1
|
Iperi C, Fernández-Ochoa Á, Pers JO, Barturen G, Alarcón-Riquelme M, Quirantes-Piné R, Borrás-Linares I, Segura-Carretero A, Cornec D, Bordron A, Jamin C. Integration of multi-omics analysis reveals metabolic alterations of B lymphocytes in systemic lupus erythematosus. Clin Immunol 2024; 264:110243. [PMID: 38735509 DOI: 10.1016/j.clim.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE To link changes in the B-cell transcriptome from systemic lupus erythematosus (SLE) patients with those in their macroenvironment, including cellular and fluidic components. METHODS Analysis was performed on 363 patients and 508 controls, encompassing transcriptomics, metabolomics, and clinical data. B-cell and whole-blood transcriptomes were analysed using DESeq and GSEA. Plasma and urine metabolomics peak changes were quantified and annotated using Ceu Mass Mediator database. Common sources of variation were identified using MOFA integration analysis. RESULTS Cellular macroenvironment was enriched in cytokines, stress responses, lipidic synthesis/mobility pathways and nucleotide degradation. B cells shared these pathways, except nucleotide degradation diverted to nucleotide salvage pathway, and distinct glycosylation, LPA receptors and Schlafen proteins. CONCLUSIONS B cells showed metabolic changes shared with their macroenvironment and unique changes directly or indirectly induced by IFN-α signalling. This study underscores the importance of understanding the interplay between B cells and their macroenvironment in SLE pathology.
Collapse
Affiliation(s)
| | | | | | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Marta Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosa Quirantes-Piné
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | | | | | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | | |
Collapse
|
2
|
Stricker M, Zhang W, Cheng WY, Gazal S, Dendrou C, Nahkuri S, Palamara PF. Genome-wide classification of epigenetic activity reveals regions of enriched heritability in immune-related traits. CELL GENOMICS 2024; 4:100469. [PMID: 38190103 PMCID: PMC10794845 DOI: 10.1016/j.xgen.2023.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/04/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Epigenetics underpins the regulation of genes known to play a key role in the adaptive and innate immune system (AIIS). We developed a method, EpiNN, that leverages epigenetic data to detect AIIS-relevant genomic regions and used it to detect 2,765 putative AIIS loci. Experimental validation of one of these loci, DNMT1, provided evidence for a novel AIIS-specific transcription start site. We built a genome-wide AIIS annotation and used linkage disequilibrium (LD) score regression to test whether it predicts regional heritability using association statistics for 176 traits. We detected significant heritability effects (average |τ∗|=1.65) for 20 out of 26 immune-relevant traits. In a meta-analysis, immune-relevant traits and diseases were 4.45× more enriched for heritability than other traits. The EpiNN annotation was also depleted of trans-ancestry genetic correlation, indicating ancestry-specific effects. These results underscore the effectiveness of leveraging supervised learning algorithms and epigenetic data to detect loci implicated in specific classes of traits and diseases.
Collapse
Affiliation(s)
| | - Weijiao Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Wei-Yi Cheng
- Data & Analytics, Roche Pharma Research & Early Development, Roche Innovation Center New York, Little Falls, NJ, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Calliope Dendrou
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Satu Nahkuri
- Data & Analytics, Roche Pharma Research & Early Development, Roche Innovation Center Zürich, Zürich, Switzerland.
| | - Pier Francesco Palamara
- Department of Statistics, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Ktena YP, Dionysiou M, Gondek LP, Cooke KR. The impact of epigenetic modifications on allogeneic hematopoietic stem cell transplantation. Front Immunol 2023; 14:1188853. [PMID: 37325668 PMCID: PMC10264773 DOI: 10.3389/fimmu.2023.1188853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
The field of epigenetics studies the complex processes that regulate gene expression without altering the DNA sequence itself. It is well established that epigenetic modifications are crucial to cellular homeostasis and differentiation and play a vital role in hematopoiesis and immunity. Epigenetic marks can be mitotically and/or meiotically heritable upon cell division, forming the basis of cellular memory, and have the potential to be reversed between cellular fate transitions. Hence, over the past decade, there has been increasing interest in the role that epigenetic modifications may have on the outcomes of allogeneic hematopoietic transplantation and growing enthusiasm in the therapeutic potential these pathways may hold. In this brief review, we provide a basic overview of the types of epigenetic modifications and their biological functions, summarizing the current literature with a focus on hematopoiesis and immunity specifically in the context of allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Yiouli P. Ktena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | | | | |
Collapse
|
4
|
Peltier DC, Roberts A, Reddy P. LNCing RNA to immunity. Trends Immunol 2022; 43:478-495. [DOI: 10.1016/j.it.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
|
5
|
Abstract
Early growth response‐1 (Egr‐1) is a master regulator and transcriptional sensor in vascular dysfunction and disease. This article reviews recent developments in our understanding of the regulatory roles this zinc finger protein and product of an immediate‐early gene plays in a range of cardiovascular and inflammatory disorders. Egr‐1 can amplify pathologic signals from the extracellular environment by serving as a molecular conduit in the inducible expression of proliferative, migratory and proinflammatory genes driving disease progression. Strategies targeting Egr‐1 may provide therapeutic benefit in cardiovascular and inflammatory disorders.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research School of Medical Sciences Faculty of Medicine and Health University of New South Wales Sydney NSW Australia
| |
Collapse
|
6
|
Ikegawa S, Matsuoka KI. Harnessing Treg Homeostasis to Optimize Posttransplant Immunity: Current Concepts and Future Perspectives. Front Immunol 2021; 12:713358. [PMID: 34526990 PMCID: PMC8435715 DOI: 10.3389/fimmu.2021.713358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs) are functionally distinct subsets of mature T cells with broad suppressive activity and have been shown to play an important role in the establishment of immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT). Tregs exhibit an activated phenotype from the stage of emigration from the thymus and maintain continuous proliferation in the periphery. The distinctive feature in homeostasis enables Tregs to respond sensitively to small environmental changes and exert necessary and sufficient immune suppression; however, on the other hand, it also predisposes Tregs to be susceptible to apoptosis in the inflammatory condition post-transplant. Our studies have attempted to define the intrinsic and extrinsic factors affecting Treg homeostasis from the acute to chronic phases after allogeneic HSCT. We have found that altered cytokine environment in the prolonged post-HSCT lymphopenia or peri-transplant use of immune checkpoint inhibitors could hamper Treg reconstitution, leading to refractory graft-versus-host disease. Using murine models and clinical trials, we have also demonstrated that proper intervention with low-dose interleukin-2 or post-transplant cyclophosphamide could restore Treg homeostasis and further amplify the suppressive function after HSCT. The purpose of this review is to reconsider the distinctive characteristics of post-transplant Treg homeostasis and discuss how to harness Treg homeostasis to optimize posttransplant immunity for developing a safe and efficient therapeutic strategy.
Collapse
Affiliation(s)
- Shuntaro Ikegawa
- Department of Hematology and Oncology, Okayama University, Okayama, Japan.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University, Okayama, Japan
| |
Collapse
|