1
|
Ma X, Zhang J, Jiang Q, Li YX, Yang G. Human microbiome-derived peptide affects the development of experimental autoimmune encephalomyelitis via molecular mimicry. EBioMedicine 2024; 111:105516. [PMID: 39724786 DOI: 10.1016/j.ebiom.2024.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Gut commensal microbiota has been identified as a potential environmental risk factor for multiple sclerosis (MS), and numerous studies have linked the commensal microorganism with the onset of MS. However, little is known about the mechanisms underlying the gut microbiome and host-immune system interaction. METHODS We employed bioinformatics methodologies to identify human microbial-derived peptides by analyzing their similarity to the MHC II-TCR binding patterns of self-antigens. Subsequently, we conducted a range of in vitro and in vivo assays to assess the encephalitogenic potential of these microbial-derived peptides. FINDINGS We analyzed 304,246 human microbiome genomes and 103 metagenomes collected from the MS cohort and identified 731 nonredundant analogs of myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55). Of note, half of these analogs could bind to MHC II and interact with TCR through structural modeling of the interaction using fine-tuned AlphaFold. Among the 8 selected peptides, the peptide (P3) shows the ability to activate MOG35-55-specific CD4+ T cells in vitro. Furthermore, P3 shows encephalitogenic capacity and has the potential to induce EAE in some animals. Notably, mice immunized with a combination of P3 and MOG35-55 develop severe EAE. Additionally, dendritic cells could process and present P3 to MOG35-55-specific CD4+ T cells and activate these cells. INTERPRETATION Our data suggests the potential involvement of a MOG35-55-mimic peptide derived from the gut microbiota as a molecular trigger of EAE pathogenesis. Our findings offer direct evidence of how microbes can initiate the development of EAE, suggesting a potential explanation for the correlation between certain gut microorganisms and MS prevalence. FUNDING National Natural Science Foundation of China (82371350 to GY).
Collapse
Affiliation(s)
- Xin Ma
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jian Zhang
- Department of Chemistry and the Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yong-Xin Li
- Department of Chemistry and the Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
2
|
He Y, Mohapatra G, Asokan S, Nobs SP, Elinav E. Microbiome modulation of antigen presentation in tolerance and inflammation. Curr Opin Immunol 2024; 91:102471. [PMID: 39277909 DOI: 10.1016/j.coi.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The microbiome regulates mammalian immune responses from early life to adulthood. Antigen presentation, orchestrating these responses, integrates commensal and pathogenic signals. However, the temporal and spatial specificity of microbiome impacts on antigen presentation and downstream tolerance versus inflammation remain incompletely understood. Herein, we review the influences of antigen presentation of microbiome-related epitopes on immunity; impacts of microbiome-based modulation of antigen presentation on innate and adaptive immune responses; and their ramifications on homeostasis and immune-related disease, ranging from auto-inflammation to tumorigenesis. We highlight mechanisms driving these influences, such as 'molecular mimicry', in which microbiome auto-antigen presentation aberrantly triggers an immune response driving autoimmunity or influences conferred by microbiome-derived metabolites on antigen-presenting cells in inflammatory bowel disease. We discuss unknowns, controversies, and challenges associated with the study of microbiome regulation of antigen presentation while demonstrating how increasing knowledge may contribute to the development of microbiome-based therapeutics modulating immune responses in a variety of clinical contexts.
Collapse
Affiliation(s)
- Yiming He
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gayatree Mohapatra
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sahana Asokan
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samuel Philip Nobs
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024; 21:1183-1200. [PMID: 39379604 PMCID: PMC11528014 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Mittl K, Hayashi F, Dandekar R, Schubert RD, Gerdts J, Oshiro L, Loudermilk R, Greenfield A, Augusto DG, Ramesh A, Tran E, Koshal K, Kizer K, Dreux J, Cagalingan A, Schustek F, Flood L, Moore T, Kirkemo LL, Cooper T, Harms M, Gomez R, Sibener L, Cree BAC, Hauser SL, Hollenbach JA, Gee M, Wilson MR, Zamvil SS, Sabatino JJ. Antigen specificity of clonally-enriched CD8+ T cells in multiple sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611010. [PMID: 39282370 PMCID: PMC11398516 DOI: 10.1101/2024.09.07.611010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
CD8+ T cells are the dominant lymphocyte population in multiple sclerosis (MS) lesions where they are highly clonally expanded. The clonal identity, function, and antigen specificity of CD8+ T cells in MS are not well understood. Here we report a comprehensive single-cell RNA-seq and T cell receptor (TCR)-seq analysis of the cerebrospinal fluid (CSF) and blood from a cohort of treatment-naïve MS patients and control participants. A small subset of highly expanded and activated CD8+ T cells were enriched in the CSF in MS that displayed high activation, cytotoxicity and tissue-homing transcriptional profiles. Using a combination of unbiased and targeted antigen discovery approaches, MS-derived CD8+ T cell clonotypes recognizing Epstein-Barr virus (EBV) antigens and multiple novel mimotopes were identified. These findings shed vital insight into the role of CD8+ T cells in MS and pave the way towards disease biomarkers and therapeutic targets.
Collapse
|
5
|
Kawakami N, Wekerle H. Life history of a brain autoreactive T cell: From thymus through intestine to blood-brain barrier and brain lesion. Neurotherapeutics 2024; 21:e00442. [PMID: 39237437 PMCID: PMC11585894 DOI: 10.1016/j.neurot.2024.e00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Brain antigen-specific autoreactive T cells seem to play a key role in inducing inflammation in the central nervous system (CNS), a characteristic feature of human multiple sclerosis (MS). These T cells are generated within the thymus, where they escape negative selection and become integrated into the peripheral immune repertoire of immune cells. Typically, these autoreactive T cells rest in the periphery without attacking the CNS. When autoimmune T cells enter gut-associated lymphatic tissue (GALT), they may be stimulated by the microbiota and its metabolites. After activation, the cells migrate into the CNS through the blood‒brain barrier, become reactivated upon interacting with local antigen-presenting cells, and induce inflammatory lesions within the brain parenchyma. This review describes how microbiota influence autoreactive T cells during their life, starting in the thymus, migrating through the periphery and inducing inflammation in their target organ, the CNS.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany; Emeritus Group Neuroimmunology, Max Planck Institute of Biological Intelligence, Germany.
| |
Collapse
|
6
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
7
|
Thomas OG, Haigh TA, Croom-Carter D, Leese A, Van Wijck Y, Douglas MR, Rickinson A, Brooks JM, Taylor GS. Heightened Epstein-Barr virus immunity and potential cross-reactivities in multiple sclerosis. PLoS Pathog 2024; 20:e1012177. [PMID: 38843296 PMCID: PMC11156336 DOI: 10.1371/journal.ppat.1012177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Tracey A. Haigh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Alison Leese
- School of Biological Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Yolanda Van Wijck
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Michael R. Douglas
- Dudley Group of Hospitals NHS Foundation Trust, Dudley, United Kingdom
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Jill M. Brooks
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
8
|
Lazarević M, Stegnjaić G, Jevtić B, Despotović S, Ignjatović Đ, Stanisavljević S, Nikolovski N, Momčilović M, Fraser GL, Dimitrijević M, Miljković Đ. Increased regulatory activity of intestinal innate lymphoid cells type 3 (ILC3) prevents experimental autoimmune encephalomyelitis severity. J Neuroinflammation 2024; 21:26. [PMID: 38238790 PMCID: PMC10795263 DOI: 10.1186/s12974-024-03017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced in inbred rodents, i.e., genetically identical animals kept under identical environmental conditions, shows variable clinical outcomes. We investigated such variations of EAE in Dark Agouti rats immunized with spinal cord homogenate and identified four groups: lethal, severe, moderate, and mild, at day 28 post immunization. Higher numbers of CD4+ T cells, helper T cells type 1 (Th1) and 17 (Th17) in particular, were detected in the spinal cord of the severe group in comparison with the moderate group. In addition, increased proportion of Th1 and Th17 cells, and heightened levels of interferon (IFN)-γ and interleukin (IL)-6 were detected in the small intestine lamina propria of the severe group. A selective agonist of free fatty acid receptor type 2 (Ffar2) applied orally in the inductive phase of EAE shifted the distribution of the disease outcomes towards milder forms. This effect was paralleled with potentiation of intestinal innate lymphoid cells type 3 (ILC3) regulatory properties, and diminished Th1 and Th17 cell response in the lymph nodes draining the site of immunization. Our results suggest that different clinical outcomes in DA rats are under determinative influence of intestinal ILC3 activity during the inductive phase of EAE.
Collapse
Affiliation(s)
- Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia
| | - Goran Stegnjaić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia
| | - Sanja Despotović
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Dr Subotića 9, 11000, Belgrade, Serbia
| | - Đurđica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia
| | - Graeme L Fraser
- Epics Therapeutics S.A, 47 Rue Adrienne Bolland, 6041, Gosselies, Belgium
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia.
| |
Collapse
|
9
|
Kesharwani A, Udaya Kumar V, Aravind V, Murti K, Parihar VK. Neurodegeneration in autoimmune central nervous system infection. A REVIEW ON DIVERSE NEUROLOGICAL DISORDERS 2024:309-320. [DOI: 10.1016/b978-0-323-95735-9.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Hayes CE, Astier AL, Lincoln MR. Vitamin D mechanisms of protection in multiple sclerosis. FELDMAN AND PIKE'S VITAMIN D 2024:1129-1166. [DOI: 10.1016/b978-0-323-91338-6.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
El-Sayed MM, Mohak S, Gala D, Fabian R, Peterfi Z, Fabian Z. The Role of the Intestinal Microbiome in Multiple Sclerosis-Lessons to Be Learned from Hippocrates. BIOLOGY 2023; 12:1463. [PMID: 38132289 PMCID: PMC10740531 DOI: 10.3390/biology12121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Based on recent advances in research of chronic inflammatory conditions, there is a growing body of evidence that suggests a close correlation between the microbiota of the gastrointestinal tract and the physiologic activity of the immune system. This raises the idea that disturbances of the GI ecosystem contribute to the unfolding of chronic diseases including neurodegenerative pathologies. Here, we overview our current understanding on the putative interaction between the gut microbiota and the immune system from the aspect of multiple sclerosis, one of the autoimmune conditions accompanied by severe chronic neuroinflammation that affects millions of people worldwide.
Collapse
Affiliation(s)
- Mohamed Mahmoud El-Sayed
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Rd, Preston PR1 2HE, UK;
| | - Sidhesh Mohak
- Department of Clinical Sciences, Saint James School of Medicine, Park Ridge, IL 60068, USA;
| | - Dhir Gala
- American University of the Caribbean School of Medicine, 1 University Drive, Jordan Road, Cupecoy, St Marteen, The Netherlands;
| | - Reka Fabian
- Salerno, Secondary School, Threadneedle Road, H91 D9H3 Galway, Ireland;
| | - Zoltan Peterfi
- Division of Infectology, 1st Department of Internal Medicine, University of Pecs, Clinical Centre, 7623 Pécs, Hungary;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Rd, Preston PR1 2HE, UK;
| |
Collapse
|
12
|
Bondareva M, Budzinski L, Durek P, Witkowski M, Angermair S, Ninnemann J, Kreye J, Letz P, Ferreira-Gomes M, Semin I, Guerra GM, Momsen Reincke S, Sánchez-Sendin E, Yilmaz S, Sempert T, Heinz GA, Tizian C, Raftery M, Schönrich G, Matyushkina D, Smirnov IV, Govorun VM, Schrezenmeier E, Stefanski AL, Dörner T, Zocche S, Viviano E, Klement N, Sehmsdorf KJ, Lunin A, Chang HD, Drutskaya M, Kozlovskaya L, Treskatsch S, Radbruch A, Diefenbach A, Prüss H, Enghard P, Mashreghi MF, Kruglov AA. Cross-regulation of antibody responses against the SARS-CoV-2 Spike protein and commensal microbiota via molecular mimicry. Cell Host Microbe 2023; 31:1866-1881.e10. [PMID: 37944493 DOI: 10.1016/j.chom.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
The commensal microflora provides a repertoire of antigens that illicit mucosal antibodies. In some cases, these antibodies can cross-react with host proteins, inducing autoimmunity, or with other microbial antigens. We demonstrate that the oral microbiota can induce salivary anti-SARS-CoV-2 Spike IgG antibodies via molecular mimicry. Anti-Spike IgG antibodies in the saliva correlated with enhanced abundance of Streptococcus salivarius 1 month after anti-SARS-CoV-2 vaccination. Several human commensal bacteria, including S. salivarius, were recognized by SARS-CoV-2-neutralizing monoclonal antibodies and induced cross-reactive anti-Spike antibodies in mice, facilitating SARS-CoV-2 clearance. A specific S. salivarius protein, RSSL-01370, contains regions with homology to the Spike receptor-binding domain, and immunization of mice with RSSL-01370 elicited anti-Spike IgG antibodies in the serum. Additionally, oral S. salivarius supplementation enhanced salivary anti-Spike antibodies in vaccinated individuals. Altogether, these data show that distinct species of the human microbiota can express molecular mimics of SARS-CoV-2 Spike protein, potentially enhancing protective immunity.
Collapse
Affiliation(s)
- Marina Bondareva
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Lisa Budzinski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Mario Witkowski
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Stefan Angermair
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Justus Ninnemann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Jakob Kreye
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Philine Letz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Iaroslav Semin
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - S Momsen Reincke
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Elisa Sánchez-Sendin
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Selin Yilmaz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Toni Sempert
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Caroline Tizian
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Martin Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daria Matyushkina
- Scientific Research Institute for Systems Biology and Medicine, Scientific Driveway, 18, 117246 Moscow, Russia
| | - Ivan V Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Vadim M Govorun
- Scientific Research Institute for Systems Biology and Medicine, Scientific Driveway, 18, 117246 Moscow, Russia
| | - Eva Schrezenmeier
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Anna-Luisa Stefanski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Silvia Zocche
- Departments of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité University Medicine, 10117 Berlin, Germany
| | - Edoardo Viviano
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, 10117 Berlin, Germany
| | - Nele Klement
- Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Katharina Johanna Sehmsdorf
- Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Alexander Lunin
- Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marina Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Liubov Kozlovskaya
- Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sascha Treskatsch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Diefenbach
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Andrey A Kruglov
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
13
|
Thomas OG, Olsson T. Mimicking the brain: Epstein-Barr virus and foreign agents as drivers of neuroimmune attack in multiple sclerosis. Front Immunol 2023; 14:1304281. [PMID: 38022632 PMCID: PMC10655090 DOI: 10.3389/fimmu.2023.1304281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
T cells have an essential role in adaptive immunity against pathogens and cancer, but failure of thymic tolerance mechanisms can instead lead to escape of T cells with the ability to attack host tissues. Multiple sclerosis (MS) occurs when structures such as myelin and neurons in the central nervous system (CNS) are the target of autoreactive immune responses, resulting in lesions in the brain and spinal cord which cause varied and episodic neurological deficits. A role for autoreactive T cell and antibody responses in MS is likely, and mounting evidence implicates Epstein-Barr virus (EBV) in disease mechanisms. In this review we discuss antigen specificity of T cells involved in development and progression of MS. We examine the current evidence that these T cells can target multiple antigens such as those from pathogens including EBV and briefly describe other mechanisms through which viruses could affect disease. Unravelling the complexity of the autoantigen T cell repertoire is essential for understanding key events in the development and progression of MS, with wider implications for development of future therapies.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
14
|
Thomas OG, Bronge M, Tengvall K, Akpinar B, Nilsson OB, Holmgren E, Hessa T, Gafvelin G, Khademi M, Alfredsson L, Martin R, Guerreiro-Cacais AO, Grönlund H, Olsson T, Kockum I. Cross-reactive EBNA1 immunity targets alpha-crystallin B and is associated with multiple sclerosis. SCIENCE ADVANCES 2023; 9:eadg3032. [PMID: 37196088 PMCID: PMC10191428 DOI: 10.1126/sciadv.adg3032] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system, for which and Epstein-Barr virus (EBV) infection is a likely prerequisite. Due to the homology between Epstein-Barr nuclear antigen 1 (EBNA1) and alpha-crystallin B (CRYAB), we examined antibody reactivity to EBNA1 and CRYAB peptide libraries in 713 persons with MS (pwMS) and 722 matched controls (Con). Antibody response to CRYAB amino acids 7 to 16 was associated with MS (OR = 2.0), and combination of high EBNA1 responses with CRYAB positivity markedly increased disease risk (OR = 9.0). Blocking experiments revealed antibody cross-reactivity between the homologous EBNA1 and CRYAB epitopes. Evidence for T cell cross-reactivity was obtained in mice between EBNA1 and CRYAB, and increased CRYAB and EBNA1 CD4+ T cell responses were detected in natalizumab-treated pwMS. This study provides evidence for antibody cross-reactivity between EBNA1 and CRYAB and points to a similar cross-reactivity in T cells, further demonstrating the role of EBV adaptive immune responses in MS development.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Mattias Bronge
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Katarina Tengvall
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Birce Akpinar
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Ola B. Nilsson
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Erik Holmgren
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Tara Hessa
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Guro Gafvelin
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Lars Alfredsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Roland Martin
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - André Ortlieb Guerreiro-Cacais
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Hans Grönlund
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
| |
Collapse
|
15
|
Naghavian R, Faigle W, Oldrati P, Wang J, Toussaint NC, Qiu Y, Medici G, Wacker M, Freudenmann LK, Bonté PE, Weller M, Regli L, Amigorena S, Rammensee HG, Walz JS, Brugger SD, Mohme M, Zhao Y, Sospedra M, Neidert MC, Martin R. Microbial peptides activate tumour-infiltrating lymphocytes in glioblastoma. Nature 2023; 617:807-817. [PMID: 37198490 PMCID: PMC10208956 DOI: 10.1038/s41586-023-06081-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Microbial organisms have key roles in numerous physiological processes in the human body and have recently been shown to modify the response to immune checkpoint inhibitors1,2. Here we aim to address the role of microbial organisms and their potential role in immune reactivity against glioblastoma. We demonstrate that HLA molecules of both glioblastoma tissues and tumour cell lines present bacteria-specific peptides. This finding prompted us to examine whether tumour-infiltrating lymphocytes (TILs) recognize tumour-derived bacterial peptides. Bacterial peptides eluted from HLA class II molecules are recognized by TILs, albeit very weakly. Using an unbiased antigen discovery approach to probe the specificity of a TIL CD4+ T cell clone, we show that it recognizes a broad spectrum of peptides from pathogenic bacteria, commensal gut microbiota and also glioblastoma-related tumour antigens. These peptides were also strongly stimulatory for bulk TILs and peripheral blood memory cells, which then respond to tumour-derived target peptides. Our data hint at how bacterial pathogens and bacterial gut microbiota can be involved in specific immune recognition of tumour antigens. The unbiased identification of microbial target antigens for TILs holds promise for future personalized tumour vaccination approaches.
Collapse
Affiliation(s)
- Reza Naghavian
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Cellerys AG, Schlieren, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Cellerys AG, Schlieren, Switzerland
- Immunity and Cancer, Institut Curie, PSL University, INSERM U932, Paris, France
| | - Pietro Oldrati
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Jian Wang
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Nora C Toussaint
- NEXUS Personalized Health Technologies, ETH Zurich, Schlieren, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Yuhan Qiu
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Gioele Medici
- Clinical Neuroscience Center, Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marcel Wacker
- Department of Peptide-based Immunotherapy, University of Tübingen, University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Lena K Freudenmann
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | | | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology and Clinical Neuroscience, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Clinical Neuroscience Center, Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sebastian Amigorena
- Immunity and Cancer, Institut Curie, PSL University, INSERM U932, Paris, France
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University of Tübingen, University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Malte Mohme
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, University of Hamburg, Hamburg, Germany
| | - Yingdong Zhao
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, MD, USA
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Cellerys AG, Schlieren, Switzerland
| | - Marian C Neidert
- Clinical Neuroscience Center, Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland.
- Cellerys AG, Schlieren, Switzerland.
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
- Therapeutic Immune Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Thomas OG, Rickinson A, Palendira U. Epstein-Barr virus and multiple sclerosis: moving from questions of association to questions of mechanism. Clin Transl Immunology 2023; 12:e1451. [PMID: 37206956 PMCID: PMC10191779 DOI: 10.1002/cti2.1451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
The link between Epstein-Barr virus (EBV) and multiple sclerosis (MS) has puzzled researchers since it was first discovered over 40 years ago. Until that point, EBV was primarily viewed as a cancer-causing agent, but the culmination of evidence now shows that EBV has a pivotal role in development of MS. Early MS disease is characterised by episodic neuroinflammation and focal lesions in the central nervous system (CNS) that over time develop into progressive neurodegeneration and disability. Risk of MS is vanishingly low in EBV seronegative individuals, history of infectious mononucleosis (acute symptomatic primary infection with EBV) significantly increases risk and elevated antibody titres directed against EBV antigens are well-characterised in patients. However, the underlying mechanism - or mechanisms - responsible for this interplay remains to be fully elucidated; how does EBV-induced immune dysregulation either trigger or drive MS in susceptible individuals? Furthermore, deep understanding of virological and immunological events during primary infection and long-term persistence in B cells will help to answer the many questions that remain regarding MS pathogenesis. This review discusses the current evidence and mechanisms surrounding EBV and MS, which have important implications for the future of MS therapies and prevention.
Collapse
Affiliation(s)
- Olivia G Thomas
- Department of Clinical Neuroscience, Therapeutic Immune Design, Centre for Molecular MedicineKarolinska InstituteStockholmSweden
| | - Alan Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of Birmingham, EdgbastonBirminghamUK
| | - Umaimainthan Palendira
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
- Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
17
|
Rui Y, Eppler HB, Yanes AA, Jewell CM. Tissue-Targeted Drug Delivery Strategies to Promote Antigen-Specific Immune Tolerance. Adv Healthc Mater 2023; 12:e2202238. [PMID: 36417578 PMCID: PMC9992113 DOI: 10.1002/adhm.202202238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Indexed: 11/27/2022]
Abstract
During autoimmunity or organ transplant rejection, the immune system attacks host or transplanted tissue, causing debilitating inflammation for millions of patients. There is no cure for most of these diseases. Further, available therapies modulate inflammation through nonspecific pathways, reducing symptoms but also compromising patients' ability to mount healthy immune responses. Recent preclinical advances to regulate immune dysfunction with vaccine-like antigen specificity reveal exciting opportunities to address the root cause of autoimmune diseases and transplant rejection. Several of these therapies are currently undergoing clinical trials, underscoring the promise of antigen-specific tolerance. Achieving antigen-specific tolerance requires precision and often combinatorial delivery of antigen, cytokines, small molecule drugs, and other immunomodulators. This can be facilitated by biomaterial technologies, which can be engineered to orient and display immunological cues, protect against degradation, and selectively deliver signals to specific tissues or cell populations. In this review, some key immune cell populations involved in autoimmunity and healthy immune tolerance are described. Opportunities for drug delivery to immunological organs are discussed, where specialized tissue-resident immune cells can be programmed to respond in unique ways toward antigens. Finally, cell- and biomaterial-based therapies to induce antigen-specific immune tolerance that are currently undergoing clinical trials are highlighted.
Collapse
Affiliation(s)
- Yuan Rui
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Haleigh B. Eppler
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Biological Sciences Training ProgramUniversity of MarylandCollege ParkMD20742USA
| | - Alexis A. Yanes
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher M. Jewell
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Biological Sciences Training ProgramUniversity of MarylandCollege ParkMD20742USA
- US Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMD20742USA
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD21201USA
| |
Collapse
|
18
|
Ruder J, Docampo MJ, Rex J, Obahor S, Naghavian R, Müller AM, Schanz U, Jelcic I, Martin R. Dynamics of T cell repertoire renewal following autologous hematopoietic stem cell transplantation in multiple sclerosis. Sci Transl Med 2022; 14:eabq1693. [DOI: 10.1126/scitranslmed.abq1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Autologous hematopoietic stem cell transplantation (aHSCT) is a highly effective treatment of multiple sclerosis (MS). It depletes autoreactive cells and subsequently renews adaptive immune cells. The possible proinflammatory potential of surviving T cells early after aHSCT has not been studied. Here, we examined the dynamics of new and surviving T cells in 27 patients after aHSCT by multidimensional flow cytometry, T cell receptor (TCR) sequencing, specificity testing, telomere length profiling, and HLA genotyping. Early after aHSCT, naïve T cells are barely detectable, whereas effector memory (EM) T cells quickly reconstitute to pre-aHSCT values. EM CD4+T cells early after aHSCT have shorter telomeres, have higher expression of senescence and exhaustion markers, and proliferate less than those before aHSCT. We find a median TCR repertoire overlap of 26% between the early post-aHSCT EM CD4+T cells and pre-aHSCT, indicating persistence of EM CD4+T cells early after transplantation. The EM CD4+TCR repertoire overlap declines to 15% at 12 months after aHSCT, whereas the naïve TCR repertoire entirely renews. HLA-DR–associated EM CD4+T cell reactivity toward MS-related antigens decreased after aHSCT, whereas reactivity toward EBV increased. Our data show substantial survival of pre-aHSCT EM CD4+T cells early after transplantation but complete renewal of the T cell repertoire by nascent T cells later.
Collapse
Affiliation(s)
- Josefine Ruder
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - María José Docampo
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jordan Rex
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Simon Obahor
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Reza Naghavian
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Antonia M.S. Müller
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
19
|
Dynamics of Inflammatory and Neurodegenerative Biomarkers after Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms231810946. [PMID: 36142860 PMCID: PMC9503241 DOI: 10.3390/ijms231810946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (aHSCT) is a highly efficient treatment of multiple sclerosis (MS), and hence it likely normalizes pathological and/or enhances beneficial processes in MS. The disease pathomechanisms include neuroinflammation, glial cell activation and neuronal damage. We studied biomarkers that in part reflect these, like markers for neuroinflammation (C-X-C motif chemokine ligand (CXCL) 9, CXCL10, CXCL13, and chitinase 3-like 1 (CHI3L1)), glial perturbations (glial fibrillary acidic protein (GFAP) and in part CHI3L1), and neurodegeneration (neurofilament light chain (NfL)) by enzyme-linked immunosorbent assays (ELISA) and single-molecule array assay (SIMOA) in the serum and cerebrospinal fluid (CSF) of 32 MS patients that underwent aHSCT. We sampled before and at 1, 3, 6, 12, 24 and 36 months after aHSCT for serum, as well as before and 24 months after aHSCT for CSF. We found a strong increase of serum CXCL10, NfL and GFAP one month after the transplantation, which normalized one and two years post-aHSCT. CXCL10 was particularly increased in patients that experienced reactivation of cytomegalovirus (CMV) infection, but not those with Epstein-Barr virus (EBV) reactivation. Furthermore, patients with CMV reactivation showed increased Th1 phenotype in effector memory CD4+ T cells. Changes of the other serum markers were more subtle with a trend for an increase in serum CXCL9 early post-aHSCT. In CSF, GFAP levels were increased 24 months after aHSCT, which may indicate sustained astroglia activation 24 months post-aHSCT. Other CSF markers remained largely stable. We conclude that MS-related biomarkers indicate neurotoxicity early after aHSCT that normalizes after one year while astrocyte activation appears increased beyond that, and increased serum CXCL10 likely does not reflect inflammation within the central nervous system (CNS) but rather occurs in the context of CMV reactivation or other infections post-aHSCT.
Collapse
|
20
|
Elsayed NS, Aston P, Bayanagari VR, Shukla SK. The gut microbiome molecular mimicry piece in the multiple sclerosis puzzle. Front Immunol 2022; 13:972160. [PMID: 36045671 PMCID: PMC9420973 DOI: 10.3389/fimmu.2022.972160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022] Open
Abstract
The etiological complexity of multiple sclerosis, an immune-mediated, neurodegenerative disease with multifactorial etiology is still elusive because of an incomplete understanding of the complex synergy between contributing factors such as genetic susceptibility and aberrant immune response. Recently, the disease phenotypes have also been shown to be associated with dysbiosis of the gut microbiome, a dynamic reservoir of billions of microbes, their proteins and metabolites capable of mimicring the autoantigens. Microbial factors could potentially trigger the neuroinflammation and symptoms of MS. In this perspective article, we discussed how microbial molecules resulting from a leaky gut might mimic a host’s autoantigen, potentially contributing to the disease disequilibrium. It further highlights the importance of targeting the gut microbiome for alternate therapeutic options for the treatment of MS.
Collapse
Affiliation(s)
- Noha S. Elsayed
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Paula Aston
- Department of Neurology, Marshfield Clinic Health System, Marshfield, WI, United States
| | - Vishnu R. Bayanagari
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
- *Correspondence: Sanjay K. Shukla,
| |
Collapse
|
21
|
Wang X, Liang Z, Wang S, Ma D, Zhu M, Feng J. Role of Gut Microbiota in Multiple Sclerosis and Potential Therapeutic Implications. Curr Neuropharmacol 2022; 20:1413-1426. [PMID: 34191698 PMCID: PMC9881072 DOI: 10.2174/1570159x19666210629145351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/03/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
The role of gut microbiota in health and diseases has been receiving increased attention recently. Emerging evidence from previous studies on gut-microbiota-brain axis highlighted the importance of gut microbiota in neurological disorders. Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system (CNS) resulting from T-cell-driven, myelin-directed autoimmunity. The dysbiosis of gut microbiota in MS patients has been reported in published research studies, indicating that gut microbiota plays an important role in the pathogenesis of MS. Gut microbiota have also been reported to influence the initiation of disease and severity of experimental autoimmune encephalomyelitis, which is the animal model of MS. However, the underlying mechanisms of gut microbiota involvement in the pathogenesis of MS remain unclear. Therefore, in this review, we summerized the potential mechanisms for gut microbiota involvement in the pathogenesis of MS, including increasing the permeability of the intestinal barrier, initiating an autoimmune response, disrupting the blood-brain barrier integrity, and contributing to chronic inflammation. The possibility for gut microbiota as a target for MS therapy has also been discussed. This review provides new insight into understanding the role of gut microbiota in neurological and inflammatory diseases.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China
| | - Zhen Liang
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China
| | - Shengnan Wang
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China
| | - Di Ma
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China,Address correspondence to these authors at the Department of Neurology, the First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021; Tel: + 86 13756661276; E-mail: ; Tel: +86 15948316086; E-mail:
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China,Address correspondence to these authors at the Department of Neurology, the First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021; Tel: + 86 13756661276; E-mail: ; Tel: +86 15948316086; E-mail:
| |
Collapse
|
22
|
Shahi SK, Yadav M, Ghimire S, Mangalam AK. Role of the gut microbiome in multiple sclerosis: From etiology to therapeutics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:185-215. [PMID: 36427955 DOI: 10.1016/bs.irn.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS that affects around one million people in the United States. Predisposition or protection from this disease is linked with both genetic and environmental factors. In recent years, gut microbiome has emerged as an important environmental factor in the pathobiology of MS. The gut microbiome supports various physiologic functions, including the development and maintenance of the host immune system, the perturbation of which is known as dysbiosis and has been linked with multiple diseases including MS. We and others have shown that people with MS (PwMS) have gut dysbiosis that is characterized by specific gut bacteria being enriched or depleted. Consequently, there is an emphasis on determining the mechanism(s) through which gut bacteria and/or their metabolites alter the course of MS through their ability to provide protection, predispose individuals, or promote disease progression. Improving our understanding of these mechanisms will allow us to harness the enormous potential of the gut microbiome as a diagnostic and/or therapeutic agent. In this chapter, we will discuss current advances in microbiome research in the context of MS, including a review of specific bacteria that are currently linked with this disease, potential mechanisms of disease pathogenesis, and the utility of microbiome-based therapy for PwMS.
Collapse
Affiliation(s)
- Shailesh K Shahi
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Meeta Yadav
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States.
| |
Collapse
|
23
|
Navarro-López V, Méndez-Miralles MÁ, Vela-Yebra R, Fríes-Ramos A, Sánchez-Pellicer P, Ruzafa-Costas B, Núñez-Delegido E, Gómez-Gómez H, Chumillas-Lidón S, Picó-Monllor JA, Navarro-Moratalla L. Gut Microbiota as a Potential Predictive Biomarker in Relapsing-Remitting Multiple Sclerosis. Genes (Basel) 2022; 13:genes13050930. [PMID: 35627315 PMCID: PMC9140870 DOI: 10.3390/genes13050930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The influence of the microbiome on neurological diseases has been studied for years. Recent findings have shown a different composition of gut microbiota detected in patients with multiple sclerosis (MS). The role of this dysbiosis is still unknown. OBJECTIVE We analyzed the gut microbiota of 15 patients with active relapsing-remitting multiple sclerosis (RRMS), comparing with diet-matched healthy controls. METHOD To determine the composition of the gut microbiota, we performed high-throughput sequencing of the 16S ribosomal RNA gene. The specific amplified sequences were in the V3 and V4 regions of the 16S ribosomal RNA gene. RESULTS The gut microbiota of RRMS patients differed from healthy controls in the levels of the Lachnospiraceae, Ezakiella, Ruminococcaceae, Hungatella, Roseburia, Clostridium, Shuttleworthia, Poephyromonas, and Bilophila genera. All these genera were included in a logistic regression analysis to determine the sensitivity and the specificity of the test. Finally, the ROC (receiver operating characteristic) and AUC with a 95% CI were calculated and best-matched for Ezakiella (AUC of 75.0 and CI from 60.6 to 89.4) and Bilophila (AUC of 70.2 and CI from 50.1 to 90.4). CONCLUSIONS There is a dysbiosis in the gut microbiota of RRMS patients. An analysis of the components of the microbiota suggests the role of some genera as a predictive factor of RRMS prognosis and diagnosis.
Collapse
Affiliation(s)
- Vicente Navarro-López
- Ph.D. Program in Health Sciences, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
- Infectious Disease Unit, University Hospital Vinalopó, Carrer Tonico Sansano Mora 14, 03293 Elche, Spain
- Correspondence: (V.N.-L.); (M.Á.M.-M.)
| | - María Ángeles Méndez-Miralles
- Ph.D. Program in Health Sciences, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
- Department of Neurology, University Hospital of Torrevieja, Carretera CV95, s/n, 03186 Alicante, Spain;
- Correspondence: (V.N.-L.); (M.Á.M.-M.)
| | - Rosa Vela-Yebra
- Department of Neurology, University Hospital of Torrevieja, Carretera CV95, s/n, 03186 Alicante, Spain;
| | - Ana Fríes-Ramos
- Department of Neurology, University Hospital of Vinalopó, Carrer Tonico Sansano Mora 14, 03293 Elche, Spain;
| | - Pedro Sánchez-Pellicer
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| | - Beatriz Ruzafa-Costas
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| | - Eva Núñez-Delegido
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| | - Humberto Gómez-Gómez
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| | - Sara Chumillas-Lidón
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| | - Jose A. Picó-Monllor
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
- Department of Pharmacology, Pediatrics and Organic Chemistry, Faculty of Pharmacy, Universidad Miguel Hernández de Elche, 03202 Elche, Spain
| | - Laura Navarro-Moratalla
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| |
Collapse
|
24
|
Bronge M, Högelin KA, Thomas OG, Ruhrmann S, Carvalho-Queiroz C, Nilsson OB, Kaiser A, Zeitelhofer M, Holmgren E, Linnerbauer M, Adzemovic MZ, Hellström C, Jelcic I, Liu H, Nilsson P, Hillert J, Brundin L, Fink K, Kockum I, Tengvall K, Martin R, Tegel H, Gräslund T, Al Nimer F, Guerreiro-Cacais AO, Khademi M, Gafvelin G, Olsson T, Grönlund H. Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. SCIENCE ADVANCES 2022; 8:eabn1823. [PMID: 35476434 PMCID: PMC9045615 DOI: 10.1126/sciadv.abn1823] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/17/2022] [Indexed: 05/29/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS), in which pathological T cells, likely autoimmune, play a key role. Despite its central importance, the autoantigen repertoire remains largely uncharacterized. Using a novel in vitro antigen delivery method combined with the Human Protein Atlas library, we screened for T cell autoreactivity against 63 CNS-expressed proteins. We identified four previously unreported autoantigens in MS: fatty acid-binding protein 7, prokineticin-2, reticulon-3, and synaptosomal-associated protein 91, which were verified to induce interferon-γ responses in MS in two cohorts. Autoreactive profiles were heterogeneous, and reactivity to several autoantigens was MS-selective. Autoreactive T cells were predominantly CD4+ and human leukocyte antigen-DR restricted. Mouse immunization induced antigen-specific responses and CNS leukocyte infiltration. This represents one of the largest systematic efforts to date in the search for MS autoantigens, demonstrates the heterogeneity of autoreactive profiles, and highlights promising targets for future diagnostic tools and immunomodulatory therapies in MS.
Collapse
Affiliation(s)
- Mattias Bronge
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Klara Asplund Högelin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Olivia G. Thomas
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Sabrina Ruhrmann
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Claudia Carvalho-Queiroz
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Ola B. Nilsson
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Andreas Kaiser
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Manuel Zeitelhofer
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik Holmgren
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Mathias Linnerbauer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Milena Z. Adzemovic
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Cecilia Hellström
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH–Royal Institute of Technology, 171 65 Solna, Sweden
| | - Ivan Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zürich, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Hao Liu
- Department of Protein Science, KTH–Royal Institute of Technology, 114 21 Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH–Royal Institute of Technology, 171 65 Solna, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Katharina Fink
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Katarina Tengvall
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zürich, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Hanna Tegel
- Human Protein Atlas, Department of Protein Science, KTH–Royal Institute of Technology, Stockholm, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH–Royal Institute of Technology, 114 21 Stockholm, Sweden
| | - Faiez Al Nimer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - André Ortlieb Guerreiro-Cacais
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Guro Gafvelin
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Hans Grönlund
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| |
Collapse
|
25
|
Garabatos N, Santamaria P. Gut Microbial Antigenic Mimicry in Autoimmunity. Front Immunol 2022; 13:873607. [PMID: 35572569 PMCID: PMC9094498 DOI: 10.3389/fimmu.2022.873607] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota plays a major role in the developmental biology and homeostasis of cells belonging to the adaptive and innate arms of the immune system. Alterations in its composition, which are known to be regulated by both genetic and environmental factors, can either promote or suppress the pathogenic processes underlying the development of various autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, systemic lupus erythematosus, type 1 diabetes and rheumatoid arthritis, to just name a few. Cross-recognition of gut microbial antigens by autoreactive T cells as well as gut microbe-driven alterations in the activation and homeostasis of effector and regulatory T cells have been implicated in this process. Here, we summarize our current understanding of the positive and negative associations between alterations in the composition of the gut microbiota and the development of various autoimmune disorders, with a special emphasis on antigenic mimicry.
Collapse
Affiliation(s)
- Nahir Garabatos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Julia McFarlane Diabetes Research Centre (JMDRC), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Zitvogel L, Kroemer G. Cross-reactivity between microbial and tumor antigens. Curr Opin Immunol 2022; 75:102171. [DOI: 10.1016/j.coi.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/19/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
|
27
|
Pinilla C, Giulianotti MA, Santos RG, Houghten RA. Identification of B Cell and T Cell Epitopes Using Synthetic Peptide Combinatorial Libraries. Curr Protoc 2022; 2:e378. [PMID: 35263045 DOI: 10.1002/cpz1.378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article presents a combinatorial library method that consists of the synthesis and screening of mixture-based synthetic combinatorial libraries of peptide molecules to identify B and T cell epitopes. The protocols employ peptide libraries to identify peptides recognized by MAbs and T cells. The first protocol uses a positional scanning peptide library made up of hexapeptides to identify antigenic determinants recognized by MAbs. The 120 mixtures in the hexapeptide library are tested for their inhibitory activity in a competitive ELISA. The second protocol uses a decapeptide library to identify T cell peptide ligands. The 200 mixtures of the decapeptide library are tested for their ability to induce T cell activation. Support protocols cover optimization of the assay conditions for each MAb or T cell, to achieve the best level of sensitivity and reproducibility, and preparation of a hexapeptide library, along with deconvolution approaches. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Screening peptide library for antibody inhibition Basic Protocol 2: Screening a peptide library to identify CD4+ Or CD8+ T cell ligands Support Protocol 1: Optimizing antigen and antibody concentrations for screening assay Support Protocol 2: Preparing a positional scanning peptide library.
Collapse
Affiliation(s)
- Clemencia Pinilla
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| | - Marc A Giulianotti
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| | | | - Richard A Houghten
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| |
Collapse
|
28
|
Laman JD, Huizinga R, Boons GJ, Jacobs BC. Guillain-Barré syndrome: expanding the concept of molecular mimicry. Trends Immunol 2022; 43:296-308. [PMID: 35256276 PMCID: PMC9016725 DOI: 10.1016/j.it.2022.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Guillain-Barré syndrome (GBS) is a rapidly progressive, monophasic, and potentially devastating immune-mediated neuropathy in humans. Preceding infections trigger the production of cross-reactive antibodies against gangliosides concentrated in human peripheral nerves. GBS is elicited by at least five distinct common bacterial and viral pathogens, speaking to the notion of polymicrobial disease causation. This opinion emphasizes that GBS is the best-supported example of true molecular mimicry at the B cell level. Moreover, we argue that mechanistically, single and multiplexed microbial carbohydrate epitopes induce IgM, IgA, and IgG subclasses in ways that challenge the classic concept of thymus-dependent (TD) versus thymus-independent (TI) antibody responses in GBS. Finally, we discuss how GBS can be exemplary for driving innovation in diagnostics and immunotherapy for other antibody-driven neurological diseases.
Collapse
|
29
|
Gottlieb A, Pham HPT, Lindsey JW. Brain Antigens Stimulate Proliferation of T Lymphocytes With a Pathogenic Phenotype in Multiple Sclerosis Patients. Front Immunol 2022; 13:835763. [PMID: 35173742 PMCID: PMC8841344 DOI: 10.3389/fimmu.2022.835763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
A method to stimulate T lymphocytes with a broad range of brain antigens would facilitate identification of the autoantigens for multiple sclerosis and enable definition of the pathogenic mechanisms important for multiple sclerosis. In a previous work, we found that the obvious approach of culturing leukocytes with homogenized brain tissue does not work because the brain homogenate suppresses antigen-specific lymphocyte proliferation. We now report a method that substantially reduces the suppressive activity. We used this non-suppressive brain homogenate to stimulate leukocytes from multiple sclerosis patients and controls. We also stimulated with common viruses for comparison. We measured proliferation, selected the responding CD3+ cells with flow cytometry, and sequenced their transcriptomes for mRNA and T-cell receptor sequences. The mRNA expression suggested that the brain-responding cells from MS patients are potentially pathogenic. The T-cell receptor repertoire of the brain-responding cells was clonal with minimal overlap with virus antigens.
Collapse
Affiliation(s)
- Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hoai Phuong T. Pham
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - John William Lindsey
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: John William Lindsey,
| |
Collapse
|
30
|
Rickenbach C, Gericke C. Specificity of Adaptive Immune Responses in Central Nervous System Health, Aging and Diseases. Front Neurosci 2022; 15:806260. [PMID: 35126045 PMCID: PMC8812614 DOI: 10.3389/fnins.2021.806260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/29/2021] [Indexed: 12/25/2022] Open
Abstract
The field of neuroimmunology endorses the involvement of the adaptive immune system in central nervous system (CNS) health, disease, and aging. While immune cell trafficking into the CNS is highly regulated, small numbers of antigen-experienced lymphocytes can still enter the cerebrospinal fluid (CSF)-filled compartments for regular immune surveillance under homeostatic conditions. Meningeal lymphatics facilitate drainage of brain-derived antigens from the CSF to deep cervical lymph nodes to prime potential adaptive immune responses. During aging and CNS disorders, brain barriers and meningeal lymphatic functions are impaired, and immune cell trafficking and antigen efflux are altered. In this context, alterations in the immune cell repertoire of blood and CSF and T and B cells primed against CNS-derived autoantigens have been observed in various CNS disorders. However, for many diseases, a causal relationship between observed immune responses and neuropathological findings is lacking. Here, we review recent discoveries about the association between the adaptive immune system and CNS disorders such as autoimmune neuroinflammatory and neurodegenerative diseases. We focus on the current challenges in identifying specific T cell epitopes in CNS diseases and discuss the potential implications for future diagnostic and treatment options.
Collapse
Affiliation(s)
- Chiara Rickenbach
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Christoph Gericke
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
31
|
Docampo MJ, Lutterotti A, Sospedra M, Martin R. Mechanistic and Biomarker Studies to Demonstrate Immune Tolerance in Multiple Sclerosis. Front Immunol 2022; 12:787498. [PMID: 35069562 PMCID: PMC8766750 DOI: 10.3389/fimmu.2021.787498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
The induction of specific immunological tolerance represents an important therapeutic goal for multiple sclerosis and other autoimmune diseases. Sound knowledge of the target antigens, the underlying pathomechanisms of the disease and the presumed mechanisms of action of the respective tolerance-inducing approach are essential for successful translation. Furthermore, suitable tools and assays to evaluate the induction of immune tolerance are key aspects for the development of such treatments. However, investigation of the mechanisms of action underlying tolerance induction poses several challenges. The optimization of sensitive, robust methods which allow the assessment of low frequency autoreactive T cells and the long-term reduction or change of their responses, the detection of regulatory cell populations and their immune mediators, as well as the validation of specific biomarkers indicating reduction of inflammation and damage, are needed to develop tolerance-inducing approaches successfully to patients. This short review focuses on how to demonstrate mechanistic proof-of-concept in antigen-specific tolerance-inducing therapies in MS.
Collapse
Affiliation(s)
| | | | | | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Ivanova A, Yalovenko O, Dugan A. Human Gut Microbiome as an Indicator of Human Health. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2021. [DOI: 10.20535/ibb.2021.5.4.244375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The undeniable achievement in the study of the gut microbiome as an association of different microorganisms, including viruses, that colonize various organs and systems of the body, is the establishment of the fact that some diseases that were consmicrobiotaidered as non-infectious can also be transmitted through microorganisms. This resulted in the gut microbiome being called a forgotten organ that could serve as an additional and kind of missing link for a more objective and better diagnosis and treatment of many diseases that were not considered infectious. The rapid development of gut microbiome research in recent years not only is connected with better understanding of the functioning of the microbiome by the scientific community, but also inseparable from the strategic support of each country. Global investment in researches, related to the human microbiome, has exceeded $1.7 billion over the past decade. These researches contribute to the development of new diagnostic methods and therapeutic interventions. Our review is dedicated to the analysis of the possibilities of application of the human gut microbiome for the diagnosis of diseases, and the role of the intestines in the provocation and causing of certain diseases. Significant differences in the composition and diversity of the human microbiome are shown depending on geographical location and the change of socio-economic formations towards a gradual decrease in the diversity of the gut microbiome due to three stages of human population’s existence: food production, agriculture and industrial urban life. We analyze the influence of dietary patterns, various diseases (including malignant neoplasms) and viral infections (in particular, coronavirus) on the gut microbiome. And vice versa – the influence of the gut microbiome on the drugs effect and their metabolism, which affects the host's immune response and course of the disease.
Collapse
|
33
|
Martinsen V, Kursula P. Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids 2021; 54:99-109. [PMID: 34889995 PMCID: PMC8810476 DOI: 10.1007/s00726-021-03111-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023]
Abstract
Myelin basic protein (MBP) is an abundant protein in central nervous system (CNS) myelin. MBP has long been studied as a factor in the pathogenesis of the autoimmune neurodegenerative disease multiple sclerosis (MS). MS is characterized by CNS inflammation, demyelination, and axonal loss. One of the main theories on the pathogenesis of MS suggests that exposure to foreign antigens causes the activation of cross-reactive T cells in genetically susceptible individuals, with MBP being a possible autoantigen. While a direct role for MBP as a primary antigen in human MS is unclear, it is clear that MBP and its functions in myelin formation and long-term maintenance are linked to MS. This review looks at some key molecular characteristics of MBP and its relevance to MS, as well as the mechanisms of possible molecular mimicry between MBP and some viral antigens. We also discuss the use of serum anti-myelin antibodies as biomarkers for disease. MBP is a prime example of an apparently simple, but in fact biochemically and structurally complex molecule, which is closely linked to both normal nervous system development and neurodegenerative disease.
Collapse
Affiliation(s)
- Vebjørn Martinsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway. .,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| |
Collapse
|
34
|
Greaves SA, Ravindran A, Santos RG, Chen L, Falta MT, Wang Y, Mitchell AM, Atif SM, Mack DG, Tinega AN, Maier LA, Dai S, Pinilla C, Grunewald J, Fontenot AP. CD4+ T cells in the lungs of acute sarcoidosis patients recognize an Aspergillus nidulans epitope. J Exp Med 2021; 218:212583. [PMID: 34410304 PMCID: PMC8383815 DOI: 10.1084/jem.20210785] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 11/05/2022] Open
Abstract
Löfgren’s syndrome (LS) is an acute form of sarcoidosis characterized by a genetic association with HLA-DRB1*03 (HLA-DR3) and an accumulation of CD4+ T cells of unknown specificity in the bronchoalveolar lavage (BAL). Here, we screened related LS-specific TCRs for antigen specificity and identified a peptide derived from NAD-dependent histone deacetylase hst4 (NDPD) of Aspergillus nidulans that stimulated these CD4+ T cells in an HLA-DR3–restricted manner. Using ELISPOT analysis, a greater number of IFN-γ– and IL-2–secreting T cells in the BAL of DR3+ LS subjects compared with DR3+ control subjects was observed in response to the NDPD peptide. Finally, increased IgG antibody responses to A. nidulans NDPD were detected in the serum of DR3+ LS subjects. Thus, our findings identify a ligand for CD4+ T cells derived from the lungs of LS patients and suggest a role of A. nidulans in the etiology of LS.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Avinash Ravindran
- Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden.,Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Radleigh G Santos
- Department of Mathematics, Nova Southeastern University, Ft. Lauderdale, FL
| | - Lan Chen
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michael T Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Yang Wang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Angela M Mitchell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Alex N Tinega
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lisa A Maier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Medicine, National Jewish Health, Denver, CO
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Clemencia Pinilla
- Center for Translational Science, Florida International University, Port St. Lucie, FL
| | - Johan Grunewald
- Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
35
|
Cruciani C, Puthenparampil M, Tomas-Ojer P, Jelcic I, Docampo MJ, Planas R, Manogaran P, Opfer R, Wicki C, Reindl M, Jelcic I, Lutterotti A, Martin R, Sospedra M. T-Cell Specificity Influences Disease Heterogeneity in Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1075. [PMID: 34535569 PMCID: PMC8453544 DOI: 10.1212/nxi.0000000000001075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Encouraged by the enormous progress that the identification of specific autoantigens added to the understanding of neurologic autoimmune diseases, we undertook here an in-depth study of T-cell specificities in the autoimmune disease multiple sclerosis (MS), for which the spectrum of responsible autoantigens is not fully defined yet. The identification of target antigens in MS is crucial for therapeutic strategies aimed to induce antigen-specific tolerance. In addition, knowledge of relevant T-cell targets can improve our understanding of disease heterogeneity, a hallmark of MS that complicates clinical management. METHODS The proliferative response and interferon gamma (IFN-γ) release of CSF-infiltrating CD4+ T cells from patients with MS against several autoantigens was used to identify patients with different intrathecal T-cell specificities. Fresh CSF-infiltrating and paired circulating lymphocytes in these patients were characterized in depth by ex vivo immunophenotyping and transcriptome analysis of relevant T-cell subsets. Further examination of these patients included CSF markers of inflammation and neurodegeneration and a detailed characterization with respect to demographic, clinical, and MRI features. RESULTS By testing CSF-infiltrating CD4+ T cells from 105 patients with MS against seven long-known myelin and five recently described GDP-l-fucose synthase peptides, we identified GDP-l-fucose synthase and myelin oligodendrocyte glycoprotein (35-55) responder patients. Immunophenotyping of CSF and paired blood samples in these patients revealed a significant expansion of an effector memory (CCR7- CD45RA-) CD27- Th1 CD4+ cell subset in GDP-l-fucose synthase responders. Subsequent transcriptome analysis of this subset demonstrated expression of Th1 and cytotoxicity-associated genes. Patients with different intrathecal T-cell specificities also differ regarding inflammation- and neurodegeneration-associated biomarkers, imaging findings, expression of HLA class II alleles, and seasonal distribution of the time of the lumbar puncture. DISCUSSION Our observations reveal an association between autoantigen reactivity and features of disease heterogeneity that strongly supports an important role of T-cell specificity in MS pathogenesis. These data have the potential to improve patient classification in clinical practice and to guide the development of antigen-specific tolerization strategies.
Collapse
Affiliation(s)
- Carolina Cruciani
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Marco Puthenparampil
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Paula Tomas-Ojer
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Ivan Jelcic
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Maria Jose Docampo
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Raquel Planas
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Praveena Manogaran
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Roland Opfer
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Carla Wicki
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Markus Reindl
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Ilijas Jelcic
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Andreas Lutterotti
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Roland Martin
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Mireia Sospedra
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria.
| |
Collapse
|
36
|
Miljković Đ, Stanisavljević S, Jensen IJ, Griffith TS, Badovinac VP. Sepsis and multiple sclerosis: Causative links and outcomes. Immunol Lett 2021; 238:40-46. [PMID: 34320384 DOI: 10.1016/j.imlet.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Sepsis is a life-threatening condition characterized by an acute cytokine storm followed by prolonged dysfunction of the immune system in the survivors. Post-septic lymphopenia and functional deficits of the remaining immune cells lead to increased susceptibility to secondary infections and other morbid conditions causing late death in the patients. This state of post-septic immunoparalysis may also influence disorders stemming from inappropriate or overactive immune responses, such as autoimmune and immunoinflammatory diseases, including multiple sclerosis. In addition, ongoing autoimmunity likely influences the susceptibility to and outcome of sepsis. This review article addresses the bidirectional relationship between sepsis and multiple sclerosis, with a focus on the immunologic mechanisms of the interaction and potential directions for future studies.
Collapse
Affiliation(s)
- Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Isaac J Jensen
- Department of Pathology, Department of Microbiology and Immunology, Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, Department of Urology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Vladimir P Badovinac
- Department of Pathology, Department of Microbiology and Immunology, Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
37
|
Huo J, Lei M, Zhou Y, Zhong X, Liu Y, Hou J, Long H, Zhang Z, Tian M, Xie C, Wu W. Structural characterization of two novel polysaccharides from Gastrodia elata and their effects on Akkermansia muciniphila. Int J Biol Macromol 2021; 186:501-509. [PMID: 34271043 DOI: 10.1016/j.ijbiomac.2021.06.157] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Two homogeneous polysaccharides, GEP-3 and GEP-4, were purified from Gastrodia elata, a precious traditional Chinese medicine. Their structural characteristics were obtained using HPGPC, PMP-HPLC, LC/MS, FT-IR, NMR, and SEM methods. GEP-3 was 1,4-glucan with molecular weight of 20 kDa. Interestingly, GEP-4 comprised of a backbone of →[4)-α-Glcp-(1]10→[4)-α-Glcp-(1→]5[6)-β-Glcp-(1]11→6)-α-Glcp-(3→ and two branches of β-Glcp and p-hydroxybenzyl alcohol citrate, with repeating p-hydroxybenzyl alcohol attached to the backbone chain at O-6 position of →4,6)-α-Glcp-(1→ and O-1 position of →3,6)-α-Glcp-(1→. GEP-4 is a novel polysaccharide obtained and characterized for the first time. Bioactivity test indicated that both of them significantly promote the growth of Akkermansia muciniphila (Akk. muciniphila). Furthermore, GEP-3 and GEP-4 promoted the growth of Akk. muciniphila from high-fat diet (HFD) fecal microbiota. These results indicated that GEP-3 and GEP-4 were potential Akk. muciniphila growth promoters.
Collapse
Affiliation(s)
- Jiangyan Huo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Zhou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xianchun Zhong
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yameng Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Menghua Tian
- Zhaotong Tianma Research Institute, Zhaotong 657000, Yunnan, PR China
| | - Cen Xie
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
38
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
39
|
Dema M, Eixarch H, Villar LM, Montalban X, Espejo C. Immunosenescence in multiple sclerosis: the identification of new therapeutic targets. Autoimmun Rev 2021; 20:102893. [PMID: 34237417 DOI: 10.1016/j.autrev.2021.102893] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022]
Abstract
The number of elderly multiple sclerosis (MS) patients is growing, mainly due to the increase in the life expectancy of the general population and the availability of effective disease-modifying treatments. However, current treatments reduce the frequency of relapses and slow the progression of the disease, but they cannot stop the disability accumulation associated with disease progression. One possible explanation is the impact of immunosenescence, which is associated with the accumulation of unusual immune cell subsets that are thought to have a role in the development of an early ageing process in autoimmunity. Here, we provide a recent overview of how senescence affects immune cell function and how it is involved in the pathogenesis of autoimmune diseases, particularly MS. Numerous studies have demonstrated age-related immune changes in experimental autoimmune encephalomyelitis models, and the premature onset of immunosenescence has been demonstrated in MS patients. Therefore, potential therapeutic strategies based on rejuvenating the immune system have been proposed. Senolytics and regenerative strategies using haematopoietic stem cells, therapies based on rejuvenating oligodendrocyte precursor cells, microglia and monocytes, thymus cells and senescent B and T cells are capable of reversing the process of immunosenescence and could have a beneficial impact on the progression of MS.
Collapse
Affiliation(s)
- María Dema
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Luisa M Villar
- Red Española de Esclerosis Múltiple (REEM), Spain; Servicio de Inmunología, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| |
Collapse
|
40
|
Wiendl H, Gross CC, Bauer J, Merkler D, Prat A, Liblau R. Fundamental mechanistic insights from rare but paradigmatic neuroimmunological diseases. Nat Rev Neurol 2021; 17:433-447. [PMID: 34050331 DOI: 10.1038/s41582-021-00496-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/04/2023]
Abstract
The pathophysiology of complex neuroimmunological diseases, such as multiple sclerosis and autoimmune encephalitis, remains puzzling - various mechanisms that are difficult to dissect seem to contribute, hampering the understanding of the processes involved. Some rare neuroimmunological diseases are easier to study because their presentation and pathogenesis are more homogeneous. The investigation of these diseases can provide fundamental insights into neuroimmunological pathomechanisms that can in turn be applied to more complex diseases. In this Review, we summarize key mechanistic insights into three such rare but paradigmatic neuroimmunological diseases - Susac syndrome, Rasmussen encephalitis and narcolepsy type 1 - and consider the implications of these insights for the study of other neuroimmunological diseases. In these diseases, the combination of findings in humans, different modalities of investigation and animal models has enabled the triangulation of evidence to validate and consolidate the pathomechanistic features and to develop diagnostic and therapeutic strategies; this approach has provided insights that are directly relevant to other neuroimmunological diseases and applicable in other contexts. We also outline how next-generation technologies and refined animal models can further improve our understanding of pathomechanisms, including cell-specific and antigen-specific CNS immune responses, thereby paving the way for the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany.
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Alexandre Prat
- Department of Neuroscience, University of Montreal, Montreal, Canada
| | - Roland Liblau
- Infinity, Université Toulouse, CNRS, Inserm, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Immunology Department, Toulouse, France
| |
Collapse
|
41
|
Influence of immunomodulatory drugs on the gut microbiota. Transl Res 2021; 233:144-161. [PMID: 33515779 PMCID: PMC8184576 DOI: 10.1016/j.trsl.2021.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Immunomodulatory medications are a mainstay of treatment for autoimmune diseases and malignancies. In addition to their direct effects on immune cells, these medications also impact the gut microbiota. Drug-induced shifts in commensal microbes can lead to indirect but important changes in the immune response. We performed a comprehensive literature search focusing on immunotherapy/microbe interactions. Immunotherapies were categorized into 5 subtypes based on their mechanisms of action: cell trafficking inhibitors, immune checkpoint inhibitors, immunomodulators, antiproliferative drugs, and inflammatory cytokine inhibitors. Although no consistent relationships were observed between types of immunotherapy and microbiota, most immunotherapies were associated with shifts in specific colonizing bacterial taxa. The relationships between colonizing microbes and drug efficacy were not well-studied for autoimmune diseases. In contrast, the efficacy of immune checkpoint inhibitors for cancer was tied to the baseline composition of the gut microbiota. There was a paucity of high-quality data; existing data were generated using heterogeneous sampling and analytic techniques, and most studies involved small numbers of participants. Further work is needed to elucidate the extent and clinical significance of immunotherapy effects on the human microbiome.
Collapse
|
42
|
Pavelek Z, Novotny M, Soucek O, Krejsek J, Sobisek L, Sejkorova I, Masopust J, Kuca K, Valis M, Klimova B, Stourac P. Multiple sclerosis and immune system biomarkers: Novel comparison in glatiramer acetate and interferon beta-1a-treated patient groups. Mult Scler Relat Disord 2021; 53:103082. [PMID: 34166982 DOI: 10.1016/j.msard.2021.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, demyelinating disease of the central nervous system (CNS). T cells and B lymphocytes are involved in the development of this disease. METHODS The following biomarkers were determined in peripheral blood in 28 patients treated with glatiramer acetate (GA) and 21 patients treated with interferon beta 1-a (IFN): IL-10, BAFF, Mx1, IgG, IgG1, IgG2, IgG3 and IgG4 (at baseline and after 6 months of treatment). All participants had confirmed MS diagnosis. OBJECTIVES The primary objective is to assess a percentual change of biomarkers after 6 months since the first-line treatment initiation with GA or IFN. The secondary objective is to explore correlations between the baseline biomarkers' values (levels). RESULTS A positive trend was observed in the increase in IL-10 concentration by 30.33 % (IFN) and by 15.65 % (GA). In the IFN group, we observed a statistically significant increase in the BAFF protein concentration by 29.9% (P < 0.001). We found that Mx1 protein levels did not change with the administration of GA, which can be explained by the different mechanisms of action of GA. The serum levels of IgG immunoglobulins and both IgG1 and IgG4 subclasses in both groups of patients were increased. Thus, our data were in accordance with the generally accepted assumption that both IFN and GA are capable of modulating the B cell system. CONCLUSIONS Our results suggest that treatment with IFN and GA has a more pronounced influence on the B cell system of MS.
Collapse
Affiliation(s)
- Zbysek Pavelek
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Michal Novotny
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soucek
- Department of Clinical Immunology and Allergology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lukas Sobisek
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ilona Sejkorova
- Department of Clinical Immunology and Allergology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Masopust
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, University of Hradec Kralove, Faculty of Science, Hradec Kralove, Czech Republic
| | - Martin Valis
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Blanka Klimova
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavel Stourac
- Department of Neurology, Masaryk University, Faculty of Medicine and University Brno, Brno, Czech Republic
| |
Collapse
|
43
|
Bar-Or A, Li R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol 2021; 20:470-483. [PMID: 33930317 DOI: 10.1016/s1474-4422(21)00063-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
Novel insights from basic and translational studies are reshaping concepts of the immunopathogenesis of multiple sclerosis and understanding of the different inflammatory responses throughout the disease course. Previously, the cellular immunology of relapsing multiple sclerosis was considered to be principally T-cell driven; however, this process is now understood to involve multiple cell types and their functionally distinct subsets. Particularly, relapsing multiple sclerosis appears to involve imbalanced interactions between T cells, myeloid cells, B cells, and their effector and regulatory subpopulations. The major contributors to such imbalances differ across patients. Several emerging techniques enable comprehensive immune cell profiling at the single-cell level, revealing substantial functional heterogeneity and plasticity that could influence disease state and response to treatment. Findings from clinical trials with agents that successfully limit new multiple sclerosis disease activity and trials of agents that inadvertently exacerbate CNS inflammation have helped to elucidate disease mechanisms, better define the relevant modes of action of current immune therapies, and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Bhagavati S. Autoimmune Disorders of the Nervous System: Pathophysiology, Clinical Features, and Therapy. Front Neurol 2021; 12:664664. [PMID: 33935958 PMCID: PMC8079742 DOI: 10.3389/fneur.2021.664664] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Remarkable discoveries over the last two decades have elucidated the autoimmune basis of several, previously poorly understood, neurological disorders. Autoimmune disorders of the nervous system may affect any part of the nervous system, including the brain and spinal cord (central nervous system, CNS) and also the peripheral nerves, neuromuscular junction and skeletal muscle (peripheral nervous system, PNS). This comprehensive overview of this rapidly evolving field presents the factors which may trigger breakdown of self-tolerance and development of autoimmune disease in some individuals. Then the pathophysiological basis and clinical features of autoimmune diseases of the nervous system are outlined, with an emphasis on the features which are important to recognize for accurate clinical diagnosis. Finally the latest therapies for autoimmune CNS and PNS disorders and their mechanisms of action and the most promising research avenues for targeted immunotherapy are discussed.
Collapse
Affiliation(s)
- Satyakam Bhagavati
- Department of Neurology, Downstate Medical Center, State University of New York College of Medicine, New York, NY, United States
| |
Collapse
|
45
|
Miljković Đ, Jevtić B, Stojanović I, Dimitrijević M. ILC3, a Central Innate Immune Component of the Gut-Brain Axis in Multiple Sclerosis. Front Immunol 2021; 12:657622. [PMID: 33912185 PMCID: PMC8071931 DOI: 10.3389/fimmu.2021.657622] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gut immune cells have been increasingly appreciated as important players in the central nervous system (CNS) autoimmunity in animal models of multiple sclerosis (MS). Among the gut immune cells, innate lymphoid cell type 3 (ILC3) is of special interest in MS research, as they represent the innate cell counterpart of the major pathogenic cell population in MS, i.e. T helper (Th)17 cells. Importantly, these cells have been shown to stimulate regulatory T cells (Treg) and to counteract pathogenic Th17 cells in animal models of autoimmune diseases. Besides, they are also well known for their ability to stabilize the intestinal barrier and to shape the immune response to the gut microbiota. Thus, proper maintenance of the intestinal barrier and the establishment of the regulatory milieu in the gut performed by ILC3 may prevent activation of CNS antigen-specific Th17 cells by the molecular mimicry. Recent findings on the role of ILC3 in the gut-CNS axis and their relevance for MS pathogenesis will be discussed in this paper. Possibilities of ILC3 functional modulation for the benefit of MS patients will be addressed, as well.
Collapse
Affiliation(s)
- Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
46
|
Ding W, You Z, Chen Q, Yang L, Doheny J, Zhou X, Li N, Wang S, Hu K, Chen L, Xia S, Wu X, Wang C, Zhang C, Chen L, Ritchie C, Huang P, Mao J, Shen S. Gut Microbiota Influences Neuropathic Pain Through Modulating Proinflammatory and Anti-inflammatory T Cells. Anesth Analg 2021; 132:1146-1155. [PMID: 32889847 DOI: 10.1213/ane.0000000000005155] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Gut microbiota, a consortium of diverse microorganisms residing in the gastrointestinal tract, has emerged as a key player in neuroinflammatory responses, supporting the functional relevance of the "gut-brain axis." Chronic-constriction injury of the sciatic nerve (CCI) is a commonly used animal model of neuropathic pain with a major input from T cell-mediated immune responses. In this article, we sought to examine whether gut microbiota influences CCI neuropathic pain, and, if so, whether T-cell immune responses are implicated. METHODS We used a mixture of wide-spectrum oral antibiotics to perturbate gut microbiota in mice and then performed CCI in these animals. Nociceptive behaviors, including mechanical allodynia and thermal hyperalgesia, were examined before and after CCI. Additionally, we characterized the spinal cord infiltrating T cells by examining interferon (IFN)-γ, interleukin (IL)-17, and Foxp3. Using a Foxp3-GFP-DTR "knock-in" mouse model that allows punctual depletion of regulatory T cells, we interrogated the role of these cells in mediating the effects of gut microbiota in the context of CCI neuropathic pain. RESULTS We found that oral antibiotics induced gut microbiota changes and attenuated the development of CCI neuropathic pain, as demonstrated by dampened mechanical allodynia and thermal hyperalgesia. Percentages of IFN-γ-producing Th1 cells and Foxp3+ regulatory T cells were significantly different between animals that received oral antibiotics (Th1 mean = 1.0, 95% confidence interval [CI], 0.9-1.2; Foxp3 mean = 8.1, 95% CI, 6.8-9.3) and those that received regular water (Th1 mean = 8.4, 95% CI, 7.8-9.0, P < .01 oral antibiotics versus water, Cohen's d = 18.8; Foxp 3 mean = 2.8, 95% CI, 2.2-3.3, P < .01 oral antibiotics versus water, Cohen's d = 6.2). These T cells characterized a skewing from a proinflammatory to an anti-inflammatory immune profile induced by gut microbiota changes. Moreover, we depleted Foxp3+ regulatory T cells and found that their depletion reversed the protection of neuropathic pain mediated by gut microbiota changes, along with a dramatic increase of IFN-γ-producing Th1 cell infiltration in the spinal cord (before depletion mean = 2.8%, 95% CI, 2.2-3.5; after depletion mean = 9.1%, 95% CI, 7.2-11.0, p < .01 before versus after, Cohen's d = 5.0). CONCLUSIONS Gut microbiota plays a critical role in CCI neuropathic pain. This role is mediated, in part, through modulating proinflammatory and anti-inflammatory T cells.
Collapse
Affiliation(s)
- Weihua Ding
- From the Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Zerong You
- From the Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Qian Chen
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Liuyue Yang
- From the Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Jason Doheny
- From the Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Xue Zhou
- Department of Anesthesia, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Na Li
- Department of Anesthesiology, 920th Hospital of Joint Logistic Support Force, Kunming, China
| | - Shiyu Wang
- From the Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Kun Hu
- Department of Pathology, State University of New York, Buffalo, New York
| | - Lucy Chen
- From the Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Suyun Xia
- Department of Anesthesia, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xinbo Wu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University, Shanghai, China
| | | | - Can Zhang
- Department of Neurology, MassGeneral Center for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | - Christine Ritchie
- Division of Palliative Care and Geriatrics, Department of Medicine and
| | - Peigen Huang
- Department of Radiation Oncology, Steele Laboratory, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Jianren Mao
- From the Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Shiqian Shen
- From the Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Lutterotti A, Hayward-Koennecke H, Sospedra M, Martin R. Antigen-Specific Immune Tolerance in Multiple Sclerosis-Promising Approaches and How to Bring Them to Patients. Front Immunol 2021; 12:640935. [PMID: 33828551 PMCID: PMC8019937 DOI: 10.3389/fimmu.2021.640935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/26/2021] [Indexed: 01/28/2023] Open
Abstract
Antigen-specific tolerance induction aims at treating multiple sclerosis (MS) at the root of its pathogenesis and has the prospect of personalization. Several promising tolerization approaches using different technologies and modes of action have already advanced to clinical testing. The prerequisites for successful tolerance induction include the knowledge of target antigens, core pathomechanisms, and how to pursue a clinical development path that is distinct from conventional drug development. Key aspects including patient selection, outcome measures, demonstrating the mechanisms of action as well as the positioning in the rapidly growing spectrum of MS treatments have to be considered to bring this therapy to patients.
Collapse
Affiliation(s)
- Andreas Lutterotti
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Helen Hayward-Koennecke
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Chopra S, Myers Z, Sekhon H, Dufour A. The Nerves to Conduct a Multiple Sclerosis Crime Investigation. Int J Mol Sci 2021; 22:2498. [PMID: 33801441 PMCID: PMC7958632 DOI: 10.3390/ijms22052498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative autoimmune disease characterized by the aberrant infiltration of immune cells into the central nervous system (CNS) and by the loss of myelin. Sclerotic lesions and various inhibitory factors hamper the remyelination processes within the CNS. MS patients typically experience gradual cognitive and physical disabilities as the disease progresses. The etiology of MS is still unclear and emerging evidence suggests that microbiome composition could play a much more significant role in disease pathogenesis than was initially thought. Initially believed to be isolated to the gut microenvironment, we now know that the microbiome plays a much broader role in various tissues and is essential in the development of the immune system. Here, we present some of the unexpected roles that the microbiome plays in MS and discuss approaches for the development of next-generation treatment strategies.
Collapse
Affiliation(s)
- Sameeksha Chopra
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zoë Myers
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Henna Sekhon
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
49
|
Mangalam AK, Yadav M, Yadav R. The Emerging World of Microbiome in Autoimmune Disorders: Opportunities and Challenges. INDIAN JOURNAL OF RHEUMATOLOGY 2021; 16:57-72. [PMID: 34531642 PMCID: PMC8442979 DOI: 10.4103/injr.injr_210_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trillions of commensal bacteria colonizing humans (microbiome) have emerged as essential player(s) in human health. The alteration of the same has been linked with diseases including autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis. Gut bacteria are separated from the host through a physical barrier such as skin or gut epithelial lining. However, the perturbation in the healthy bacterial community (gut dysbiosis) can compromise gut barrier integrity, resulting in translocation of bacterial contents across the epithelial barrier (leaky gut). Bacterial contents such as lipopolysaccharide and bacterial antigens can induce a systemic inflammatory environment through activation and induction of immune cells. The biggest question in the field is whether inflammation causes gut dysbiosis or dysbiosis leads to disease induction or propagation, i.e., it is inside out or outside in or both. In this review, we first discuss the microbiome profiling studies in various autoimmune disorders, followed by a discussion of potential mechanisms through which microbiome is involved in the pathobiology of diseases. A better understanding of the role of the microbiome in health and disease will help us harness the power of commensal bacteria for the development of novel therapeutic agents to treat autoimmune disorders.
Collapse
Affiliation(s)
| | - Meeta Yadav
- Department of Pathology, University of Iowa, Iowa, IA,
USA
| | - Rajwardhan Yadav
- Department of Rheumatology, St Francis Hospital, Hartford,
CT, USA
| |
Collapse
|
50
|
Lee MN, Meyerson M. Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigen-presenting cells. Sci Immunol 2021; 6:6/55/eabf4001. [PMID: 33483338 DOI: 10.1126/sciimmunol.abf4001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
Abstract
A major limitation to understanding the associations of human leukocyte antigen (HLA) and CD8+ and CD4+ T cell receptor (TCR) genes with disease pathophysiology is the technological barrier of identifying which HLA molecules, epitopes, and TCRs form functional complexes. Here, we present a high-throughput epitope identification system that combines capture of T cell-secreted cytokines by barcoded antigen-presenting cells (APCs), cell sorting, and next-generation sequencing to identify class I- and class II-restricted epitopes starting from highly complex peptide-encoding oligonucleotide pools. We engineered APCs to express anti-cytokine antibodies, a library of DNA-encoded peptides, and multiple HLA class I or II molecules. We demonstrate that these engineered APCs link T cell activation-dependent cytokines with the DNA that encodes the presented peptide. We validated this technology by showing that we could select known targets of viral epitope-, neoepitope-, and autoimmune epitope-specific TCRs, starting from mixtures of peptide-encoding oligonucleotides. Then, starting from 10 TCRβ sequences that are found commonly in humans but lack known targets, we identified seven CD8+ or CD4+ TCR-targeted epitopes encoded by the human cytomegalovirus (CMV) genome. These included known epitopes, as well as a class I and a class II CMV epitope that have not been previously described. Thus, our cytokine capture-based assay makes use of a signal secreted by both CD8+ and CD4+ T cells and allows pooled screening of thousands of encoded peptides to enable epitope discovery for orphan TCRs. Our technology may enable identification of HLA-epitope-TCR complexes relevant to disease control, etiology, or treatment.
Collapse
Affiliation(s)
- Mark N Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA.,Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|