1
|
Miranda-Román MA, Lee CJ, Fishinevich E, Ran L, Patel AJ, Yan J, Khudoynazarova MN, Warda S, Pachai MR, Chen Y, Chi P. MEK Inhibitors Lead to PDGFR Pathway Upregulation and Sensitize Tumors to RAF Dimer Inhibitors in NF1-Deficient Malignant Peripheral Nerve Sheath Tumor. Clin Cancer Res 2024; 30:5154-5165. [PMID: 39269317 PMCID: PMC11565172 DOI: 10.1158/1078-0432.ccr-24-1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive subtype of soft-tissue sarcoma with a high propensity to metastasize and extremely limited treatment options. Loss of the RAS-GAP NF1 leads to sustained RAF/MEK/ERK signaling in MPNST. However, single-agent MEK inhibitors (MEKi) have failed to elicit a sustained inhibition of the MAPK signaling pathway in MPNST. EXPERIMENTAL DESIGN We used pharmacological, biochemical, and genetic perturbations of the receptor tyrosine kinase and MAPK signaling pathway regulators to investigate the mechanisms of MEKi resistance and evaluated combination therapeutic strategies in various preclinical MPNST models in vitro and in vivo. RESULTS Here, we report that MEKi treatment resistance in MPNST involves two adaptive pathways: direct transcriptional upregulation of the receptor tyrosine kinase PDGFRβ and MEKi-induced increase in RAF dimer formation and activation of downstream signaling. Although the pharmacologic combination of a MEKi with a PDGFRβ-specific inhibitor was more effective than treatment with the MEKi alone, the combination of the MEKi and RAF dimer inhibitors led to a robust inhibition of MAPK pathway signaling. This combination treatment was effective in vitro and in vivo, as demonstrated by the significant increase in drug synergism and its high effectiveness in decreasing MPNST viability. CONCLUSIONS Our findings suggest that the combination of MEKis and PDGFR and/or RAF dimer inhibitors can overcome MEKi resistance and may serve as a novel targeted therapeutic strategy for patients with NF1-deficient MPNST, which in turn could impact future clinical investigations for this patient population.
Collapse
Affiliation(s)
- Miguel A. Miranda-Román
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eve Fishinevich
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leili Ran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amish J. Patel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Yan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
2
|
Takaki EO, Kiyono K, Obuchi Y, Yamauchi T, Watanabe T, Matsumoto H, Karimine M, Kuniyoshi Y, Nishikori S, Yokoyama F, Nishimori H, Nabeshima H, Nakamura K. A PDE3A-SLFN12 Molecular Glue Exhibits Significant Antitumor Activity in TKI-Resistant Gastrointestinal Stromal Tumors. Clin Cancer Res 2024; 30:3603-3621. [PMID: 38864850 PMCID: PMC11325149 DOI: 10.1158/1078-0432.ccr-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Gastrointestinal stromal tumor (GIST), the most common mesenchymal tumor with KIT or PDGFRA driver mutations, is typically treated with tyrosine kinase inhibitors (TKI). However, resistance to TKIs due to secondary mutations is a common challenge in advanced GISTs. In addition, there are currently no effective therapies for several other molecular subtypes, such as succinate dehydrogenase-deficient GISTs. Therefore, novel therapeutic strategies are needed. EXPERIMENTAL DESIGN To address this need, we tested the efficacy of a novel non-TKI compound, OPB-171775, using patient-derived xenograft models of GISTs. In parallel, we sought to elucidate the mechanism of action of the compound. RESULTS Our study revealed that OPB-171775 exhibited significant efficacy against GISTs regardless of their KIT mutation status by inducing complex formation between phosphodiesterase 3A (PDE3A) and Schlafen family member 12 (SLFN12), which are highly expressed in GISTs, leading to SLFN12 RNase-mediated cell death. Furthermore, we identified the activation of general control non-derepressible 2 and its downstream response as an effector pathway of SLFN12 in mediating anticancer activity and revealed potential pharmacodynamic markers. CONCLUSIONS These findings suggest that OPB-171775, with its significant efficacy, could potentially serve as a novel and effective treatment option for advanced GISTs, particularly those resistant to TKIs.
Collapse
Affiliation(s)
- Emiri O. Takaki
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Kunihiko Kiyono
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan.
| | - Yutaka Obuchi
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Takeshi Yamauchi
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan.
| | - Takashi Watanabe
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Hideki Matsumoto
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Miho Karimine
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Yuki Kuniyoshi
- Office of Bioinformatics, Department of Drug Discovery Strategy, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Shingo Nishikori
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Fumiharu Yokoyama
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan.
| | - Hikaru Nishimori
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Hiroshi Nabeshima
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Kazuhide Nakamura
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| |
Collapse
|
3
|
Cicala CM, Olivares-Rivas I, Aguirre-Carrillo JA, Serrano C. KIT/PDGFRA inhibitors for the treatment of gastrointestinal stromal tumors: getting to the gist of the problem. Expert Opin Investig Drugs 2024; 33:159-170. [PMID: 38344849 DOI: 10.1080/13543784.2024.2318317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Approximately 90% of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in receptor tyrosine-kinases KIT or PDGFRA. Despite the outstanding results of first-line imatinib in advanced GIST, resistance ultimately occurs mainly through secondary mutations in KIT/PDGFRA. Other tyrosine-kinase inhibitors (TKIs) with a broader spectrum of activity against these mutations are approved after imatinib failure. However, response rates and progression-free survival are drastically lower compared to imatinib. Notably, imatinib also triggers early tolerance adaptation mechanisms, which precede the occurrence of secondary mutations. AREAS COVERED In this review, we outline the current landscape of KIT inhibitors, discuss the novel agents, and present additional biological pathways that may be therapeutically exploitable. EXPERT OPINION The development of broad-spectrum and highly selective TKIs able to induce a sustained KIT/PDGFRA inhibition is the pillar of preclinical and clinical investigation in GIST. However, it is now recognized that the situation is more intricate, with various factors interacting with KIT and PDGFRA, playing a crucial role in the response and resistance to treatments. Future strategies in the management of advanced GIST should integrate driver inhibition with the blockade of other molecules to enhance cell death and establish enduring responses in patients.
Collapse
Affiliation(s)
- Carlo María Cicala
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Iván Olivares-Rivas
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - César Serrano
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
4
|
Guo J, Zhou Y, Lu X. Advances in protein kinase drug discovery through targeting gatekeeper mutations. Expert Opin Drug Discov 2023; 18:1349-1366. [PMID: 37811637 DOI: 10.1080/17460441.2023.2265303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Acquired resistance caused by gatekeeper mutations has become a major challenge for approved kinase inhibitors used in the clinic. Consequently, the development of new-generation inhibitors or degraders to overcome clinical resistance has become an important research focus for the field. AREAS COVERED This review summarizes the common gatekeeper mutations in druggable kinases and the constantly evolving inhibitors or degraders designed to overcome single or double mutations of gatekeeper residues. Furthermore, the authors provide their perspectives on the medicinal chemistry strategies for addressing clinical resistance with gatekeeper mutations. EXPERT OPINION The authors suggest optimizing kinase inhibitors to interact effectively with gatekeeper residues, altering the binding mode or binding pocket to avoid steric clashes, improving binding affinity with the target, utilizing protein degraders, and developing combination therapy. These approaches have the potential to be effective in overcoming resistance due to gatekeeper residues.
Collapse
Affiliation(s)
- Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Venkataraman V, George S, Cote GM. Molecular Advances in the Treatment of Advanced Gastrointestinal Stromal Tumor. Oncologist 2023:oyad167. [PMID: 37315115 PMCID: PMC10400151 DOI: 10.1093/oncolo/oyad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Most gastrointestinal stromal tumors (GIST) are driven by activating mutations in Proto-oncogene c-KIT (KIT) or PDGFRA receptor tyrosine kinases (RTK). The emergence of effective therapies targeting these mutations has revolutionized the management of advanced GIST. However, following initiation of first-line imatinib, a tyrosine kinase inhibitor (TKI), nearly all patients will develop resistance within 2 years through the emergence of secondary resistance mutations in KIT, typically in the Adenosine Triphosphate (ATP)-binding site or activation loop of the kinase domain. Moreover, some patients have de novo resistance to imatinib, such as those with mutations in PDGFRA exon 18 or those without KIT or PDGFRA mutation. To target resistance, research efforts are primarily focused on developing next-generation inhibitors of KIT and/or PDGFRA, which can inhibit alternate receptor conformations or unique mutations, and compounds that impact complimentary pathogenic processes or epigenetic events. Here, we review the literature on the medical management of high-risk localized and advanced GIST and provide an update on clinical trial approaches to this disease.
Collapse
Affiliation(s)
- Vinayak Venkataraman
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| | - Suzanne George
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
| | - Gregory M Cote
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| |
Collapse
|
6
|
Baa AK, Rastogi S, Fernandes S, Shrivastava S, Yadav R, Barwad A, Shamim SA, Dash NR. Insights into the medical management of gastrointestinal stromal tumours: lessons learnt from a dedicated gastrointestinal stromal tumour clinic in North India. Ecancermedicalscience 2023; 17:1497. [PMID: 36816783 PMCID: PMC9937073 DOI: 10.3332/ecancer.2023.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background The advent of molecular driver alterations has brought in a revolutionary transformation in the treatment landscape of gastrointestinal stromal tumour (GIST). However, there is a paucity of data regarding mutational testing prevalence and associated outcomes from India. Methods It was a retrospective study. We reviewed the case records of all patients diagnosed with GIST in a tertiary care centre from 2015 to 2021. The clinicopathological, mutational analysis and treatment plans were recorded. The study cohort was characterised by descriptive statistics. Results Our study included 120 patients with a median age of 53 years (range: 28-77), with a male preponderance of 2:1. The most common site of the primary was the stomach (50%), followed by the small intestine (37%), with 55.8% of the patients having disseminated disease at presentation with a predominance of liver metastasis (67%). The prevalence of mutational analysis among patients prior to referral was 4%. 60.8% of the patients at our clinic had mutational analysis performed, and unavailability of analysis in the rest was due to financial constraints (12.5%), exhaustion of tissue (7.5%), reluctance to repeat biopsy (4.1%) and low-risk patients. We report c-kit in the majority (52%), platelet-derived growth factor receptor (PDGFR) in 19.2% and wild type in 16.4% along with the rarer subtypes: succinate dehydrogenase (SDH)-deficient GIST in 10.9% and Neurotrophic tyrosine receptor kinase (NTRK) fusion in 1.3%. Four of the eight SDH-deficient GIST patients had germline mutations (50%). The knowledge of driver mutations led to a change of treatment in 39.7% (29/73), i.e. stoppage of tyrosine kinase inhibitor (TKI) in 3, switch of TKI in 23, increase in TKI dose in 2 and upfront surgery in 1. The most common change was the use of sunitinib and regorafenib in patients with SDH-deficient GIST. Conclusion Our study is one of the largest comprehensive series describing the clinical and mutational profile of GIST from India. The mutation testing rates at primary care centres continue to be low. Despite the hurdles, a large percentage of our patients underwent molecular testing, aiding in therapeutic decision-making.
Collapse
Affiliation(s)
- Annie Kanchan Baa
- Department of Medical Oncology, Dr B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sameer Rastogi
- Department of Medical Oncology, Dr B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanal Fernandes
- Department of Medical Oncology, Dr B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shakti Shrivastava
- Department of Medical Oncology, Dr B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Adarsh Barwad
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shamim A Shamim
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Nihar Ranjan Dash
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
7
|
Khosroyani HM, Klug LR, Heinrich MC. TKI Treatment Sequencing in Advanced Gastrointestinal Stromal Tumors. Drugs 2023; 83:55-73. [PMID: 36607590 PMCID: PMC10029090 DOI: 10.1007/s40265-022-01820-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Prior to the early 2000s, patients with advanced gastrointestinal stromal tumors (GIST) had very poor prognoses owing to a lack of effective therapies. The development of tyrosine kinase inhibitors at the turn of the century significantly improved the overall survival for patients with GIST. The resounding success of imatinib in the first clinical trial of a tyrosine kinase inhibitor to treat GIST led to its approval for first-line therapy for advanced GIST; this study was open to all comers and not restricted to any GIST subtype(s). The trials that led to the approvals of second-, third-, and fourth-line therapy for advanced GIST were also open to all patients with advanced/metastatic GIST. Only in retrospect do we realize the role that the molecular subtypes played in the results observed in these studies. In this review, we discuss the studies that led to the US Food and Drug Administration approval of imatinib (first line), sunitinib (second line), regorafenib (third line), and ripretinib (fourth line) for advanced KIT-mutant GIST. In addition, we review how information about GIST molecular subtypes has been used to accelerate the approval of other targeted therapies for non-KIT mutant GIST, leading to the approval of five additional drugs indicated for the treatment of specific GIST molecular subtypes. We also discuss how our understanding of the molecular subtypes will play a role in the next generation of therapeutic approaches for treating advanced GIST.
Collapse
Affiliation(s)
- Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Zhou Y, Xiang S, Yang F, Lu X. Targeting Gatekeeper Mutations for Kinase Drug Discovery. J Med Chem 2022; 65:15540-15558. [PMID: 36395392 DOI: 10.1021/acs.jmedchem.2c01361] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clinically acquired resistance is a major challenge in cancer therapies with small-molecule kinase inhibitors (SMKIs). Gatekeeper mutations in the ATP-binding pocket of kinases are the most common mutations leading to acquired resistance. To date, seven new-generation kinase inhibitors targeting gatekeeper mutations have been approved by the FDA; however, the clinical need is still unmet. Here, we systematically summarize the types of gatekeeper mutations across the kinase family, the structural basis for acquired resistance, and newly developed SMKIs targeting gatekeeper mutations as well as highlight the opportunities and challenges of kinase drug discovery for targeting gatekeeper mutations.
Collapse
Affiliation(s)
- Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Fang Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| |
Collapse
|
9
|
Sun Y, Yue L, Xu P, Hu W. An overview of agents and treatments for PDGFRA-mutated gastrointestinal stromal tumors. Front Oncol 2022; 12:927587. [PMID: 36119525 PMCID: PMC9471148 DOI: 10.3389/fonc.2022.927587] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Platelet-derived growth factor receptor A (PDGFRA) mutations occur in approximately 10-15% of gastrointestinal stromal tumors (GISTs). These tumors with PDGFRA mutations have a different pathogenesis, clinical characteristics, and treatment response compared to tumors with receptor tyrosine kinase protein (KIT) mutations (60-70%). Many clinical studies have investigated the use of tyrosine kinase inhibitors mainly in patients with KIT mutations; however, there is a lack of attention to the PDGFRA-mutated molecular subtype. The main effective inhibitors of PDGFRA are ripretinib, avapritinib, and crenolanib, and their mechanisms and efficacy in GIST (as confirmed in clinical trials) are described in this review. Some multi-targeted tyrosine kinase inhibitors with inhibitory effects on this molecular subtype are also introduced and summarized in this paper. This review focuses on PDGFRA-mutated GISTs, introduces their clinical characteristics, downstream molecular signaling pathways, and existing resistance mechanisms. We focus on the most recent literature that describes the development of PDGFRA inhibitors and their use in clinical trials, as well as the potential benefits from different combination therapy strategies.
Collapse
Affiliation(s)
- Yingchao Sun
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Lei Yue
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Pengfu Xu
- Department of Gastrointestinal Surgery, Taizhou Hospital, Zhejiang University, Taizhou, China
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University (IGZJU), Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
10
|
Huang WK, Wu CE, Wang SY, Chang CF, Chou WC, Chen JS, Yeh CN. Systemic Therapy for Gastrointestinal Stromal Tumor: Current Standards and Emerging Challenges. Curr Treat Options Oncol 2022; 23:1303-1319. [PMID: 35976553 PMCID: PMC9402763 DOI: 10.1007/s11864-022-00996-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
Gastrointestinal stromal tumor (GIST), though rare, is the most common mesenchymal tumors of the gastrointestinal tract. KIT or PDGFRα mutation plays as an oncogenic driver in the majority of GISTs. Surgical resection is the only curative treatment for localized disease. The discovery of imatinib with promising anti-tumor effect and successive tyrosine kinase inhibitors (TKI), including second-line sunitinib and third-line regorafenib, revolutionized the management of advanced and metastatic GIST over the past two decades. Recently, ripretinib and avapritinib were approved for the fourth line setting and for PDGFRA exon 18-mutant GIST in first-line setting, respectively. Despite multi-line TKIs exerted ability of disease control, drug resistance remained an obstacle for preventing rapid disease progression. Experimental TKIs or novel therapeutic targets may further improve treatment efficacy. Immune checkpoint inhibitors such as anti-programmed cell death protein-1 (PD1) and anti-CTL-associated antigen 4 (CTLA-4) showed moderate response in early phase trials composed of heavily pretreated patients. KIT/PDGFRα wild-type GISTs are generally less sensitive to imatinib and late-line TKIs. Recent studies demonstrated that targeting fibroblast growth factor receptor signaling may be a potential target for the wild-type GISTs.
Collapse
Affiliation(s)
- Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Yu Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Surgery and GIST team, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Fu Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chi Chou
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Shi Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Nan Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Surgery and GIST team, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol 2022; 19:328-341. [PMID: 35217782 PMCID: PMC11488293 DOI: 10.1038/s41571-022-00606-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
When gastrointestinal stromal tumour (GIST), the most common form of sarcoma, was first recognized as a distinct pathological entity in the 1990s, patients with advanced-stage disease had a very poor prognosis owing to a lack of effective medical therapies. The discovery of KIT mutations as the first and most prevalent drivers of GIST and the subsequent development of the first KIT tyrosine kinase inhibitor (TKI), imatinib, revolutionized the treatment of patients with this disease. We can now identify the driver mutation in 99% of patients with GIST via molecular diagnostic testing, and therapies have been developed to treat many, but not all, molecular subtypes of the disease. At present, seven drugs are approved by the FDA for the treatment of advanced-stage GIST (imatinib, sunitinib, regorafenib, ripretinib, avapritinib, larotrectinib and entrectinib), all of which are TKIs. Although these agents can be very effective for treating certain GIST subtypes, challenges remain and new therapeutic approaches are needed. In this Review, we discuss the molecular subtypes of GIST and the evolution of current treatments, as well as their therapeutic limitations. We also highlight emerging therapeutic approaches that might overcome clinical challenges through novel strategies predicated on the biological features of the distinct GIST molecular subtypes.
Collapse
Affiliation(s)
- Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jason D Kent
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
12
|
Liu J, Gao J, Wang A, Jiang Z, Qi S, Qi Z, Liu F, Yu K, Cao J, Chen C, Hu C, Wu H, Wang L, Wang W, Liu Q, Liu J. Nintedanib overcomes drug resistance from upregulation of FGFR signaling and imatinib-induced KIT mutations in gastrointestinal stromal tumors. Mol Oncol 2022; 16:1761-1774. [PMID: 35194937 PMCID: PMC9019892 DOI: 10.1002/1878-0261.13199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Drug resistance remains a major challenge in the clinical treatment of gastrointestinal stromal tumours (GISTs). While acquired on‐target mutations of mast/stem cell growth factor receptor (KIT) kinase is the major resistance mechanism, activation of alternative signalling pathways may also play a role. Although several second‐ and third‐generation KIT kinase inhibitors have been developed that could overcome some of the KIT mutations conferring resistance, the low clinical responses and narrow safety window have limited their broad application. The present study revealed that nintedanib not only overcame resistance induced by a panel of KIT primary and secondary mutations, but also overcame ERK‐reactivation‐mediated resistance caused by the upregulation of fibroblast growth factor (FGF) activity. In preclinical models of GISTs, nintedanib significantly inhibited the proliferation of imatinib‐resistant cells, including GIST‐5R, GIST‐T1/T670I and GIST patient‐derived primary cells. In addition, it also exhibited dose‐dependent inhibition of ERK phosphorylation upon FGF ligand stimulation. In vivo antitumour activity was also observed in several xenograft GIST models. Considering the well‐documented safety and pharmacokinetic profiles of nintedanib, this finding provides evidence for the repurposing of nintedanib as a new therapy for the treatment of GIST patients with de novo or acquired resistance to imatinib.
Collapse
Affiliation(s)
- Juan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Jingjing Gao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Zongru Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Feiyang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Kailin Yu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, P. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
13
|
Yao L, Liao M, Wang JK, Wang J, Liu D, Tu PF, Zeng KW. Gold Nanoparticle-Based Photo-Cross-Linking Strategy for Cellular Target Identification of Supercomplex Molecular Systems. Anal Chem 2022; 94:3180-3187. [PMID: 35133791 DOI: 10.1021/acs.analchem.1c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular target identification plays an essential role in innovative drug development and pharmacological mechanism elucidation. However, very few practical experimental methodologies have been developed for identifying target proteins for supercomplex molecular systems such as biologically active phytochemicals or pharmaceutical compositions. To overcome this limitation, we synthesized gold nanoparticles (AuNPs) as solid scaffolds, which were bound with 4,4'-dihydroxybenzophenone (DHBP) as a photo-cross-linking group on the surface. Then, DHBP-modified AuNPs cross-linked various organic compounds from phytochemicals under ultraviolet radiation via carbene reactions, H-C bond insertion, for catalytic C-C bond formation. We next used the phytochemical-cross-linked AuNPs (phytoAuNPs) to pull down potential binding proteins from brain tissue lysate and identified 13 neuroprotective targets by mass spectrometry analysis. As an exemplary study, we selected Hsp60 as a crucial cellular target to further screen 14 target-binding compounds from phytochemicals through surface plasmon resonance (SPR) analysis, followed by Hsp60 activity detection and neuroprotective effect assay in cells. Collectively, this gold nanoparticle-based photo-cross-linking strategy can serve as a useful platform for discovering novel cellular targets for supercomplex molecular systems and help to explore pharmacological mechanisms and active substances.
Collapse
Affiliation(s)
- Lu Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Min Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Kang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
14
|
Roulleaux Dugage M, Jones RL, Trent J, Champiat S, Dumont S. Beyond the Driver Mutation: Immunotherapies in Gastrointestinal Stromal Tumors. Front Immunol 2021; 12:715727. [PMID: 34489967 PMCID: PMC8417712 DOI: 10.3389/fimmu.2021.715727] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are a subtype of soft tissue sarcoma (STS), and have become a concept of oncogenic addiction and targeted therapies.The large majority of these tumors develop after a mutation in KIT or platelet derived growth factor receptor α (PDGFRα), resulting in uncontrolled proliferation. GISTs are highly sensitive to imatinib. GISTs are immune infiltrated tumors with a predominance of tumor-associated macrophages (TAMs) and T-cells, including many CD8+ T-cells, whose numbers are prognostic. The genomic expression profile is that of an inhibited Th1 response and the presence of tertiary lymphoid structures and B cell signatures, which are known as predictive to response to ICI. However, the microtumoral environment has immunosuppressive attributes, with immunosuppressive M2 macrophages, overexpression of indoleamine 2,3-dioxygenase (IDO) or PD-L1, and loss of major histocompatibility complex type 1. In addition to inhibiting the KIT oncogene, imatinib appears to act by promoting cytotoxic T-cell activity, interacting with natural killer cells, and inhibiting the expression of PD-L1. Paradoxically, imatinib also appears to induce M2 polarization of macrophages. There have been few immunotherapy trials with anti-CTLA-4 or anti-PD-L1drugs and available clinical data are not very promising. Based on this comprehensive analysis of TME, we believe three immunotherapeutic strategies must be underlined in GIST. First, patients included in clinical trials must be better selected, based on the identified driver mutation (such as PDGFRα D842V mutation), the presence of tertiary lymphoid structures (TLS) or PD-L1 expression. Moreover, innovative immunotherapeutic agents also provide great interest in GIST, and there is a strong rationale for exploring IDO targeting after disease progression during imatinib therapy. Finally and most importantly, there is a strong rationale to combine of c-kit inhibition with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Robin Lewis Jones
- Division of Clinical Studies, Institute of Cancer Research & Sarcoma Unit of the Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jonathan Trent
- Department of Medicine, Division of Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stéphane Champiat
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Sarah Dumont
- Département d’Oncologie Médicale, Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
15
|
Gupta A, Ma S, Che K, Pobbati AV, Rubin BP. Inhibition of PI3K and MAPK pathways along with KIT inhibitors as a strategy to overcome drug resistance in gastrointestinal stromal tumors. PLoS One 2021; 16:e0252689. [PMID: 34324512 PMCID: PMC8320897 DOI: 10.1371/journal.pone.0252689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Activating mutations in KIT/PDGFRA receptor tyrosine kinases drive gastrointestinal stromal tumors (GIST). KIT/PDGFRA inhibitors, such as imatinib do not evoke an effective cytocidal response, leaving room for quiescence and development of multiple secondary resistance mutations. As the majority of the secondary resistance clones activate PI3K and MAPK pathways, we investigated whether combined targeting of KIT/PI3K/MAPK (KPM) pathways overcomes drug resistance and quiescence in GIST cells. We monitored the proliferation of imatinib-sensitive and-resistant GIST cell lines after treating them with various combinations of drugs to inhibit KPM pathways. Cytocidal response was evaluated through proliferation, apoptosis and colony outgrowth assays. Combined inhibition of KPM signaling pathways using a KPM inhibitor cocktail decreased the survival of drug-resistant GIST cells and dramatically reduced their proliferation. Downstream pathway analysis showed that the residual PI3K/MAPK signaling observed after KIT inhibitor treatment plays a role in mediating quiescence and drug resistance. The KPM inhibitor cocktail with sunitinib or regorafenib effectively induced apoptosis and prevented colony outgrowth after long-term drug removal, suggesting that it can be used as an effective strategy against quiescence and drug resistance in metastatic GIST.
Collapse
Affiliation(s)
- Anu Gupta
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Kepeng Che
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
16
|
Wang K, Chen Q, Liu N, Zhang J, Pan X. Recent advances in, and challenges of, anti-angiogenesis agents for tumor chemotherapy based on vascular normalization. Drug Discov Today 2021; 26:2743-2753. [PMID: 34332098 DOI: 10.1016/j.drudis.2021.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
A major problem associated with cancer treatment is resistance-prone chemotherapeutic drugs. An increasing number of studies have documented that the occurrence of resistance tends to be associated with abnormal blood vessels. In 2001, Jain proposed the vascular normalization theory, which was recently applied to the drug-resistant treatment of tumors in the clinic. Through the intervention of angiogenesis inhibitors, remodeling the structure and function of abnormal vessels can maximize the efficacy of chemotherapeutic drugs. In this review, we systematically describe the occurrence and progress of tumor angiogenesis, as well as the pathological characteristics of tumor blood vessels. Moreover, druggable targets for vascular normalization and the development of related inhibitors are also outlined.
Collapse
Affiliation(s)
- Kai Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Nanxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
17
|
Abstract
Gastrointestinal stromal tumours (GIST) have an incidence of ~1.2 per 105 individuals per year in most countries. Around 80% of GIST have varying molecular changes, predominantly mutually exclusive activating KIT or PDGFRA mutations, but other, rare subtypes also exist. Localized GIST are curable, and surgery is their standard treatment. Risk factors for relapse are tumour size, mitotic index, non-gastric site and tumour rupture. Patients with GIST with KIT or PDGFRA mutations sensitive to the tyrosine kinase inhibitor (TKI) imatinib that are at high risk of relapse have improved survival with adjuvant imatinib treatment. In advanced disease, median overall survival has improved from 18 months to >70 months since the introduction of TKIs. The role of surgery in the advanced setting remains unclear. Resistance to TKIs arise mainly from subclonal selection of cells with resistance mutations in KIT or PDGFRA when they are the primary drivers. Advanced resistant GIST respond to second-line sunitinib and third-line regorafenib, as well as to the new broad-spectrum TKI ripretinib. Rare molecular forms of GIST with alterations involving NF1, SDH genes, BRAF or NTRK genes generally show primary resistance to standard TKIs, but some respond to specific inhibitors of the activated genes. Despite major advances, many questions in both advanced and localized disease remain unanswered.
Collapse
Affiliation(s)
- Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, UNICANCER & University Lyon I, Lyon, France.
| | - Yoon-Koo Kang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Toshiroo Nishida
- Surgery Department, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | | |
Collapse
|
18
|
Pilla Reddy V, Anjum R, Grondine M, Smith A, Bhavsar D, Barry E, Guichard SM, Shao W, Kettle JG, Brown C, Banks E, Jones RDO. The Pharmacokinetic-Pharmacodynamic (PKPD) Relationships of AZD3229, a Novel and Selective Inhibitor of KIT, in a Range of Mouse Xenograft Models of GIST. Clin Cancer Res 2020; 26:3751-3759. [PMID: 32220888 DOI: 10.1158/1078-0432.ccr-19-2848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The emergence of secondary mutations is a cause of resistance to current KIT inhibitors used in the treatment of patients with gastrointestinal stromal tumors (GIST). AZD3229 is a selective inhibitor of wild-type KIT and a wide spectrum of primary and secondary mutations seen in patients with GIST. The objective of this analysis is to establish the pharmacokinetic-pharmacodynamic (PKPD) relationship of AZD3229 in a range of mouse GIST tumor models harboring primary and secondary KIT mutations, and to benchmark AZD3229 against other KIT inhibitors. EXPERIMENTAL DESIGN A PKPD model was developed for AZD3229 linking plasma concentrations to inhibition of phosphorylated KIT using data generated from several in vivo preclinical tumor models, and in vitro data generated in a panel of Ba/F3 cell lines. RESULTS AZD3229 drives inhibition of phosphorylated KIT in an exposure-dependent manner, and optimal efficacy is observed when >90% inhibition of KIT phosphorylation is sustained over the dosing interval. Integrating the predicted human pharmacokinetics into the mouse PKPD model predicts that an oral twice daily human dose greater than 34 mg is required to ensure adequate coverage across the mutations investigated. Benchmarking shows that compared with standard-of-care KIT inhibitors, AZD3229 has the potential to deliver the required target coverage across a wider spectrum of primary or secondary mutations. CONCLUSIONS We demonstrate that AZD3229 warrants clinical investigation as a new treatment for patients with GIST based on its ability to inhibit both ATP-binding and A-loop mutations of KIT at clinically relevant exposures.
Collapse
Affiliation(s)
| | - Rana Anjum
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Michael Grondine
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Aaron Smith
- Research and Early Development, Oncology R&D, AstraZeneca, United Kingdom
| | - Deepa Bhavsar
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Evan Barry
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Sylvie M Guichard
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Wenlin Shao
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Jason G Kettle
- Research and Early Development, Oncology R&D, AstraZeneca, United Kingdom
| | - Crystal Brown
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Erica Banks
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Rhys D O Jones
- Research and Early Development, Oncology R&D, AstraZeneca, United Kingdom.
| |
Collapse
|