1
|
Yang S, Zhan X, Yuan L, Lamy de la Chapelle M, Fu W, Yang X. Entropy driven-based catalytic biosensors for bioanalysis: From construction to application-A review. Anal Chim Acta 2025; 1338:343549. [PMID: 39832843 DOI: 10.1016/j.aca.2024.343549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
The rapid advancement of precision medicine and the continuous emergence of novel pathogens have presented new challenges for biosensors, necessitating higher requirements. Target amplification technology serves as the core component in biosensor construction. Enzyme-based amplification methods are often sensitive and selective but involve relatively complex operational steps, whereas enzyme-free amplification methods offer simplicity but frequently fail to meet both sensitivity and selectivity simultaneously. Existing research has confirmed that entropy-driven catalyst (EDC) biosensors not only fulfills the demands for sensitivity and selectivity concurrently but also offers ease of operation and flexibility in construction. In this review, we summarize the key advantages of EDC, explore how to construct DNA nanomachines based on these advantages to achieve intracellular detection and simultaneous detection of multiple targets, as well as point-of-care testing (POCT) to address practical issues in clinical diagnosis and treatment. We also anticipate potential challenges, propose corresponding solutions, and outline future development directions for EDC-based biosensors in practical clinical applications. We firmly believe that EDC sensors will emerge as a crucial branch within the realm of biosensor development.
Collapse
Affiliation(s)
- Sha Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China; Army 953rd Hospital (Shigatse Branch, Xinqiao Hospital), Third Military Medical University, Shigatse, 857000, China
| | - Xinyu Zhan
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China
| | - Lijia Yuan
- Emergency Department, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Marc Lamy de la Chapelle
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China; Institut des Molécules et Matériaux Du Mans (IMMM UMR 6283 CNRS), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France; Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Weiling Fu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China.
| | - Xiang Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China.
| |
Collapse
|
2
|
Zhang M, Wang X, Liu S, Riaz T, Chen Q, Ouyang Q. Integrating target-responsive microfluidic-based biosensing chip with smartphone for simultaneous quantification of multiple fluoroquinolones. Biosens Bioelectron 2024; 254:116192. [PMID: 38489967 DOI: 10.1016/j.bios.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The presence of fluoroquinolone (FQs) antibiotic residues in the food and environment has become a significant concern for human health and ecosystems. In this study, the background-free properties of upconversion nanoparticles (UCNPs), the high specificity of the target aptamer (Apt), and the high quenching properties of graphene oxide (GO) were integrated into a microfluidic-based fluorescence biosensing chip (MFBC). Interestingly, the microfluidic channels of the MFBC were prepared by laser-printing technology without the need for complex preparation processes and additional specialized equipment. The target-responsive fluorescence biosensing probes loaded on the MFBC were prepared by self-assembly of the UCNPs-Apt complex with GO based on π-π stacking interactions, which can be used for the detection of the two FQs on a large scale without the need for multi-step manipulations and reactions, resulting in excellent multiplexed, automated and simultaneous sensing capabilities with detection limits as low as 1.84 ng/mL (enrofloxacin) and 2.22 ng/mL (ciprofloxacin). In addition, the MFBC was integrated with a smartphone into a portable device to enable the analysis of a wide range of FQs in the field. This research provides a simple-to-prepare biosensing chip with great potential for field applications and large-scale screening of FQs residues in the food and environment.
Collapse
Affiliation(s)
- Mingming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
3
|
Wei H, Liu L, Jiang H, Chen H, Wang Y, Han Y, Rong Z, Wang S. CRISPR/Cas13a-based single-nucleotide polymorphism detection for reliable determination of ABO blood group genotypes. Analyst 2024; 149:2161-2169. [PMID: 38441624 DOI: 10.1039/d3an02248j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The ABO blood group plays an important role in blood transfusion, linkage analysis, individual identification, etc. Serologic methods of blood typing are gold standards for the time being, which require stable typing antisera and fresh blood samples and are labor intensive. At present, reliable determination of ABO blood group genotypes based on single-nucleotide polymorphisms (SNPs) among A, B, and O alleles remains necessary. Thus, in this work, CRISPR/Cas13a-mediated genotyping for the ABO blood group by detecting SNPs between different alleles was proposed. The ABO*O.01.01(c.261delG) allele (G for the A/B allele and del for the O allele) and ABO*B.01(c.796C > A) allele (C for the A/O allele and A for the B allele) were selected to determine the six genotypes (AA, AO, BB, BO, OO, and AB) of the ABO blood group. Multiplex PCR was adapted to simultaneously amplify the two loci. CRISPR/Cas13a was then used to specifically differentiate ABO*O.01.01(c.261delG) and ABO*B.01(c.796C > A) of A, B, and O alleles. Highly accurate determination of different genotypes was achieved with a limit of detection of 50 pg per reaction within 60 min. The reliability of this method was further validated based on its applicability in detecting buccal swab samples with six genotypes. The results were compared with those of serological and sequencing methods, with 100% accuracy. Thus, the CRISPR/Cas13a-mediated assay shows great application potential in the reliable identification of ABO blood group genotypes in a wide range of samples, eliminating the need to collect fresh blood samples in the traditional method.
Collapse
Affiliation(s)
- Hongjuan Wei
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Liyan Liu
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Hanji Jiang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Hong Chen
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Yunxiang Wang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Yongjun Han
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| |
Collapse
|
4
|
Jayachandran A, Parween S, Asthana A, Kar S. Microfluidics-Based Blood Typing Devices: An In-Depth Overview. ACS APPLIED BIO MATERIALS 2024; 7:59-79. [PMID: 38115212 DOI: 10.1021/acsabm.3c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Identification of correct blood types holds paramount importance in understanding the pathophysiological parameters of patients, therapeutic interventions, and blood transfusion. Considering the wide applications of blood typing, the requirement of centralized laboratory facilities is not well suited on many occasions. In this context, there has been a significant development of such blood typing devices on different microfluidic platforms. The advantages of these microfluidic devices offer easy, rapid test protocols, which could potentially be adapted in resource-limited settings and thereby can truly lead to the decentralization of testing facilities. The advantages of pump-free liquid transport (i.e., low power consumption) and biodegradability of paper substrates (e.g., reduction in medical wastes) make it a more preferred platform in comparison to other microfluidic devices. However, these devices are often coupled with some inherent challenges, which limit their potential to be used on a mass commercial scale. In this context, our Review offers a succinct summary of the recent development, especially to understand the importance of underlying facets for long-term sustainability. Our Review also delineates the role of integration with digital technologies to minimize errors in interpreting the readouts.
Collapse
Affiliation(s)
- Arjun Jayachandran
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shahila Parween
- MNR Foundation for Research & Innovations (MNR-FRI), MNR Medical College & Hospital, MNR Nagar, Narsapur Road, Sangareddy 502294, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shantimoy Kar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
5
|
Ardakani F, Hemmateenejad B. Pronounced effect of lamination on plasma separation from whole blood by microfluidic paper-based analytical devices. Anal Chim Acta 2023; 1279:341767. [PMID: 37827667 DOI: 10.1016/j.aca.2023.341767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023]
Abstract
Many diseases are detected through blood tests. Currently, most blood tests are done on plasma instead of whole blood because of the interference of blood cells on detection results. Here, we developed a laminated microfluidic paper-based analytical device (L-μPAD) for the separation of plasma from whole blood without using plasma separation membrane (PSM). A lateral flow design consisting of a circular sampling zone and rectangular detection zone was patterned on the paper substrate using laser printing technology. The μPAD was then laminated after impregnation with KCl solution. Lamination and electrolyte addition represented synergistic effects on the separation by controlling the pore size of the paper. In addition, by preventing evaporation on one hand and squeezing paper pores on the other hand, lamination caused longer movement of the separated plasma, the longest plasma path reported so far. The separation process was monitored using colorimetric reagent bromocresol green and scanning electron microscopy. The process of separation was completed in less than 90s without significant hemolysis and the separated plasma was far from the interfering effect of red blood cells. We used the device for the determination of serum albumin. However, it represents the potential for point-of-care testing in multi-assay experiments too.
Collapse
Affiliation(s)
| | - Bahram Hemmateenejad
- Chemistry Department, Shiraz University, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Fu H, Qin Z, Li X, Pan Y, Xu H, Pan P, Song P, Liu X. Paper-Based All-in-One Origami Nanobiosensor for Point-of-Care Detection of Cardiac Protein Markers in Whole Blood. ACS Sens 2023; 8:3574-3584. [PMID: 37705448 DOI: 10.1021/acssensors.3c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Rapid and accurate diagnosis of cardiovascular diseases (CVDs) at the earliest stage is of paramount importance to improve the treatment outcomes and avoid irreversible damage to a patient's cardiovascular system. Microfluidic paper-based devices (μPADs) represent a promising platform for rapid CVD diagnosis at the point of care (POC). This paper presents an electrochemical μPAD (E-μPAD) with an all-in-one origami design for rapid and POC testing of cardiac protein markers in whole blood. Based on the label-free, electrochemical impedance spectroscopy (EIS) immunoassay, the E-μPAD integrates all essential components on a single chip, including three electrochemical cells, a plasma separation membrane, and a buffer absorption pad, enabling easy and streamlined operations for multiplexed detection of three cardiac protein markers [cardiac troponin I (cTnI), brain natriuretic peptide (BNP)-32, and D-Dimer] on a finger-prick whole blood sample within 46 min. Superior analytical performance is achieved through sensitive EIS measurement on carbon electrodes decorated with semiconductor zinc oxide nanowires (ZnO NWs). Using spiked human plasma samples, ultralow limits of detection (LODs) of E-μPAD are achieved at 4.6 pg/mL (190 fM) for cTnI, 1.2 pg/mL (40 fM) for BNP-32, and 146 pg/mL (730 fM) for D-Dimer. Real human blood samples spiked with purified proteins are also tested, and the device's analytical performance was proven to be comparable to commercial ELISA kits. The all-in-one E-μPAD will allow rapid and sensitive testing of cardiac protein markers through easy operations, which holds great potential for on-site screening of acute CVDs in nonlaboratory settings such as emergency rooms, doctor's offices, or patient homes.
Collapse
Affiliation(s)
- Hao Fu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, Guangdong 518058, China
| | - Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Xiao Li
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yueyue Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Haitong Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Pengfei Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
7
|
Nam SW, Jeon DG, Yoon YR, Lee GH, Chang Y, Won DI. Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips. BIOSENSORS 2023; 13:733. [PMID: 37504130 PMCID: PMC10377501 DOI: 10.3390/bios13070733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Hemagglutination assay has been used for blood typing and detecting viruses, thus applicable for the diagnosis of infectious diseases, including COVID-19. Therefore, the development of microfluidic devices for fast detection of hemagglutination is on-demand for point-of-care diagnosis. Here, we present a way to detect hemagglutination in 3D microfluidic devices via optical absorbance (optical density, OD) characterization. 3D printing is a powerful way to build microfluidic structures for diagnostic devices. However, mixing liquid in microfluidic chips is difficult due to laminar flow, which hampers practical applications such as antigen-antibody mixing. To overcome the issue, we fabricated 3D microfluidic chips with embedded microchannel and microwell structures to induce hemagglutination between red blood cells (RBCs) and antibodies. We named it a 3D microtrap chip. We also established an automated measurement system which is an integral part of diagnostic devices. To do this, we developed a novel way to identify RBC agglutination and non-agglutination via the OD difference. By adapting a 3D-printed aperture to the microtrap chip, we obtained a pure absorbance signal from the microchannels by eliminating the background brightness of the microtrap chip. By investigating the underlying optical physics, we provide a 3D device platform for detecting hemagglutination.
Collapse
Affiliation(s)
- Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
- DanielBio Research Center, Daegu 42694, Republic of Korea
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41940, Republic of Korea
| | - Dong-Gyu Jeon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Ran Yoon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Dong Il Won
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41940, Republic of Korea
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
8
|
Ding S, Duan S, Chen Y, Xie J, Tian J, Li Y, Wang H. Centrifugal microfluidic platform with digital image analysis for parallel red cell antigen typing. Talanta 2023; 252:123856. [DOI: 10.1016/j.talanta.2022.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
|
9
|
Chomean S, Bunnun P, Auttapong J, Kaset C. Phenotyping of minor blood groups (C, c, E, e, and Mia) using a paper-based device and image-based high-throughput detection. Anal Chim Acta 2022; 1237:340573. [DOI: 10.1016/j.aca.2022.340573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
10
|
Simultaneous phenotyping of five Rh red blood cell antigens on a paper-based analytical device combined with deep learning for rapid and accurate interpretation. Anal Chim Acta 2022; 1207:339807. [DOI: 10.1016/j.aca.2022.339807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
|
11
|
Tan W, Zhang L, Jarujamrus P, C G Doery J, Shen W. Improvement Strategies on Colorimetric Performance and Practical Applications of Paper-based Analytical Devices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Abstract
Red blood cell (RBC) transfusion is one of the most frequently performed clinical procedures and therapies to improve tissue oxygen delivery in hospitalized patients worldwide. Generally, the cross-match is the mandatory test in place to meet the clinical needs of RBC transfusion by examining donor-recipient compatibility with antigens and antibodies of blood groups. Blood groups are usually an individual's combination of antigens on the surface of RBCs, typically of the ABO blood group system and the RH blood group system. Accurate and reliable blood group typing is critical before blood transfusion. Serological testing is the routine method for blood group typing based on hemagglutination reactions with RBC antigens against specific antibodies. Nevertheless, emerging technologies for blood group testing may be alternative and supplemental approaches when serological methods cannot determine blood groups. Moreover, some new technologies, such as the evolving applications of blood group genotyping, can precisely identify variant antigens for clinical significance. Therefore, this review mainly presents a clinical overview and perspective of emerging technologies in blood group testing based on the literature. Collectively, this may highlight the most promising strategies and promote blood group typing development to ensure blood transfusion safety.
Collapse
Affiliation(s)
- Hong-Yang Li
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Kai Guo
| |
Collapse
|
13
|
Samae M, Chatpun S, Chirasatitsin S. Hemagglutination Detection with Paper-Plastic Hybrid Passive Microfluidic Chip. MICROMACHINES 2021; 12:1533. [PMID: 34945381 PMCID: PMC8708700 DOI: 10.3390/mi12121533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023]
Abstract
Hemagglutination is a critical reaction that occurs when antigens expressed on red blood cells (RBCs) react with the antibodies used for blood typing. Even though blood typing devices have been introduced to the market, they continue to face several limitations in terms of observation by the eye alone, blood manipulation difficulties, and the need for large-scale equipment, particularly process automated machines. Thus, this study aimed to design, fabricate, and test a novel hybrid passive microfluidic chip made of filter paper and polymer using a cost-effective xurography manufacturing technique. This chip is referred to as the microfluidic paper-plastic hybrid passive device (PPHD). A passive PPHD does not require external sources, such as a syringe pump. It is composed of a paper-based component that contains dried antibodies within its porous paper and a polymer component that serves as the detection zone. A single blood sample was injected into the chip's inlet, and classification was determined using the mean intensity image. The results indicated that embedded antibodies were capable of causing RBC agglutination without a saline washing step and that the results could be classified as obviously agglutination or nonagglutination for blood typing using both the naked eye and a mean intensity image. As a proof-of-concept, this study demonstrated efficiency in quantitative hemagglutination measurement within a passive PPHD for blood typing, which could be used to simplify blood biomarker analysis.
Collapse
Affiliation(s)
| | | | - Somyot Chirasatitsin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Thailand; (M.S.); (S.C.)
| |
Collapse
|
14
|
Chen IS, Davis SJ, Chang ML, Hung CH, Radenovic A, Chang PL. Rhesus Blood Typing within a Few Seconds by Packing-Enhanced Nanoscattering on Individual Erythrocytes. Anal Chem 2021; 93:15142-15149. [PMID: 34738468 DOI: 10.1021/acs.analchem.1c03590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A method for the ABO and Rhesus (Rh) blood group typing from individual erythrocytes is proposed in this study. Blood-group-specific antibodies immobilized to gold nanoparticles (BG-AuNP) were utilized for the identification of blood groups from individual erythrocytes by objective-type dark-field microscopy (OTDFM). The scattering of free BG-AuNP and their Brownian motion as well as BG-AuNP attached on erythrocytes is easily observed by OTDFM. The strong scattering intensity caused by BG-AuNP packing-enhanced nanoscattering (PENS) on erythrocytes is first demonstrated. PENS combined with OTDFM allows us to identify blood groups within 5 s for all blood group antigens including A, B, D, C, c, E, and e. This was immediately identified by mixing with BG-AuNP without any washing step or waiting for hemoagglutination. Therefore, PENS combined with OTDFM demonstrates feasibility and advantages for use in emergency transfusions where the blood group of patients is unknown. Moreover, matching RhD+ in the case of emergency transfusions may also be beneficial in reducing the shortage of RhD- red blood cell concentrate in the case of a population with a high frequency in RhD-.
Collapse
Affiliation(s)
- I-Shin Chen
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Road, Kaohsiung 80424, Taiwan.,Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Sebastian J Davis
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne 1015, Switzerland
| | - Man-Ling Chang
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Road, Kaohsiung 80424, Taiwan.,Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Chao-Hsuan Hung
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Road, Kaohsiung 80424, Taiwan
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne 1015, Switzerland
| | - Po-Ling Chang
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Road, Kaohsiung 80424, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
15
|
Paper based analytical devices for blood grouping: a comprehensive review. Biomed Microdevices 2021; 23:34. [PMID: 34213635 DOI: 10.1007/s10544-021-00569-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The clinical importance of blood group (BG) antigens is related to their ability to induce immune antibodies that can cause hemolysis. Yet, ABO and D (Rh) are still considered to be the key antigens for healthy blood transfusion and secondary antigens are the next priority. Serological typing is the most widely used typing method. Rapid and accurate blood grouping plays an important role in some clinical conditions, rather than conventional techniques. Hence, developing a simple and economical model for rapid blood grouping would facilitate these tests. In recent decades, paper-based microfluidics such as μPADs has gained much interest in wide application areas such as point-of-care diagnostic. In this study, we evaluated μPADs that are performed for blood grouping and its recent progress. A comprehensive literature search was performed using databases including PUBMED, SCOPUS, Web of Science and Google Scholar. Keywords were blood grouping or typing, paper analytical device, rapid test, etc. After investigation of search results, 16 papers from 2010 to 2020 were included. Further information in detail was classified in Table 1. Generally, two principles for blood typing μPADs are introduced. The lateral chromatographic flow method and the vertical flow-through method that detects BG in a visual-based manner. To detect results with acceptable clarity many factors and challenges like paper, blood sample, buffer, Ab and RBC interaction and also μPADs stability need to be considered, which are discussed. In conclusion, the simplicity, stability, cheapness, portability and biocompatibility of μPADs for blood grouping confirming its utility and also they have the capability to robust, universal blood-grouping platform. Table 1 Summary of blood grouping tests using paper-based analytical devices Antigens Type of diagnosis Validation method Sample No Accuracy Action time Paper type Stability Sample dilution Buffer Ref A, B, Rh Forward volunteers records 5 - - Whatman No. 4 - 1/2 PBS* (Khan et al. 2010) A, B, Rh Forward gel assay test and conventional slide test 100 100% 1 min Whatman No. 4 and Kleeenex paper towel 7 Days in 4 °C 1/1 NSS (Al-Tamimi et al. 2012) A, B, Rh Forward gel card assay 99 100% 20 Sec + Washing Kleeenex paper towel - 1/1 NSS (Li et al. 2012) A, B, Rh Forward - - - - Kleeenex paper towel - 45/100 PSS (Li et al. 2013) A, B, Rh Forward gel card assay 98 100% 1.5 min Kleeenex paper towel - 85/100 PBS (Guan et al. 2014b) C, E, c, e, K, Jka, Jkb, M, N, S, P1, and Lea Forward gel card assay 266 100% - Kleeenex paper towel - 1/1 NSS (Li et al. 2014b) A, B, Rh Forward and Reverse conventional slide test 96 ≈ 91% 10 min Whatman No. 1 21 Days in 4 °C 1/2 NSS (Noiphung et al. 2015) C, c, E, e, K, k, Fya, Fyb, Jka, Jkb, M, N, S and s, P1, Lea and Leb Forward - 478 - - Kleeenex paper towel - 1/1 NSS, PBS (Then et al. 2015) A, B Forward and Reverse conventional slide test 76 100% 5-8 min Whatman No. 4 38 Days in 4 °C 1/4, 1/1 NSS (Songjaroen and Laiwattanapaisal 2016) D, K Forward volunteers records 210 - 7.5 min Kleenex paper towel - 1/1 NSS (Yeow et al. 2016) A, B, c, e, D, C, E, M, N, S, s, P1, Jka, Jkb, Lea, Leb, Fya, and Fyb Forward and Reverse gel card assay 3550 ≈100% 30 s Fiber glass and cotton linter 180 Days in 25 °C 45/100, 1/1 PBS (Zhang et al. 2017) A, B Forward conventional slide test 598 100% 3 min Whatman No. 113 14 Day in 4 °C 1/1 NSS (Songjaroen et al. 2018) A, B, Rh Forward conventional slide test - - 30 Sec + Washing Unrefined sisal paper - 1/2 NSS (Casals-Terré et al. 2019) A, B, Rh Forward - - - - Whatman No.1 - 1/1 NSS (Ansari et al. 2020) ABO & Rh Forward and Reverse conventional slide test - 100% Unrefined Eucalyptus papers - 1/2 NSS, PBS (Casals-Terré et al. 2020) A, B, Rh Forward - - - 30 Sec + Washing Whatman No. 4 modified with chitosan ≥ 100 days in 25 °C 1/1 NSS (Parween et al. 2020) *phosphate buffer saline, normal saline solution.
Collapse
|
16
|
Yuan H, Chiu PY, Chen CF. Paper-based analytical devices for point-of-care blood tests. BIOMICROFLUIDICS 2021; 15:041303. [PMID: 34326913 PMCID: PMC8310430 DOI: 10.1063/5.0055601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/11/2021] [Indexed: 05/28/2023]
Abstract
Blood can be a window to health, and as a result, is the most intensively studied human biofluid. Blood tests can diagnose diseases, monitor therapeutic drugs, and provide information about the health of an individual. Rapid response blood tests are becoming increasingly essential, especially when subsequent treatment is required. Toward this need, paper-based devices have been excellent tools for performing blood tests due to their ability to conduct rapid and low-cost diagnostics and analyses in a non-laboratory environment. In this Perspective, we review recent advances in paper-based blood tests, particularly focusing on the specific techniques and assays applied. Additionally, we discuss the future of these paper-based devices, such as how the signal intensity can be enhanced and how the in situ synthesis of nanomaterials can be used to improve the sensitivity, functionality, and operational simplicity. With these advances, paper-based devices are becoming increasingly valuable tools for point-of-care blood tests in various practical scenarios.
Collapse
Affiliation(s)
- Hao Yuan
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | | | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
17
|
Manderson CA, McLiesh H, Tabor RF, Garnier G. Droplet-based blood group antibody screening with laser incubation. Analyst 2021; 146:2499-2505. [PMID: 33682869 DOI: 10.1039/d0an01993c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of blood group antibodies is a crucial step for blood transfusion recipients and pregnant women to prevent potentially fatal haemolytic reactions. Due to the short, non-bridging structure of such antibodies (IgG), the indirect antiglobulin test (IAT) is required, complete with a thermal incubation phase. This incubation step, where the sample must be heated to 37 °C for several minutes, has hitherto prevented chip- and paper-diagnostics from performing a complete IAT and instead required the IAT to be performed away from the patient beside in a laboratory setting with specialist equipment - significantly delaying blood transfusions. With recent laser technology for immunohaematology, a single blood droplet can be heated. This study presents a simple diagnostic where a single 15 μL droplet sits on hydrophobic PTFE film and is heated by laser. The result of the test is then determined via placement of a paper strip where passive wicking and filtration of the sample separates positive from negative results. We demonstrate that this diagnostic can accurately and sensitively detect blood group antibodies, with results quickly read by eye without further specialist equipment or training, with potential to lead to a point-of-care antibody screen.
Collapse
Affiliation(s)
- Clare A Manderson
- BioPRIA, Department of Chemical Engineering, Monash University, Australia.
| | - Heather McLiesh
- BioPRIA, Department of Chemical Engineering, Monash University, Australia.
| | - Rico F Tabor
- School of Chemistry, Monash University, Australia
| | - Gil Garnier
- BioPRIA, Department of Chemical Engineering, Monash University, Australia.
| |
Collapse
|
18
|
Zhang H, Liu R, Li Q, Hu X, Wu L, Zhou Y, Qing G, Yuan R, Huang J, Gu W, Ye Y, Qi C, Han M, Chen X, Zhu X, Deng Y, Zhang L, Chen H, Zhang H, Gao W, Liu Y, Luo Y. Flipped Quick-Response Code Enables Reliable Blood Grouping. ACS NANO 2021; 15:7649-7658. [PMID: 33871962 DOI: 10.1021/acsnano.1c01215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accurate and rapid blood typing plays a vital role in a variety of biomedical and forensic scenarios, but recognizing weak agglutination remains challenging. Herein, we demonstrated a flipping identification with a prompt error-discrimination (FLIPPED) platform for automatic blood group readouts. Bromocresol green dye was exploited as a characteristic chromatography indicator for the differentiation of plasma from whole blood by presenting a teal color against a brown color. After integrating these color changes into a quick-response (QR) code, prompt typing of ABO and Rhesus groups was automatically achieved and data could be uploaded wirelessly within 30 s using a commercially available smartphone to facilitate blood cross-matching. We further designed a color correction model and algorithm to remove potential errors from scanning angles and ambient light intensities, by which weak agglutination could be accurately recognized. With comparable accuracy and repeatability to classical column assay in grouping 450 blood samples, the proposed approach further demonstrates to be a versatile sample-to-result platform for clinical diagnostics, food safety, and environmental monitoring.
Collapse
Affiliation(s)
- Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ruining Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Qingmei Li
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaolin Hu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lixiang Wu
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| | - Ye Zhou
- College of Biomedical Engineering, Chongqing Medical University, Chongqing 400042, People's Republic of China
| | - Guangchao Qing
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Rui Yuan
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Junjie Huang
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yanyao Ye
- Department of Laboratory Medicine, Chongqing High-tech Zone People's Hospital, Chongqing 400039, People's Republic of China
| | - Chao Qi
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Mei Han
- Chongqing Public Health Medical Center, Chongqing 400030, People's Republic of China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xun Zhu
- School of Energy and Power Engineering, Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yun Deng
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Liangliang Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Hengyi Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Haoran Zhang
- School of Energy and Power Engineering, Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, People's Republic of China
| | - Weiyin Gao
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Yao Liu
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
19
|
Zhang H, Chen Z, Dai J, Zhang W, Jiang Y, Zhou A. A low-cost mobile platform for whole blood glucose monitoring using colorimetric method. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Zhong ZT, Wang HB, Zhang T, Li CQ, Liu B, Zhao YD. Quantitative analysis of various targets based on aptamer and functionalized Fe 3O 4@graphene oxide in dairy products using pregnancy test strip and smartphone. Food Chem 2021; 352:129330. [PMID: 33657486 DOI: 10.1016/j.foodchem.2021.129330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 11/19/2022]
Abstract
Pregnancy test strips are one of the most mature and widely used commercial lateral flow devices used to determine pregnancy. Being a simple and rapid detection method, human chorionic gonadotropin (hCG) was used with different aptamers (hCG-apt) as probes for the detection of metal ions, small organic molecules, and proteins. Quantitative detection of target analytes was achieved using a smartphone app and a portable device developed in our laboratory. The results showed detection ranges of 1 nM-1 μM, 0.1 nM-10 μM and 32 nM-500 nM for Pb2+, chloramphenicol, and β-lactoglobulin, respectively, and the corresponding visual detection limits in dairy products were 5 nM, 1 nM and 50 nM, respectively. Based on these results, rapid detection of multiple analytes can be realized through aptamer modification, thereby broadening the application range of commercial lateral flow devices for analysis of food chemistry.
Collapse
Affiliation(s)
- Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Hai-Bo Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Ting Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Chao-Qing Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
21
|
Kawasaki H, Suzuki H, Maekawa M, Hariyama T. Combination of the NanoSuit method and gold/platinum particle-based lateral flow assay for quantitative and highly sensitive diagnosis using a desktop scanning electron microscope. J Pharm Biomed Anal 2021; 196:113924. [PMID: 33581588 DOI: 10.1016/j.jpba.2021.113924] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/05/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Owing to its simplicity and low cost, the lateral flow assay (LFA) is one of the most commonly used point-of-care diagnostic techniques, despite its low sensitivity and poor quantification. Here, we report a newly developed LFA-NanoSuit method (LNSM) combined with a desktop scanning electron microscope (SEM) for the direct observation of immunocomplexes labeled with a colloidal metal instead of signal enhancement strategies, such as using color, electrochemical signals, silver enhancement, magnetic properties, luminescent, and surface-enhanced Raman spectroscopy (SERS). The proposed LNSM suppresses cellulose deformity, thereby allowing the acquisition of high-resolution images of gold/platinum-labeled immunocomplexed pathogens such as influenza A, without conductive treatment as in conventional SEM. Electron microscopy-based diagnosis of influenza A exhibited 94 % clinical sensitivity (29/31; 95 % confidence interval [CI]: 79.3-98.2 %) and 100 % clinical specificity (95 % CI: 98.1-100 %), which was more sensitive (71.4 %) than visual detection (14.3 %), especially in the lower influenza A-RNA copy number group. The detection ability of our method was nearly comparable to that of real-time reverse transcription-PCR. This is the first report on the diagnosis of clinical diseases using LFA equipped with a desktop SEM. This simple and highly sensitive quantitative analysis method involving LFA can be used to diagnose various diseases in humans and livestock, including highly infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| | - Hiromi Suzuki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
22
|
Lin JH, Tsai TT, Zeng Q, Chang CY, Guo JY, Lin CJ, Chen CF. A Multifunctional Microfluidic Device for Blood Typing and Primary Screening of Blood Diseases. ACS Sens 2020; 5:3082-3090. [PMID: 32786388 DOI: 10.1021/acssensors.0c00969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we demonstrate a multifunctional, portable, and disposable microfluidic device for blood typing and primary screening of blood diseases. Preloaded antibodies (anti-A, anti-B, and anti-D) interact with injected whole blood cells to cause an agglutination reaction that blocks a microslit in the microfluidic channel to accumulate red blood cells and form a visible red line that can be easily read to determine the blood type. Moreover, the different blood density and agglutination properties of normal and subtype blood groups, as well as different blood diseases, including anemia and polycythemia vera, generate different lengths of blood agglutination within the channels, which allows us to successfully screen these various conditions in as little as 2 min. The required blood volume for each test is just 1 μL, which can be obtained by minimally invasive finger pricking. This novel method of observing agglutinated red blood cells to distinguish blood types and diseases is both feasible and affordable, suggesting its promise for use in areas with limited resources.
Collapse
Affiliation(s)
- Jia-Hui Lin
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Qiang Zeng
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Yen Chang
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Jun-Yu Guo
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Jui Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
23
|
Fana SE, NaghiZadeh M, Tehrani SS. Letter to the editor regarding 'A novel method for blood-typing using Nitrocellulose'. Biomed Chromatogr 2020; 34:e4980. [PMID: 32935857 DOI: 10.1002/bmc.4980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen NaghiZadeh
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Ye H, Liu Y, Zhan L, Liu Y, Qin Z. Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials. Theranostics 2020; 10:4359-4373. [PMID: 32292500 PMCID: PMC7150487 DOI: 10.7150/thno.44298] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further testing to eliminate false-negative results. Over the past decade, signal enhancement strategies that took advantage of the laser excitation of plasmonic nanomaterials have pushed down the detection limit and enabled quantification of analytes. Significantly, these methods amplify the signal based on the current LFA design without modification. This review highlights these strategies of signal enhancement for LFA including surface enhanced Raman scattering (SERS), photothermal and photoacoustic methods. Perspectives on the rational design of the reader systems are provided. Future translation of the research toward clinical applications is also discussed.
Collapse
Affiliation(s)
- Haihang Ye
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Yaning Liu
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Li Zhan
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Yilin Liu
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, USA
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, USA
- Department of Surgery, The University of Texas Southwestern Medical Center, 5323 Harry Lines Blvd, Dallas, Texas 75390, USA
| |
Collapse
|
25
|
Yamamoto K, Sakurai R, Motosuke M. Fully-automatic blood-typing chip exploiting bubbles for quick dilution and detection. BIOMICROFLUIDICS 2020; 14:024111. [PMID: 32549921 PMCID: PMC7159973 DOI: 10.1063/5.0006264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
A compact, fully-automatic blood-typing test device is developed. The device conducts sequential processes of whole-blood dilution, homogenization, and reaction with reagents. The lab-on-a-chip device can detect the weakest reaction between red blood cells (RBCs) and reagents even without using optics such as a camera and detector. This high sensitivity is achieved by implementing 50-μm-thick reaction chambers in which a clear contrast between the RBC agglutinations and non-reacted RBCs can be obtained. The dilution and the homogenization are enhanced by injecting bubbles into the microchannel so that the test result can be obtained 5 min after the test start. With an assumption that the device will be used by medical staffs, the device is designed to require minimum operation for the users, namely, loading whole blood, starting pumps, and looking inside the reaction chambers by their eyes to observe the test result. As the device is applicable to the cross-matching test by mixing RBCs with serum instead of the reagents, it is expected that the device provides not only the quick blood-typing but also a safer and quicker blood transfusion in emergency rooms.
Collapse
Affiliation(s)
- Ken Yamamoto
- Author to whom correspondence should be addressed:. Tel.: +81 (0)3 5876 1718
| | - Ryosuke Sakurai
- Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | |
Collapse
|
26
|
Paper-based point-of-care immunoassays: Recent advances and emerging trends. Biotechnol Adv 2020; 39:107442. [DOI: 10.1016/j.biotechadv.2019.107442] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/04/2019] [Accepted: 08/26/2019] [Indexed: 01/23/2023]
|
27
|
Yang YQ, Yang YC, Liu MH, Chan YH. FRET-Created Traffic Light Immunoassay Based on Polymer Dots for PSA Detection. Anal Chem 2019; 92:1493-1501. [PMID: 31815438 DOI: 10.1021/acs.analchem.9b04747] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There have been enormous efforts for developing the next generations of fluorometric lateral flow immunochromatographic strip (ICTS) owing to the great advances in fluorescent materials in these years. Here we developed one type of fluorometric ICTS based on ultrabright semiconducting polymer dots (Pdots) in which the traffic light-like signals were created by energy transfer depending on the target concentration. This platform was successfully applied for qualitatively rapid screening and quantitatively precise analysis of prostate-specific antigen (PSA) in 10 min from merely one drop of the whole blood sample. This FRET-created traffic light ICTS possesses excellent specificity and an outstanding detection sensitivity of 0.32 ng/mL for PSA. Moreover, we conducted proof-of-concept experiments to demonstrate its potential for multiplexed detection of cancer biomarkers at the same time in an individual test strip by taking advantage of the traffic light signals. To the best of our knowledge, it is the first model of a traffic light-like immunoassay test strip based on Pdots with multiplexing ability. These results would pave an avenue for designing the next generation of point-of-care diagnostics.
Collapse
Affiliation(s)
- Yong-Quan Yang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Chi Yang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
28
|
Abstract
Accurate blood typing is required before transfusion. A number of methods have been developed to improve blood typing, but these are not user-friendly. Here, we have developed a microfluidic smart blood-typing device operated by finger actuation. The blood-typing result is displayed by means of microfluidic channels with the letter and the symbol of the corresponding blood type. To facilitate the mixing of blood and reagents, the two sample inlets are connected to a single actuation chamber. According to the agglutination aspect in the mixture, the fluids are directed to both the microslit filter channels and bypass channels, or only to the bypass channels. The dimension of the microslit filter being clogged by the red blood cell aggregates was optimized to achieve reliable blood-typing results. The flow rate ratio between two channels in the absence of agglutination was subjected to numerical analysis. With this device, blood typing was successfully performed by seven button pushes using less than 10 μL of blood within 30 s.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bio and Brain Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea.,KAIST Institute for Health Science and Technology , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea
| |
Collapse
|
29
|
You PY, Li FC, Liu MH, Chan YH. Colorimetric and Fluorescent Dual-Mode Immunoassay Based on Plasmon-Enhanced Fluorescence of Polymer Dots for Detection of PSA in Whole Blood. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9841-9849. [PMID: 30784256 DOI: 10.1021/acsami.9b00204] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although enormous efforts have been devoted to the development of new types of fluorometric immunochromatographic test strip (ICTS) with improved sensitivity over the past years, it still remains a big challenge to design ICTS with colorimetric and fluorescent bimodal signal readout for rapid yet accurate detection of cancer markers in a clinic. Scientists have tried to prepare bimodal reporters by combining fluorescent dyes with metal nanomaterials, but their fluorescence was easily quenched by metal nanomaterials through surface energy transfer, making dual colorimetric and fluorometric ICTS very difficult to be achieved. As compared to conventional fluorescent probes, semiconducting polymer dots (Pdots) exhibit extraordinary fluorescence brightness and facile surface functionalization, which are very suitable to be engineered as bimodal signal reporting reagents. Here, we integrated highly fluorescent Pdots with strongly plasmonic Au nanorods to form Pdot-Au hybrid nanocomposites with dual colorimetric and fluorescent readout abilities. We further utilized these nanohybrids in ICTS for qualitatively fast screening (colorimetry) as well as quantitatively accurate determination (fluorometry) of prostate-specific antigen (PSA) within 10 min. By taking advantage of the plasmon-enhanced fluorescence of Pdots on Au nanorods, this immunoassay possesses much better detection sensitivity of 1.07 pg/mL for PSA, which is at least 2 orders of magnitude lower than that of conventional fluorometric ICTS. Moreover, the direct detection of PSA from human whole blood collected without sample pretreatment makes this Pdot-based ICTS platform promising for on-site point-of-care diagnostics.
Collapse
Affiliation(s)
- Pei-Yun You
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30050 , Taiwan
| | - Fang-Chu Li
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30050 , Taiwan
| | - Ming-Ho Liu
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30050 , Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30050 , Taiwan
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 30050 , Taiwan
| |
Collapse
|
30
|
Ma J, Yan S, Miao C, Li L, Shi W, Liu X, Luo Y, Liu T, Lin B, Wu W, Lu Y. Paper Microfluidics for Cell Analysis. Adv Healthc Mater 2019; 8:e1801084. [PMID: 30474359 DOI: 10.1002/adhm.201801084] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/20/2018] [Indexed: 01/04/2023]
Abstract
Paper microfluidics has attracted much attention since its first introduction around one decade ago due to the merits such as low cost, ease of fabrication and operation, portability, and facile integration with other devices. The dominant application for paper microfluidics still lies in point-of-care testing (POCT), which holds great promise to provide diagnostic tools to meet the ASSURED criteria. With micro/nanostructures inside, paper substrates provide a natural 3D scaffold to mimic native cellular microenvironments and create excellent biointerfaces for cell analysis applications, such as long-term 3D cell culture, cell capture/phenotyping, and cell-related biochemical analysis (small molecules, protein DNA, etc.). This review summarizes cell-related applications based on various engineered paper microdevices and provides some perspectives for paper microfluidics-based cell analysis.
Collapse
Affiliation(s)
- Jun Ma
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- State Key Laboratory of Applied Optics; Chuangchun 130033 China
| | - Shiqiang Yan
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Chunyue Miao
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Linmei Li
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Weiwei Shi
- Second Affiliated Hospital of Dalian Medical University; Dalian 116023 China
| | - Xianming Liu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals; Department of Chemical Engineering & School of Pharmaceutical Science and Technology; Dalian University of Technology; Dalian 116044 China
| | - Tingjiao Liu
- College of Stomatology; Dalian Medical University; Dalian 116044 China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Wenming Wu
- State Key Laboratory of Applied Optics; Chuangchun 130033 China
| | - Yao Lu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
31
|
Song Y, Lin B, Tian T, Xu X, Wang W, Ruan Q, Guo J, Zhu Z, Yang C. Recent Progress in Microfluidics-Based Biosensing. Anal Chem 2018; 91:388-404. [DOI: 10.1021/acs.analchem.8b05007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bingqian Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Xu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qingyu Ruan
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
32
|
Islam MN, Ahmed I, Anik MI, Ferdous MS, Khan MS. Developing Paper Based Diagnostic Technique to Detect Uric Acid in Urine. Front Chem 2018; 6:496. [PMID: 30406079 PMCID: PMC6204749 DOI: 10.3389/fchem.2018.00496] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Urinary or serum uric acid concentration is an indicator of chronic kidney condition. An increase in uric acid concentration may indicate renal dysfunction. Reliable instantaneous detection of uric acid without requiring sophisticated laboratory and analytical instrumentation, such as: chromatographic and spectrophotometric methods, would be invaluable for patients with renal complication. This paper reports the early development of a simple, low-cost, instantaneous and user-friendly paper based diagnostic device (PAD) for the qualitative and quantitative detection of uric acid in urine. A colorimetric detection technique was developed based on the intensity of Prussian blue color formation on paper in presence of uric acid; the reaction rate of corresponding chemical reactions on paper surface was also studied. Based on the colorimetric signal produced on paper surface, a calibration curve was developed to detect unknown concentration of uric acid in urine. The effect of temperature on formation of color signal on paper surface was also analyzed. In this study, estimation of urinary uric acid using MATLAB coding on a windows platform was demonstrated as the use of software application and digital diagnostics. This paper-based technique is faster and less expensive compared to traditional detection techniques. The paper-based diagnostic can be integrated with a camera of smart phone, tablet computer or laptop and an image processing application (using windows/android/IOS platform) as a part of digital diagnostics. Therefore, with proper calibration, the paper-based technique can be compatible and economical to the sophisticated detection techniques used to detect urinary uric acid.
Collapse
Affiliation(s)
- Md Nazibul Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Isteaque Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Muzahidul Islam Anik
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md Sakib Ferdous
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mohidus Samad Khan
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
33
|
Liu C, Gomez FA, Miao Y, Cui P, Lee W. A colorimetric assay system for dopamine using microfluidic paper-based analytical devices. Talanta 2018; 194:171-176. [PMID: 30609518 DOI: 10.1016/j.talanta.2018.10.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
We report the colorimetric detection of dopamine (DA) on microfluidic paper-based analytical devices (μPADs) using an oxidation-reduction method. Here, dopamine reacts with ferric chloride forming reduced Fe2+ that subsequently reacts with phenanthroline to form the red tris(1,10-phenanthroline)iron(II) complex. The devices were fabricated by wax printing and changes in color intensity were recorded using a common cell phone. Subsequent analysis using Photoshop software, yielded a limit of detection (LOD) for DA of 0.37 μmol/L with a linear range of 0.527-4.75 μmol/L and relative standard deviation of 0.11% (inter-day) and 0.15% (intra-day) for n = 15 paper chips. The effects of detection conditions have been investigated and are discussed. Cow serum samples and human blood serum and plasma samples were detected. The work, herein, demonstrates the potential of this method as a low cost and rapid colorimetric technique to detect DA in real samples.
Collapse
Affiliation(s)
- Chunye Liu
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China.
| | - Frank A Gomez
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA, USA
| | - Yanqing Miao
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Ping Cui
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Wilson Lee
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA, USA
| |
Collapse
|
34
|
Songjaroen T, Primpray V, Manosarn T, Khumchanta W, Sakuldamrongpanich T, Kulkeratiyut S, Laiwattanapaisal W. A simple and low-cost portable paper-based ABO blood typing device for point-of-care testing. J Immunoassay Immunochem 2018; 39:292-307. [PMID: 29953329 DOI: 10.1080/15321819.2018.1486856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ABO blood group is the most important blood type system for transfusion medicine. A paper-based analytical device (PAD) for ABO blood typing has been proposed. The device was composed of Whatman No. 113 paper, an absorbent gel pad, and a 3D-printing cassette. The 3D-printing cassette contained two circular holes for display of letters "A" and "B" on the PAD. Whole blood was dropped onto hydrophilic letters A and B on the PAD, in which the anti-A and anti-B were pre-immobilized, respectively. An absorbent gel pad was used to adsorb excess blood sample and washing solution during the washing step. The particle size of agglutinated red blood cells (RBCs) could not be eluted out of the paper by the elution solution. In contrast, non-agglutinated RBCs were washed out by means of elution solution. The devices could be used for real blood samples in a wide range of hematocrit levels, 21-59%. Unknown blood group samples (n = 500) were identified by the developed device and the results were compared with the conventional method, revealing 100% accuracy. Because of its compact size with low-cost fabrication, the portable ABO blood typing device has great potential for point-of-care testing, particularly in developing countries.
Collapse
Affiliation(s)
- Temsiri Songjaroen
- a Postdoctoral Fellowship Under the Ratchadaphiseksomphot Fund, Department of Clinical Chemistry, Faculty of Allied Health Sciences , Chulalongkorn University , Patumwan , Bangkok , Thailand
| | - Vitsarut Primpray
- b Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences , Chulalongkorn University , Patumwan , Bangkok , Thailand
| | - Thawintra Manosarn
- c Undergraduate Program in Medical Technology, Faculty of Allied Health Sciences , Chulalongkorn University , Patumwan , Bangkok , Thailand
| | - Witsanuwat Khumchanta
- c Undergraduate Program in Medical Technology, Faculty of Allied Health Sciences , Chulalongkorn University , Patumwan , Bangkok , Thailand
| | - Tasanee Sakuldamrongpanich
- d Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences , Chulalongkorn University , Patumwan , Bangkok , Thailand
| | - Suntree Kulkeratiyut
- d Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences , Chulalongkorn University , Patumwan , Bangkok , Thailand
| | - Wanida Laiwattanapaisal
- e Department of Clinical Chemistry, Faculty of Allied Health Sciences , Chulalongkorn University , Patumwan , Bangkok , Thailand
| |
Collapse
|
35
|
Gomez-Martinez J, Silvy M, Chiaroni J, Fournier-Wirth C, Roubinet F, Bailly P, Brès JC. Multiplex Lateral Flow Assay for Rapid Visual Blood Group Genotyping. Anal Chem 2018; 90:7502-7509. [PMID: 29842785 DOI: 10.1021/acs.analchem.8b01078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional blood group phenotyping by hemagglutination assays, carried out pretransfusion, is unsuitable in certain clinical situations. Molecular typing offers an alternative method, allowing the deduction of blood group phenotype from genotype. However, current methods require a long turnaround time and are not performed on-site, limiting their application in emergency situations. Here, we report the development of a novel, rapid multiplex molecular method to identify seven alleles in three clinically relevant blood group systems (Kidd, Duffy, and MNS). Our test, using a dry-reagent allele-specific lateral flow biosensor, does not require DNA extraction and allows easy visual determination of blood group genotype. Multiplex linear-after-the-exponential (LATE)-PCR and lateral flow parameters were optimized with a total processing time of 1 h from receiving the blood sample. Our assay had a 100% concordance rate between the deduced and the standard serological phenotype in a sample from 108 blood donors, showing the accuracy of the test. Owing to its simple handling, the assay can be operated by nonskilled health-care professionals. The proposed assay offers the potential for the development of other relevant single nucleotide polymorphism (SNP) panels for immunohematology and new applications, such as for infectious diseases, in the near future.
Collapse
Affiliation(s)
- Julien Gomez-Martinez
- Etablissement Français du Sang Occitanie , F-34184 Montpellier , France.,Pathogenesis and Control of Chronic Infections , University of Montpellier, INSERM, EFS , F-34184 Montpellier , France
| | - Monique Silvy
- Etablissement Français du Sang PACA Corse , Biologie des Groupes Sanguins , F-13385 Marseille , France.,University of Aix Marseille, CNRS, EFS, ADES , F-13385 Marseille , France
| | - Jacques Chiaroni
- Etablissement Français du Sang PACA Corse , Biologie des Groupes Sanguins , F-13385 Marseille , France.,University of Aix Marseille, CNRS, EFS, ADES , F-13385 Marseille , France
| | - Chantal Fournier-Wirth
- Etablissement Français du Sang Occitanie , F-34184 Montpellier , France.,Pathogenesis and Control of Chronic Infections , University of Montpellier, INSERM, EFS , F-34184 Montpellier , France
| | - Francis Roubinet
- Etablissement Français du Sang Occitanie , F-34184 Montpellier , France
| | - Pascal Bailly
- Etablissement Français du Sang PACA Corse , Biologie des Groupes Sanguins , F-13385 Marseille , France.,University of Aix Marseille, CNRS, EFS, ADES , F-13385 Marseille , France
| | - Jean-Charles Brès
- Etablissement Français du Sang Occitanie , F-34184 Montpellier , France.,Pathogenesis and Control of Chronic Infections , University of Montpellier, INSERM, EFS , F-34184 Montpellier , France
| |
Collapse
|
36
|
Wu M, Lai Q, Ju Q, Li L, Yu HD, Huang W. Paper-based fluorogenic devices for in vitro diagnostics. Biosens Bioelectron 2018; 102:256-266. [DOI: 10.1016/j.bios.2017.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022]
|
37
|
Sloan SR. The Potential and Pitfalls of a Dye-Assisted Paper-Based Assay for Blood Grouping. Clin Chem 2018; 64:429-430. [DOI: 10.1373/clinchem.2017.274589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/12/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Steven R Sloan
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA
| |
Collapse
|
38
|
Zarei M. Infectious pathogens meet point-of-care diagnostics. Biosens Bioelectron 2018; 106:193-203. [PMID: 29428589 DOI: 10.1016/j.bios.2018.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
The field of point-of-care (POC) diagnostics provides the rapid diagnosis of infectious diseases which is essential and critical for improving the general public health in resource-limited settings. POC platforms offer many advantages for detection of various pathogens including portability, automation, speed, cost, and efficiency. In this review, we provide an overview of the recent trends for POC diagnostics of infectious diseases with focus on portable platforms. We review here the present status of POC platforms, emphasizing in period of the past three years, then extrapolate their advance into the future applications for diagnosis of infectious pathogens.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Chemical and Civil Engineering, University of Kurdistan, Sanandaj, P.O. Box 66177, Kurdistan Province 66618-36336, Iran.
| |
Collapse
|
39
|
Fang CC, Chou CC, Yang YQ, Wei-Kai T, Wang YT, Chan YH. Multiplexed Detection of Tumor Markers with Multicolor Polymer Dot-Based Immunochromatography Test Strip. Anal Chem 2018; 90:2134-2140. [DOI: 10.1021/acs.analchem.7b04411] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chia-Chia Fang
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 80424, Taiwan
| | - Chia-Cheng Chou
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 80424, Taiwan
| | - Yong-Quan Yang
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 80424, Taiwan
| | - Tsai Wei-Kai
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 80424, Taiwan
| | - Yeng-Tseng Wang
- Department
of Biochemistry, Kaohsiung Medical University, 100 Tzyou first Road, Kaohsiung 80708, Taiwan
| | - Yang-Hsiang Chan
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 80424, Taiwan
| |
Collapse
|
40
|
Alistar M, Gaudenz U. OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips. Bioengineering (Basel) 2017; 4:E45. [PMID: 28952524 PMCID: PMC5590459 DOI: 10.3390/bioengineering4020045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 01/06/2023] Open
Abstract
Biochips, or digital labs-on-chip, are developed with the purpose of being used by laboratory technicians or biologists in laboratories or clinics. In this article, we expand this vision with the goal of enabling everyone, regardless of their expertise, to use biochips for their own personal purposes. We developed OpenDrop, an integrated electromicrofluidic platform that allows users to develop and program their own bio-applications. We address the main challenges that users may encounter: accessibility, bio-protocol design and interaction with microfluidics. OpenDrop consists of a do-it-yourself biochip, an automated software tool with visual interface and a detailed technique for at-home operations of microfluidics. We report on two years of use of OpenDrop, released as an open-source platform. Our platform attracted a highly diverse user base with participants originating from maker communities, academia and industry. Our findings show that 47% of attempts to replicate OpenDrop were successful, the main challenge remaining the assembly of the device. In terms of usability, the users managed to operate their platforms at home and are working on designing their own bio-applications. Our work provides a step towards a future in which everyone will be able to create microfluidic devices for their personal applications, thereby democratizing parts of health care.
Collapse
|
41
|
Gong X, Cai J, Zhang B, Zhao Q, Piao J, Peng W, Gao W, Zhou D, Zhao M, Chang J. A review of fluorescent signal-based lateral flow immunochromatographic strips. J Mater Chem B 2017; 5:5079-5091. [DOI: 10.1039/c7tb01049d] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent signal-based lateral flow immunochromatographic strips (FLFICS) have received great expectations since they combine the quantitative sensitivity of fluorescence analysis and the simplicity, rapidness, and portability of a common lateral flow immunochromatographic strip (LFICS).
Collapse
|