as well as Th1-biased cytokine responses both in golden hamsters and human subjects. Further, immunization with these peptides plus BCG offered 75% prophylactic efficacy with boosted cellular immune response in golden hamsters against Leishmania challenge which is indicative of their candidature as potential vaccine candidates.
Collapse
Affiliation(s)
- Sumit Joshi
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Narendra Kumar Yadav
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Keerti Rawat
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Vikash Kumar
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Rafat Ali
- Medicinal Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Amogh Anant Sahasrabuddhe
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Wahajul Haq
- Medicinal Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anuradha Dube
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
3
|
Singh MK, Jamal F, Dubey AK, Shivam P, Kumari S, Pushpanjali, Bordoloi C, Narayan S, Das VNR, Pandey K, Das P, Singh SK. Visceral leishmaniasis: A novel nuclear envelope protein 'nucleoporins-93 (NUP-93)' from Leishmania donovani prompts macrophage signaling for T-cell activation towards host protective immune response. Cytokine 2018; 113:200-215. [PMID: 30001865 DOI: 10.1016/j.cyto.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
The shift of macrophage and T-cell repertoires towards proinflammatory cytokine signalling ensures the generation of host-protective machinery that is otherwise compromised in cases of the intracellular Leishmania parasite. Different groups have attempted to restore host protective immunity. These vaccine candidates showed good responses and protective effects in murine models, but they generally failed during human trials. In the present study, we evaluated the effect of 97 kDa recombinant nucleoporin-93 of Leishmania donovani (rLd-NUP93) on mononuclear cells in healthy and treated visceral leishmaniasis (VL) patients and on THP-1 cell lines. rLd-NUP93 stimulation increased the expression of the early lymphocyte activation marker CD69 on CD4+ and CD8+ T cells. The expression of the host protective pro-inflammatory cytokines IFN-γ, IL-12 and TNF-α was increased, with a corresponding down-regulation of IL-10 and TGF-β upon rLd-NUP93 stimulation. This immune polarization resulted in the up-regulation of NF-κB p50 with scant expression of SMAD-4. Augmenting lymphocyte proliferation upon priming with rLd-NUP93 ensured its potential for activation and generation of strong T-cell mediated immune responses. This stimulation extended the leishmanicidal activity of macrophages by releasing high amounts of reactive oxygen species (ROS). Further, the leishmanicidal activity of macrophages was intensified by the elevated production of nitric oxide (NO). The fact that this antigen was earlier reported in circulating immune complexes of VL patients highlights its antigenic importance. In addition, in silico analysis suggested the presence of MHC class I and II-restricted epitopes that proficiently trigger CD8+ and CD4+ T-cells, respectively. This study reported that rLd-NUP93 was an effective immunoprophylactic agent that can be explored in future vaccine design.
Collapse
Affiliation(s)
- Manish K Singh
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Fauzia Jamal
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Amit K Dubey
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India; National Institute of Pharmaceutical Education and Research, Hajipur 844102, India
| | - Pushkar Shivam
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sarita Kumari
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Pushpanjali
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Chayanika Bordoloi
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, India
| | - S Narayan
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - V N R Das
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - K Pandey
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - P Das
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Shubhankar K Singh
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India.
| |
Collapse
|
4
|
Co-factor-independent phosphoglycerate mutase of Leishmania donovani modulates macrophage signalling and promotes T-cell repertoires bearing epitopes for both MHC-I and MHC-II. Parasitology 2017; 145:292-306. [PMID: 29140228 DOI: 10.1017/s0031182017001494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immunoactivation depends upon the antigen potential to modulate T-cell repertoires. The present study has enumerated the effect of 61 kDa recombinant Leishmania donovani co-factor-independent phosphoglycerate mutase (rLd-iPGAM) on mononuclear cells of healthy and treated visceral leishmaniasis subjects as well as on THP-1 cell line. rLd-iPGAM stimulation induced higher expression of interleukin-1β (IL-1β) in the phagocytic cell, its receptor and CD69 on T-cell subsets. These cellular activations resulted in upregulation of host-protective cytokines IL-2, IL-12, IL-17, tumour necrosis factor-α and interferon-γ, and downregulation of IL-4, IL-10 and tumour growth factor-β. This immune polarization was also evidenced by upregulation of nuclear factor-κ light-chain enhancer of activated B cells p50 and regulated expression of suppressor of mother against decapentaplegic protein-4. rLd-iPGAM stimulation also promoted lymphocyte proliferation and boosted the leishmaniacidal activity of macrophages by upregulating reactive oxygen species. It also induced 1·8-fold higher release of nitric oxide (NO) by promoting the transcription of inducible nitric oxide synthase gene. Besides, in silico analysis suggested the presence of major histocompatibility complex class I and II restricted epitopes, which can proficiently trigger CD8+ and CD4+ cells, respectively. This study reports rLd-iPGAM as an effective immunoprophylactic agent, which can be used in future vaccine design.
Collapse
|
5
|
Athanasiou E, Agallou M, Tastsoglou S, Kammona O, Hatzigeorgiou A, Kiparissides C, Karagouni E. A Poly(Lactic- co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8 + T Cells Essential for the Protection against Experimental Visceral Leishmaniasis. Front Immunol 2017; 8:684. [PMID: 28659922 PMCID: PMC5468442 DOI: 10.3389/fimmu.2017.00684] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
Visceral leishmaniasis, caused by Leishmania (L.) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4+ TH1 and CD8+ T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic-co-glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4+ and CD8+ T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8+ T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that encapsulation of more than one chimeric multi-epitope peptides from different immunogenic L. infantum proteins in a proper biocompatible delivery system with the right adjuvant is considered as an improved promising approach for the development of a vaccine against VL.
Collapse
Affiliation(s)
- Evita Athanasiou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Agallou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Olga Kammona
- Laboratory of Polymer Reaction Engineering, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece
| | | | - Costas Kiparissides
- Laboratory of Polymer Reaction Engineering, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece.,Laboratory of Chemical Engineering B, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Karagouni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
6
|
E Silva RDF, Ferreira LFGR, Hernandes MZ, de Brito MEF, de Oliveira BC, da Silva AA, de-Melo-Neto OP, Rezende AM, Pereira VRA. Combination of In Silico Methods in the Search for Potential CD4(+) and CD8(+) T Cell Epitopes in the Proteome of Leishmania braziliensis. Front Immunol 2016; 7:327. [PMID: 27621732 PMCID: PMC5002431 DOI: 10.3389/fimmu.2016.00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/16/2016] [Indexed: 11/28/2022] Open
Abstract
The leishmaniases are neglected tropical diseases widespread throughout the globe, which are caused by protozoans from the genus Leishmania and are transmitted by infected phlebotomine flies. The development of a safe and effective vaccine against these diseases has been seen as the best alternative to control and reduce the number of cases. To support vaccine development, this work has applied an in silico approach to search for high potential peptide epitopes able to bind to different major histocompatibility complex Class I and Class II (MHC I and MHC II) molecules from different human populations. First, the predicted proteome of Leishmania braziliensis was compared and analyzed by modern linear programs to find epitopes with the capacity to trigger an immune response. This approach resulted in thousands of epitopes derived from 8,000 proteins conserved among different Leishmania species. Epitopes from proteins similar to those found in host species were excluded, and epitopes from proteins conserved between different Leishmania species and belonging to surface proteins were preferentially selected. The resulting epitopes were then clustered, to avoid redundancies, resulting in a total of 230 individual epitopes for MHC I and 2,319 for MHC II. These were used for molecular modeling and docking with MHC structures retrieved from the Protein Data Bank. Molecular docking then ranked epitopes based on their predicted binding affinity to both MHC I and II. Peptides corresponding to the top 10 ranked epitopes were synthesized and evaluated in vitro for their capacity to stimulate peripheral blood mononuclear cells (PBMC) from post-treated cutaneous leishmaniasis patients, with PBMC from healthy donors used as control. From the 10 peptides tested, 50% showed to be immunogenic and capable to stimulate the proliferation of lymphocytes from recovered individuals.
Collapse
Affiliation(s)
- Rafael de Freitas E Silva
- Department of Natural Sciences, Universidade de Pernambuco, Garanhuns, Pernambuco, Brazil; Department of Immunology, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | | | - Marcelo Zaldini Hernandes
- Department of Pharmaceutical Sciences, Universidade Federal de Pernambuco , Recife, Pernambuco , Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Seyed N, Taheri T, Rafati S. Post-Genomics and Vaccine Improvement for Leishmania. Front Microbiol 2016; 7:467. [PMID: 27092123 PMCID: PMC4822237 DOI: 10.3389/fmicb.2016.00467] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/21/2016] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of IranTehran, Iran
| | | | | |
Collapse
|
8
|
Joshi S, Yadav NK, Rawat K, Tripathi CDP, Jaiswal AK, Khare P, Tandon R, Baharia RK, Das S, Gupta R, Kushawaha PK, Sundar S, Sahasrabuddhe AA, Dube A. Comparative Analysis of Cellular Immune Responses in Treated Leishmania Patients and Hamsters against Recombinant Th1 Stimulatory Proteins of Leishmania donovani. Front Microbiol 2016; 7:312. [PMID: 27047452 PMCID: PMC4801884 DOI: 10.3389/fmicb.2016.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022] Open
Abstract
Our prior studies demonstrated that cellular response of T helper 1 (Th1) type was generated by a soluble antigenic fraction (ranging from 89.9 to 97.1 kDa) of Leishmania donovani promastigote, in treated Leishmania patients as well as hamsters and showed significant prophylactic potential against experimental visceral leishmaniasis (VL). Eighteen Th1 stimulatory proteins were identified through proteomic analysis of this subfraction, out of which 15 were developed as recombinant proteins. In the present work, we have evaluated these 15 recombinant proteins simultaneously for their comparative cellular responses in treated Leishmania patients and hamsters. Six proteins viz. elongation factor-2, enolase, aldolase, triose phosphate isomerase, protein disulfide isomerase, and p45 emerged as most immunogenic as they produced a significant lymphoproliferative response, nitric oxide generation and Th1 cytokine response in PBMCs and lymphocytes of treated Leishmania patients and hamsters respectively. The results suggested that these proteins may be exploited for developing a successful poly-protein and/or poly-epitope vaccine against VL.
Collapse
Affiliation(s)
- Sumit Joshi
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Narendra K Yadav
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Keerti Rawat
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Chandra Dev P Tripathi
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Anil K Jaiswal
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Prashant Khare
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Rati Tandon
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Rajendra K Baharia
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Sanchita Das
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Reema Gupta
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Pramod K Kushawaha
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University Varanasi, India
| | - Amogh A Sahasrabuddhe
- Molecular and Structural Biology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Anuradha Dube
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| |
Collapse
|
9
|
Joshi S, Rawat K, Yadav NK, Kumar V, Siddiqi MI, Dube A. Visceral Leishmaniasis: Advancements in Vaccine Development via Classical and Molecular Approaches. Front Immunol 2014; 5:380. [PMID: 25202307 PMCID: PMC4141159 DOI: 10.3389/fimmu.2014.00380] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/24/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) or kala-azar, a vector-borne protozoan disease, shows endemicity in larger areas of the tropical, subtropical and the Mediterranean countries. WHO report suggested that an annual incidence of VL is nearly 200,000 to 400,000 cases, resulting in 20,000 to 30,000 deaths per year. Treatment with available anti-leishmanial drugs are not cost effective, with varied efficacies and higher relapse rate, which poses a major challenge to current kala-azar control program in Indian subcontinent. Therefore, a vaccine against VL is imperative and knowing the fact that recovered individuals developed lifelong immunity against re-infection, it is feasible. Vaccine development program, though time taking, has recently gained momentum with the emergence of omic era, i.e., from genomics to immunomics. Classical as well as molecular methodologies have been overtaken with alternative strategies wherein proteomics based knowledge combined with computational techniques (immunoinformatics) speed up the identification and detailed characterization of new antigens for potential vaccine candidates. This may eventually help in the designing of polyvalent synthetic and recombinant chimeric vaccines as an effective intervention measures to control the disease in endemic areas. This review focuses on such newer approaches being utilized for vaccine development against VL.
Collapse
Affiliation(s)
- Sumit Joshi
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| | - Keerti Rawat
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| | | | - Vikash Kumar
- Division of Molecular and Structural Biology, Central Drug Research Institute , Lucknow , India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology, Central Drug Research Institute , Lucknow , India
| | - Anuradha Dube
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| |
Collapse
|
10
|
Kamhawi S, Aslan H, Valenzuela JG. Vector saliva in vaccines for visceral leishmaniasis: a brief encounter of high consequence? Front Public Health 2014; 2:99. [PMID: 25152872 PMCID: PMC4126209 DOI: 10.3389/fpubh.2014.00099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne disease transmitted by phlebotomine sand flies and remains the most serious form of the disease with no available human vaccine. Repeatedly, studies have demonstrated the immunogenicity and protective efficacy of a number of sand fly salivary proteins against cutaneous and visceral leishmaniasis. All Leishmania species including agents of VL are co-deposited into the skin together with vector saliva. Generally, the immune response to a protective salivary protein in vaccinated animals is rapid and possibly acts on the parasites soon after delivery into the skin by the bite of an infective sand fly. This is followed by the development of a stronger Leishmania-specific immunity in saliva-vaccinated animals compared to controls. Considering that several of the most efficacious protective molecules were identified from a proven vector of VL, we put forward the notion that a combination vaccine that includes a Leishmania antigen and a vector salivary protein has the potential to improve vaccine efficacy by targeting the parasite at it most vulnerable stage just after transmission.
Collapse
Affiliation(s)
- Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Hamide Aslan
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|