1
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
2
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
3
|
Kang KJ, Kim YG, Oh SJ, Won J, Lim KS, Baek SH, Lee Y, Choi JY. Determination of optimal injection dose in a small animal-dedicated positron emission tomography for non-human primate neurological studies. Appl Radiat Isot 2024; 211:111404. [PMID: 38917619 DOI: 10.1016/j.apradiso.2024.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
This study aimed to determine the optimal injection dose for non-human primate positron emission tomography (PET). We first used a monkey brain phantom with a volume of 80,000 mm3 containing 250 MBq of [18F]FDG. Next, we compared the radioactivity difference between the PET images and the actual radioactivity from the dose calibrator to determine the low-error range. We then evaluated the image quality using the NEMA-NU phantom. Finally, [18F]FP-CIT PET images were obtained from two monkeys with middle and high doses. As a result, PET images with a middle injected dose generated reasonable image quality and showed a high signal-to-noise ratio in monkey brain PET with [18F]FP-CIT. These results are expected to be actively applied in PET research using non-human primates.
Collapse
Affiliation(s)
- Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Kyung Seob Lim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea.
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
4
|
Chassé M, Vasdev N. Emerging targets for positron emission tomography imaging in proteinopathies. NPJ IMAGING 2024; 2:30. [PMID: 39185440 PMCID: PMC11338821 DOI: 10.1038/s44303-024-00032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Positron emission tomography (PET) imaging of neurodegenerative disease has historically focused on a small number of established targets. The development of selective PET radiotracers for novel biological targets enables new ways to interrogate the neuropathology of proteinopathies and will advance our understanding of neurodegeneration. This perspective aims to highlight recent PET radiotracers developed for five emerging targets in proteinopathies (i.e., mHTT, BACE1, TDP-43, OGA, and CH24H).
Collapse
Affiliation(s)
- Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
5
|
Luna S, Malard F, Pereckas M, Aoki M, Aoki K, Olivier-Van Stichelen S. Studying the O-GlcNAcome of human placentas using banked tissue samples. Glycobiology 2024; 34:cwae005. [PMID: 38253038 PMCID: PMC11005170 DOI: 10.1093/glycob/cwae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
O-GlcNAcylation is a dynamic modulator of signaling pathways, equal in magnitude to the widely studied phosphorylation. With the rapid development of tools for its detection at the single protein level, the O-GlcNAc modification rapidly emerged as a novel diagnostic and therapeutic target in human diseases. Yet, mapping the human O-GlcNAcome in various tissues is essential for generating relevant biomarkers. In this study, we used human banked tissue as a sample source to identify O-GlcNAcylated protein targets relevant to human diseases. Using human term placentas, we propose (1) a method to clean frozen banked tissue of blood proteins; (2) an optimized protocol for the enrichment of O-GlcNAcylated proteins using immunoaffinity purification; and (3) a bioinformatic workflow to identify the most promising O-GlcNAc targets. As a proof-of-concept, we used 45 mg of banked placental samples from two pregnancies to generate intracellular protein extracts depleted of blood protein. Then, antibody-based O-GlcNAc enrichment on denatured samples yielded over 2000 unique HexNAc PSMs and 900 unique sites using 300 μg of protein lysate. Due to efficient sample cleanup, we also captured 82 HexNAc proteins with high placental expression. Finally, we provide a bioinformatic tool (CytOVS) to sort the HexNAc proteins based on their cellular localization and extract the most promising O-GlcNAc targets to explore further. To conclude, we provide a simple 3-step workflow to generate a manageable list of O-GlcNAc proteins from human tissue and improve our understanding of O-GlcNAcylation's role in health and diseases.
Collapse
Affiliation(s)
- Sarai Luna
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Florian Malard
- INSERM U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Mayumi Aoki
- Cancer Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Kazuhiro Aoki
- Cancer Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Department of Cell Biology, Neurobiology and Anatomy (CBNA), Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Cancer Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| |
Collapse
|
6
|
Lu S, Telu S, Siméon FG, Cai L, Pike VW. Gas Phase Transformations in Carbon-11 Chemistry. Int J Mol Sci 2024; 25:1167. [PMID: 38256240 PMCID: PMC10816134 DOI: 10.3390/ijms25021167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The short-lived positron-emitter carbon-11 (t1/2 = 20.4 min; β+, 99.8%) is prominent for labeling tracers for use in biomedical research with positron emission tomography (PET). Carbon-11 is produced for this purpose with a cyclotron, nowadays almost exclusively by the 14N(p,α)11C nuclear reaction, either on nitrogen containing a low concentration of oxygen (0.1-0.5%) or hydrogen (~5%) to produce [11C]carbon dioxide or [11C]methane, respectively. These primary radioactive products can be produced in high yields and with high molar activities. However, only [11C]carbon dioxide has some utility for directly labeling PET tracers. Primary products are required to be converted rapidly and efficiently into secondary labeling synthons to provide versatile radiochemistry for labeling diverse tracer chemotypes at molecular positions of choice. This review surveys known gas phase transformations of carbon-11 and summarizes the important roles that many of these transformations now play for producing a broad range of labeling synthons in carbon-11 chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA; (S.L.); (S.T.); (F.G.S.); (L.C.)
| |
Collapse
|
7
|
Du P, Zhang X, Lian X, Hölscher C, Xue G. O-GlcNAcylation and Its Roles in Neurodegenerative Diseases. J Alzheimers Dis 2024; 97:1051-1068. [PMID: 38250776 DOI: 10.3233/jad-230955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
As a non-classical post-translational modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) is widely found in human organ systems, particularly in our brains, and is indispensable for healthy cell biology. With the increasing age of the global population, the incidence of neurodegenerative diseases is increasing, too. The common characteristic of these disorders is the aggregation of abnormal proteins in the brain. Current research has found that O-GlcNAcylation dysregulation is involved in misfolding or aggregation of these abnormal proteins to mediate disease progression, but the specific mechanism has not been defined. This paper reviews recent studies on O-GlcNAcylation's roles in several neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, Machado-Joseph's disease, and giant axonal neuropathy, and shows that O-GlcNAcylation, as glucose metabolism sensor, mediating synaptic function, participating in oxidative stress response and signaling pathway conduction, directly or indirectly regulates characteristic pathological protein toxicity and affects disease progression. The existing results suggest that targeting O-GlcNAcylation will provide new ideas for clinical diagnosis, prevention, and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pengyang Du
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomin Zhang
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xia Lian
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guofang Xue
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Cook BE, Nag S, Arakawa R, Lin EYS, Stratman N, Guckian K, Hering H, Lulla M, Choi J, Salinas C, Genung NE, Morén AF, Bolin M, Boscutti G, Plisson C, Martarello L, Halldin C, Kaliszczak MA. Development of a PET Tracer for OGA with Improved Kinetics in the Living Brain. J Nucl Med 2023; 64:1588-1593. [PMID: 37934021 PMCID: PMC10586483 DOI: 10.2967/jnumed.122.265225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
O-GlcNAcylation is thought to play a role in the development of tau pathology in Alzheimer's disease because of its ability to modulate tau's aggregation propensity. O-GlcNAcylation is regulated by 2 enzymes: O-GlcNAc transferase and O-GlcNAcase (OGA). Development of a PET tracer would therefore be an essential tool for developing therapeutic small-molecule inhibitors of OGA, enabling clinical testing of target engagement and dose selection. Methods: A collection of small-molecule compounds was screened for inhibitory activity and high-affinity binding to OGA, as well as favorable PET tracer attributes (multidrug resistance protein 1 efflux, central nervous system PET multiparameter optimization, etc.). Two lead compounds with high affinity and selectivity for OGA were selected for further profiling, including OGA binding to tissue homogenate using a radioligand competition binding assay. In vivo pharmacokinetics were established using a microdosing approach with unlabeled compounds in rats. In vivo imaging studies were performed in rodents and nonhuman primates (NHPs) with 11C-labeled compounds. Results: Two selected candidates, BIO-735 and BIO-578, displayed promising attributes in vitro. After radiolabeling with tritium, [3H]BIO-735 and [3H]BIO-578 binding in rodent brain homogenates demonstrated dissociation constants of 0.6 and 2.3 nM, respectively. Binding was inhibited, concentration-dependently, by homologous compounds and thiamet G, a well-characterized and structurally diverse OGA inhibitor. Imaging studies in rats and NHPs showed both tracers had high uptake in the brain and inhibition of binding to OGA in the presence of a nonradioactive compound. However, only BIO-578 demonstrated reversible binding kinetics within the time frame of a PET study with a 11C-labeled molecule to enable quantification using kinetic modeling. Specificity of tracer uptake was confirmed with a 10 mg/kg blocking dose of thiamet G. Conclusion: We describe the development and testing of 2 11C PET tracers targeting the protein OGA. The lead compound BIO-578 demonstrated high affinity and selectivity for OGA in rodent and human postmortem brain tissue, leading to its further testing in NHPs. NHP PET imaging studies showed that the tracer had excellent brain kinetics, with full inhibition of specific binding by thiamet G. These results suggest that the tracer [11C]BIO-578 is well suited for further characterization in humans.
Collapse
Affiliation(s)
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm County Council, Stockholm, Sweden; and
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm County Council, Stockholm, Sweden; and
| | | | | | | | | | | | | | | | | | - Anton Forsberg Morén
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm County Council, Stockholm, Sweden; and
| | - Martin Bolin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm County Council, Stockholm, Sweden; and
| | | | | | | | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm County Council, Stockholm, Sweden; and
| | | |
Collapse
|
9
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Pan S, Ding A, Li Y, Sun Y, Zhan Y, Ye Z, Song N, Peng B, Li L, Huang W, Shao H. Small-molecule probes from bench to bedside: advancing molecular analysis of drug-target interactions toward precision medicine. Chem Soc Rev 2023; 52:5706-5743. [PMID: 37525607 DOI: 10.1039/d3cs00056g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.
Collapse
Affiliation(s)
- Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yisi Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaxin Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yueqin Zhan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Zhenkun Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Ning Song
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
11
|
Nag S, Bolin M, Datta P, Arakawa R, Forsberg Morén A, Khani Maynaq Y, Lin E, Genung N, Hering H, Guckian K, Martarello L, Kaliszczak M, Halldin C. Development of a Novel [ 11C]CO-Labeled Positron Emission Tomography Radioligand [ 11C]BIO-1819578 for the Detection of O-GlcNAcase Enzyme Activity. ACS Chem Neurosci 2023. [PMID: 37377046 PMCID: PMC10360070 DOI: 10.1021/acschemneuro.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Imaging O-GlcNAcase OGA by positron emission tomography (PET) could provide information on the pathophysiological pathway of neurodegenerative diseases and important information on drug-target engagement and be helpful in dose selection of therapeutic drugs. Our aim was to develop an efficient synthetic method for labeling BIO-1819578 with carbon-11 using 11CO for evaluation of its potential to measure levels of OGA enzyme in non-human primate (NHP) brain using PET. Radiolabeling was achieved in one-pot via a carbon-11 carbonylation reaction using [11C]CO. The detailed regional brain distribution of [11C]BIO-1819578 binding was evaluated using PET measurements in NHPs. Brain radioactivity was measured for 93 min using a high-resolution PET system, and radiometabolites were measured in monkey plasma using gradient radio HPLC. Radiolabeling of [11C]BIO-1819578 was successfully accomplished, and the product was found to be stable at 1 h after formulation. [11C]BIO-1819578 was characterized in the cynomolgus monkey brain where a high brain uptake was found (7 SUV at 4 min). A pronounced pretreatment effect was found, indicating specific binding to OGA enzyme. Radiolabeling of [11C]BIO-1819578 with [11C]CO was successfully accomplished. [11C]BIO-1819578 binds specifically to OGA enzyme. The results suggest that [11C]BIO-1819578 is a potential radioligand for imaging and for measuring target engagement of OGA in the human brain.
Collapse
Affiliation(s)
- Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Martin Bolin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Prodip Datta
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Anton Forsberg Morén
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Yasir Khani Maynaq
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Edward Lin
- BIOGEN MA Inc., 225 Binney St., Cambridge, Massachusetts 02142, United States
| | - Nathan Genung
- BIOGEN MA Inc., 225 Binney St., Cambridge, Massachusetts 02142, United States
| | - Heike Hering
- BIOGEN MA Inc., 225 Binney St., Cambridge, Massachusetts 02142, United States
| | - Kevin Guckian
- BIOGEN MA Inc., 225 Binney St., Cambridge, Massachusetts 02142, United States
| | - Laurent Martarello
- BIOGEN MA Inc., 225 Binney St., Cambridge, Massachusetts 02142, United States
| | - Maciej Kaliszczak
- BIOGEN MA Inc., 225 Binney St., Cambridge, Massachusetts 02142, United States
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| |
Collapse
|
12
|
Huynh DT, Boyce M. Chemical Biology Approaches to Understanding Neuronal O-GlcNAcylation. Isr J Chem 2023; 63:e202200071. [PMID: 36874376 PMCID: PMC9983623 DOI: 10.1002/ijch.202200071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 11/16/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a ubiquitous post-translational modification in mammals, decorating thousands of intracellular proteins. O-GlcNAc cycling is an essential regulator of myriad aspects of cell physiology and is dysregulated in numerous human diseases. Notably, O-GlcNAcylation is abundant in the brain and numerous studies have linked aberrant O-GlcNAc signaling to various neurological conditions. However, the complexity of the nervous system and the dynamic nature of protein O-GlcNAcylation have presented challenges for studying of neuronal O-GlcNAcylation. In this context, chemical approaches have been a particularly valuable complement to conventional cellular, biochemical, and genetic methods to understand O-GlcNAc signaling and to develop future therapeutics. Here we review selected recent examples of how chemical tools have empowered efforts to understand and rationally manipulate O-GlcNAcylation in mammalian neurobiology.
Collapse
Affiliation(s)
- Duc Tan Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
13
|
Mir JM, Malik BA, Khan MW. Glucosamine and maltol anchored Zinc(II) complex of COVID-19 health supplement relevance: DFT collaborated spectroscopic formulation with profound biological implications. J INDIAN CHEM SOC 2022. [PMCID: PMC9554624 DOI: 10.1016/j.jics.2022.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In association with other antiviral drugs, Zinc is specially administered to the patients suffering from novel coronavirus infectious disease (nCOVID). Zn, maltol, and glucosamine are famous food and drug additives. The supplements made from them are helpful in minimizing malnutrition problems, and in enhancing immune power. Due to the well-pronounced effects of all these three components in the food and medicinal industry, a novel sugar Zn(II) complex of the general composition, [Zn(gls)(mal)], where Hmal is maltol and Hgls is referred to as glucosamine, was synthesized and formulated. The physicochemical methods that were used to establish the molecular structure include elemental analysis, 1HNMR, FT-IR, UV–Vis., thermal and mass spectrometry. Physical properties like decomposition temperature and molar conductance were also examined. The experimental results at each step of characterization were validated/compared with density functionalized spectroscopic/spectrometric data using the LANL2DZ basis set for the metal atom and 6–31 g(d,p) for other atoms under the B3LYP functional. From the study, a suitable square planar geometry is suggested for the complex. Among biological implications, superoxide dismutation (SOD) and antimicrobial actions were studied. Also, virtual screening using SWISS ADME and Autodock 4.0 program (against 6X2B, SARS-CoV-2 u1S2q 2 RBD Up Spike Protein Trimer) were evaluated for the complex. Good interactions were scored by glucosamine and the complex. The results obtained from antimicrobial sensitivity indicate low inhibition zones, but from the SOD data, the complex has shown satisfactory antioxidant behavior. Therefore, the proposed food supplement could act as a good antioxidant agent and could keep the flora of the intestinal tract less disturbed while going through a metabolic pathway.
Collapse
|
14
|
Shetty HU, Morse CL, Pike VW. Tandem Mass Spectrometry as an Independent Method for Corroborating Fluorine-18 Radioactivity Measurements in Positron Emission Tomography. ACS MEASUREMENT SCIENCE AU 2022; 2:370-376. [PMID: 35996540 PMCID: PMC9389646 DOI: 10.1021/acsmeasuresciau.2c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Positron emission tomography (PET) uses many tracers labeled with fluorine-18 (t 1/2 = 109.8 min; β+ 97%) for quantitative imaging of biochemical and physiological processes in animal and human subjects. In PET methodology, the radioactivity in a dose of an 18F-labeled tracer to be administered to a living subject is measured with a calibrated ionization chamber. This type of detector measures the radioactivity of a sample relative to those of certified amounts of longer-lived surrogate isotopes that are recommended for detector calibration. No alternative means for corroborating widely varying fluorine-18 radioactivity measurements from calibrated ionization chambers has been available. Here, we describe an independent nonradiometric method for this purpose. In this method, highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) is used to quantify the relative masses of the radioactive isotopologue ([18F]1) and the accompanying nonradioactive counterpart (carrier 1) in an 18F-labeled tracer preparation to give the mole ratio of [18F]1. High-performance liquid chromatography (HPLC) with a mass-calibrated absorbance detection is used alongside to provide a separate measurement of the aggregate mass of all isotopologues. The radioactivity of the radiotracer is then derived in becquerels (Bq) from these two measurements, plus Avogadro's number and the decay constant of fluorine-18. For the chosen example [18F]LSN3316612, the radioactivity values determined nonradiometrically and with a selected ionization chamber were in fair agreement. In addition, LC-MS/MS alone was found to provide an accurate measure of the half-life of fluorine-18.
Collapse
|
15
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
17
|
Nerella SG, Singh P, Sanam T, Digwal CS. PET Molecular Imaging in Drug Development: The Imaging and Chemistry Perspective. Front Med (Lausanne) 2022; 9:812270. [PMID: 35295604 PMCID: PMC8919964 DOI: 10.3389/fmed.2022.812270] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Positron emission tomography with selective radioligands advances the drug discovery and development process by revealing information about target engagement, proof of mechanism, pharmacokinetic and pharmacodynamic profiles. Positron emission tomography (PET) is an essential and highly significant tool to study therapeutic drug development, dose regimen, and the drug plasma concentrations of new drug candidates. Selective radioligands bring up target-specific information in several disease states including cancer, cardiovascular, and neurological conditions by quantifying various rates of biological processes with PET, which are associated with its physiological changes in living subjects, thus it reveals disease progression and also advances the clinical investigation. This study explores the major roles, applications, and advances of PET molecular imaging in drug discovery and development process with a wide range of radiochemistry as well as clinical outcomes of positron-emitting carbon-11 and fluorine-18 radiotracers.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Tulja Sanam
- Department of Microbiology and Applied Sciences, University of Agricultural Sciences, Bangalore, India
| | - Chander Singh Digwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
18
|
Lee JH, Veronese M, Liow JS, Morse CL, Montero Santamaria JA, Haskali MB, Zoghbi SS, Pike VW, Innis RB, Zanotti-Fregonara P. Region- and voxel-based quantification in human brain of [ 18F]LSN3316612, a radioligand for O-GlcNAcase. EJNMMI Res 2021; 11:35. [PMID: 33796956 PMCID: PMC8017047 DOI: 10.1186/s13550-021-00780-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background Previous studies found that the positron emission tomography (PET) radioligand [18F]LSN3316612 accurately quantified O-GlcNAcase in human brain using a two-tissue compartment model (2TCM). This study sought to assess kinetic model(s) as an alternative to 2TCM for quantifying [18F]LSN3316612 binding, particularly in order to generate good-quality parametric images. Methods The current study reanalyzed data from a previous study of 10 healthy volunteers who underwent both test and retest PET scans with [18F]LSN3316612. Kinetic analysis was performed at the region level with 2TCM using 120-min PET data and arterial input function, which was considered as the gold standard. Quantification was then obtained at both the region and voxel levels using Logan plot, Ichise's multilinear analysis-1 (MA1), standard spectral analysis (SA), and impulse response function at 120 min (IRF120). To avoid arterial sampling, a noninvasive relative quantification (standardized uptake value ratio (SUVR)) was also tested using the corpus callosum as a pseudo-reference region. Venous samples were also assessed to see whether they could substitute for arterial ones. Results Logan and MA1 generated parametric images of good visual quality and their total distribution volume (VT) values at both the region and voxel levels were strongly correlated with 2TCM-derived VT (r = 0.96–0.99) and showed little bias (up to − 8%). SA was more weakly correlated to 2TCM-derived VT (r = 0.93–0.98) and was more biased (~ 16%). IRF120 showed a strong correlation with 2TCM-derived VT (r = 0.96) but generated noisier parametric images. All techniques were comparable to 2TCM in terms of test–retest variability and reliability except IRF120, which gave significantly worse results. Noninvasive SUVR values were not correlated with 2TCM-derived VT, and arteriovenous equilibrium was never reached. Conclusions Compared to SA and IRF, Logan and MA1 are more suitable alternatives to 2TCM for quantifying [18F]LSN3316612 and generating good-quality parametric images.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA. .,Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Jose A Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Mohammad B Haskali
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
19
|
Taddei C, Morse CL, Kim MJ, Liow JS, Montero Santamaria J, Zhang A, Manly LS, Zanotti-Fregonara P, Gladding RL, Zoghbi SS, Innis RB, Pike VW. Synthesis of [ 18F]PS13 and Evaluation as a PET Radioligand for Cyclooxygenase-1 in Monkey. ACS Chem Neurosci 2021; 12:517-530. [PMID: 33491441 PMCID: PMC9021884 DOI: 10.1021/acschemneuro.0c00737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cyclooxygenase-1 (COX-1) and its isozyme COX-2 are key enzymes in the syntheses of prostanoids. Imaging of COX-1 and COX-2 selective radioligands with positron emission tomography (PET) may clarify how these enzymes are involved in inflammatory conditions and assist in the discovery of improved anti-inflammatory drugs. We have previously labeled the selective high-affinity COX-1 ligand, 1,5-bis(4-methoxyphenyl)-3-(2,2,2-trifluoroethoxy)-1H-1,2,4-triazole (PS13), with carbon-11 (t1/2 = 20.4 min). This radioligand ([11C]PS13) has been successful for PET imaging of COX-1 in monkey and human brain and in periphery. [11C]PS13 is being used in clinical investigations. Alternative labeling of PS13 with fluorine-18 (t1/2 = 109.8 min) is desirable to provide a longer-lived radioligand in high activity that might be readily distributed among imaging centers. However, labeling of PS13 in its 1,1,1-trifluoroethoxy group is a radiochemical challenge. Here we assess two labeling approaches based on nucleophilic addition of cyclotron-produced [18F]fluoride ion to gem-difluorovinyl precursors, either to label PS13 in one step or to produce [18F]2,2,2-trifluoroethyl p-toluenesulfonate for labeling a hydroxyl precursor. From the latter two-step approach, we obtained [18F]PS13 ready for intravenous injection in a decay-corrected radiochemical yield of 7.9% and with a molar activity of up to 7.9 GBq/μmol. PET imaging of monkey brain with [18F]PS13 shows that this radioligand can specifically image and quantify COX-1 without radiodefluorination but with some radioactivity uptake in skull, ascribed to red bone marrow. The development of a new procedure for labeling PS13 with fluorine-18 at a higher molar activity is, however, desirable to suppress occupancy of COX-1 by carrier at baseline.
Collapse
Affiliation(s)
- Carlotta Taddei
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Jose Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Andrea Zhang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Lester S Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| |
Collapse
|
20
|
Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, Wang J, Xu H, Wang L, Liang SH. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 2021; 11:373-393. [PMID: 33643818 PMCID: PMC7893127 DOI: 10.1016/j.apsb.2020.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
- ANT, adenine nucleotide transporter
- Am, molar activities
- BBB, blood‒brain barrier
- BMSC, bone marrow stromal cells
- BP, binding potential
- BPND, non-displaceable binding potential
- BcTSPO, Bacillus cereus TSPO
- CBD, corticobasal degeneration
- CNS disorders
- CNS, central nervous system
- CRAC, cholesterol recognition amino acid consensus sequence
- DLB, Lewy body dementias
- EP, epilepsy
- FTD, frontotemporal dementia
- HAB, high-affinity binding
- HD, Huntington's disease
- HSE, herpes simplex encephalitis
- IMM, inner mitochondrial membrane
- KA, kainic acid
- LAB, low-affinity binding
- LPS, lipopolysaccharide
- MAB, mixed-affinity binding
- MAO-B, monoamine oxidase B
- MCI, mild cognitive impairment
- MDD, major depressive disorder
- MMSE, mini-mental state examination
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- MSA, multiple system atrophy
- Microglial activation
- NAA/Cr, N-acetylaspartate/creatine
- Neuroinflammation
- OCD, obsessive compulsive disorder
- OMM, outer mitochondrial membrane
- P2X7R, purinergic receptor P2X7
- PAP7, RIa-associated protein
- PBR, peripheral benzodiazepine receptor
- PCA, posterior cortical atrophy
- PD, Parkinson's disease
- PDD, PD dementia
- PET, positron emission tomography
- PKA, protein kinase A
- PRAX-1, PBR-associated protein 1
- PSP, progressive supranuclear palsy
- Positron emission tomography (PET)
- PpIX, protoporphyrin IX
- QA, quinolinic acid
- RCYs, radiochemical yields
- ROS, reactive oxygen species
- RRMS, relapsing remitting multiple sclerosis
- SA, specific activity
- SAH, subarachnoid hemorrhage
- SAR, structure–activity relationship
- SCIDY, spirocyclic iodonium ylide
- SNL, selective neuronal loss
- SNR, signal to noise ratio
- SUV, standard uptake volume
- SUVR, standard uptake volume ratio
- TBAH, tetrabutyl ammonium hydroxide
- TBI, traumatic brain injury
- TLE, temporal lobe epilepsy
- TSPO
- TSPO, translocator protein
- VDAC, voltage-dependent anion channel
- VT, distribution volume
- d.c. RCYs, decay-corrected radiochemical yields
- dMCAO, distal middle cerebral artery occlusion
- fP, plasma free fraction
- n.d.c. RCYs, non-decay-corrected radiochemical yields
- p.i., post-injection
Collapse
|
21
|
Monitoring and modulating O-GlcNAcylation: assays and inhibitors of O-GlcNAc processing enzymes. Curr Opin Struct Biol 2021; 68:157-165. [PMID: 33535148 DOI: 10.1016/j.sbi.2020.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is protein modification that is emerging as a regulator of diverse aspects of cellular physiology. Aberrant O-GlcNAcylation has been linked to several diseases, spurring the creation of methods to detect and perturb the activity of the two enzymes that govern this modification - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Here we summarize assays used for these two enzymes. We also detail the latest structure-guided development of inhibitors of these two enzymes and touch on selected reports that underscore the utility of inhibitors as tools for uncovering the diverse roles of O-GlcNAc in cell function. Finally, we summarize recent reports on the potential therapeutic benefits of antagonizing these enzymes and comment on outstanding challenges within the field.
Collapse
|
22
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
23
|
Lau J, Rousseau E, Kwon D, Lin KS, Bénard F, Chen X. Insight into the Development of PET Radiopharmaceuticals for Oncology. Cancers (Basel) 2020; 12:E1312. [PMID: 32455729 PMCID: PMC7281377 DOI: 10.3390/cancers12051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
While the development of positron emission tomography (PET) radiopharmaceuticals closely follows that of traditional drug development, there are several key considerations in the chemical and radiochemical synthesis, preclinical assessment, and clinical translation of PET radiotracers. As such, we outline the fundamentals of radiotracer design, with respect to the selection of an appropriate pharmacophore. These concepts will be reinforced by exemplary cases of PET radiotracer development, both with respect to their preclinical and clinical evaluation. We also provide a guideline for the proper selection of a radionuclide and the appropriate labeling strategy to access a tracer with optimal imaging qualities. Finally, we summarize the methodology of their evaluation in in vitro and animal models and the road to clinical translation. This review is intended to be a primer for newcomers to the field and give insight into the workflow of developing radiopharmaceuticals.
Collapse
Affiliation(s)
- Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Etienne Rousseau
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|