1
|
Huang W, Qiu Y, Huynh D, Wang TY, Chou TF. Proteomics analysis reveals the differential impact of the p97 inhibitor CB-5083 on protein levels in various cellular compartments of the HL-60 cell line. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001372. [PMID: 39677520 PMCID: PMC11638764 DOI: 10.17912/micropub.biology.001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Human p97/VCP is a vital AAA ATPase (ATPase associated with diverse cellular activity) that plays critical roles in protein homeostasis by regulating autophagy, endosomal trafficking, and the ubiquitin-proteasome system. Global proteomics analysis of p97/VCP inhibition with CB-5083 has been performed in HCT116 colon cells. Here, we examined the impact of CB-5083 treatment in another cancer model, the HL-60 acute myeloid leukemia cell line, employing subcellular fractionation combined with label-free proteomics to analyze changes in protein levels across cytoplasmic, nuclear, and insoluble membrane protein compartments. The results reveal distinct compartment-specific protein regulation, providing insight into p97/VCP's cellular mechanisms and its potential for targeted therapeutic applications.
Collapse
Affiliation(s)
- Wenxuan Huang
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States
| | - Yanping Qiu
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States
| | - Diana Huynh
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States
| | - Ting-Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, United States
| | - Tsui-Fen Chou
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States
| |
Collapse
|
2
|
Nie P, Cao Z, Yu R, Dong C, Zhang W, Meng Y, Zhang H, Pan Y, Tong Z, Jiang X, Wang S, Zhu M, Han Y, Wang W, Zhang Y, Tan L, Li C, Xu Y, An L, Li B, Jiao S, Zhou Z. Targeting p97-Npl4 interaction inhibits tumor T reg cell development to enhance tumor immunity. Nat Immunol 2024; 25:1623-1636. [PMID: 39107403 DOI: 10.1038/s41590-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/28/2024] [Indexed: 09/01/2024]
Abstract
Targeting tumor-infiltrating regulatory T (TI-Treg) cells is a potential strategy for cancer therapy. The ATPase p97 in complex with cofactors (such as Npl4) has been investigated as an antitumor drug target; however, it is unclear whether p97 has a function in immune cells or immunotherapy. Here we show that thonzonium bromide is an inhibitor of the interaction of p97 and Npl4 and that this p97-Npl4 complex has a critical function in TI-Treg cells. Thonzonium bromide boosts antitumor immunity without affecting peripheral Treg cell homeostasis. The p97-Npl4 complex bridges Stat3 with E3 ligases PDLIM2 and PDLIM5, thereby promoting Stat3 degradation and enabling TI-Treg cell development. Collectively, this work shows an important role for the p97-Npl4 complex in controlling Treg-TH17 cell balance in tumors and identifies possible targets for immunotherapy.
Collapse
Affiliation(s)
- Pingping Nie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Zhifa Cao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Ruixian Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weihong Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Yan Meng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Pan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenzhu Tong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoya Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shilong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengwen Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Cooney I, Schubert HL, Cedeno K, Fisher ON, Carson R, Price JC, Hill CP, Shen PS. Visualization of the Cdc48 AAA+ ATPase protein unfolding pathway. Nat Commun 2024; 15:7505. [PMID: 39209885 PMCID: PMC11362554 DOI: 10.1038/s41467-024-51835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The Cdc48 AAA+ ATPase is an abundant and essential enzyme that unfolds substrates in multiple protein quality control pathways. The enzyme includes two conserved AAA+ ATPase motor domains, D1 and D2, that assemble as hexameric rings with D1 stacked above D2. Here, we report an ensemble of native structures of Cdc48 affinity purified from budding yeast lysate in complex with the adaptor Shp1 in the act of unfolding substrate. Our analysis reveals a continuum of structural snapshots that spans the entire translocation cycle. These data uncover elements of Shp1-Cdc48 interactions and support a 'hand-over-hand' mechanism in which the sequential movement of individual subunits is closely coordinated. D1 hydrolyzes ATP and disengages from substrate prior to D2, while D2 rebinds ATP and re-engages with substrate prior to D1, thereby explaining the dominant role played by the D2 motor in substrate translocation/unfolding.
Collapse
Affiliation(s)
- Ian Cooney
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Heidi L Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Karina Cedeno
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Olivia N Fisher
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Richard Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Christopher P Hill
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Peter S Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Nandi P, DeVore K, Wang F, Li S, Walker JD, Truong TT, LaPorte MG, Wipf P, Schlager H, McCleerey J, Paquette W, Columbres RCA, Gan T, Poh YP, Fromme P, Flint AJ, Wolf M, Huryn DM, Chou TF, Chiu PL. Mechanism of allosteric inhibition of human p97/VCP ATPase and its disease mutant by triazole inhibitors. Commun Chem 2024; 7:177. [PMID: 39122922 PMCID: PMC11316111 DOI: 10.1038/s42004-024-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human p97 ATPase is crucial in various cellular processes, making it a target for inhibitors to treat cancers, neurological, and infectious diseases. Triazole allosteric p97 inhibitors have been demonstrated to match the efficacy of CB-5083, an ATP-competitive inhibitor, in cellular models. However, the mechanism is not well understood. This study systematically investigates the structures of new triazole inhibitors bound to both wild-type and disease mutant forms of p97 and measures their effects on function. These inhibitors bind at the interface of the D1 and D2 domains of each p97 subunit, shifting surrounding helices and altering the loop structures near the C-terminal α2 G helix to modulate domain-domain communications. A key structural moiety of the inhibitor affects the rotameric conformations of interacting side chains, indirectly modulating the N-terminal domain conformation in p97 R155H mutant. The differential effects of inhibitor binding to wild-type and mutant p97 provide insights into drug design with enhanced specificity, particularly for oncology applications.
Collapse
Affiliation(s)
- Purbasha Nandi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Kira DeVore
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joel D Walker
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thanh Tung Truong
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Matthew G LaPorte
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - John McCleerey
- Curia Global, Albany, NY, USA
- Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
| | | | - Rod Carlo A Columbres
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Taiping Gan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yu-Ping Poh
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Mechanism of Evolution, Arizona State University, Tempe, AZ, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Andrew J Flint
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA.
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
5
|
Wang D, He J, Liu S, Zhang H, Tang D, Chen P, Yang M. Anlotinib synergizes with venetoclax to induce mitotic catastrophe in acute myeloid leukemia. Cancer Lett 2024; 593:216970. [PMID: 38763475 DOI: 10.1016/j.canlet.2024.216970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Venetoclax is a BCL2-targeted drug employed in treating various cancers, particularly hematologic malignancies. Venetoclax combination therapies are increasingly recognized as promising treatment strategies for acute myeloid leukemia (AML). In this study, we conducted an unbiased drug screen and identified anlotinib, a promising multi-targeted receptor tyrosine kinase inhibitor with oral activity currently utilized in the treatment of solid tumor, as a potent enhancer of venetoclax's anticancer activity in AML. Our investigation encompassed AML cell lines, primary cells, and mouse models, demonstrating effective low-dose combination therapy of anlotinib and venetoclax with minimal cytopenia or organ damage. Proteomic analysis revealed abnormal mitotic signals induced by this combination in AML cells. Mechanistically, anlotinib synergized with venetoclax by suppressing ARPP19 protein, leading to sustained activation of PP2A-B55δ. This inhibited AML cells from entering the mitotic phase, culminating in mitotic catastrophe and apoptosis. Additionally, we identified a specific synthetic lethal vulnerability in AML involving an ARPP19 mutation at S62 phosphorylation. These findings underscore the therapeutic potential of anlotinib and venetoclax combination therapy in AML, warranting further clinical investigation.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Animals
- Quinolines/pharmacology
- Quinolines/administration & dosage
- Mitosis/drug effects
- Mice
- Indoles/pharmacology
- Indoles/administration & dosage
- Drug Synergism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Apoptosis/drug effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
Collapse
Affiliation(s)
- Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha, 410013, Hunan, China
| | - Jing He
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha, 410013, Hunan, China
| | - Siyang Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha, 410013, Hunan, China
| | - Haixia Zhang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha, 410013, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410031, Hunan, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Wang G, Zhang W, Ren J, Zeng Y, Dang X, Tian X, Yu W, Li Z, Ma Y, Yang P, Lu J, Zheng J, Lu B, Xu J, Liang A. The DNA damage-independent ATM signalling maintains CBP/DOT1L axis in MLL rearranged acute myeloid leukaemia. Oncogene 2024; 43:1900-1916. [PMID: 38671157 PMCID: PMC11178498 DOI: 10.1038/s41388-024-02998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/28/2024]
Abstract
The long-term maintenance of leukaemia stem cells (LSCs) is responsible for the high degree of malignancy in MLL (mixed-lineage leukaemia) rearranged acute myeloid leukaemia (AML). The DNA damage response (DDR) and DOT1L/H3K79me pathways are required to maintain LSCs in MLLr-AML, but little is known about their interplay. This study revealed that the DDR enzyme ATM regulates the maintenance of LSCs in MLLr-AML with a sequential protein-posttranslational-modification manner via CBP-DOT1L. We identified the phosphorylation of CBP by ATM, which confers the stability of CBP by preventing its proteasomal degradation, and characterised the acetylation of DOT1L by CBP, which mediates the high level of H3K79me2 for the expression of leukaemia genes in MLLr-AML. In addition, we revealed that the regulation of CBP-DOT1L axis in MLLr-AML by ATM was independent of DNA damage activation. Our findings provide insight into the signalling pathways involoved in MLLr-AML and broaden the understanding of the role of DDR enzymes beyond processing DNA damage, as well as identigying them as potent cancer targets.
Collapse
Affiliation(s)
- Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Postdoctoral Station of Clinical Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jie Ren
- Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yu Zeng
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiuyong Dang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiaoxue Tian
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wenlei Yu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zheng Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yuting Ma
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Pingping Yang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jinyuan Lu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Bing Lu
- East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
7
|
Manolis D, Hasan S, Maraveyas A, O'Brien DP, Kessler BM, Kramer H, Nikitenko LL. Quantitative proteomics reveals CLR interactome in primary human cells. J Biol Chem 2024; 300:107399. [PMID: 38777147 PMCID: PMC11231609 DOI: 10.1016/j.jbc.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) mediates essential functions in several cell types and is implicated in cardiovascular pathologies, skin diseases, migraine, and cancer. To date, the network of proteins interacting with CLR ("CLR interactome") in primary cells, where this GPCR is expressed at endogenous (physiologically relevant) levels, remains unknown. To address this knowledge gap, we established a novel integrative methodological workflow/approach for conducting a comprehensive/proteome-wide analysis of Homo sapiens CLR interactome. We used primary human dermal lymphatic endothelial cells and combined immunoprecipitation utilizing anti-human CLR antibody with label-free quantitative nano LC-MS/MS and quantitative in situ proximity ligation assay. By using this workflow, we identified 37 proteins interacting with endogenously expressed CLR amongst 4902 detected members of the cellular proteome (by quantitative nano LC-MS/MS) and revealed direct interactions of two kinases and two transporters with this GPCR (by in situ proximity ligation assay). All identified interactors have not been previously reported as members of CLR interactome. Our approach and findings uncover the hitherto unrecognized compositional complexity of the interactome of endogenously expressed CLR and contribute to fundamental understanding of the biology of this GPCR. Collectively, our study provides a first-of-its-kind integrative methodological approach and datasets as valuable resources and robust platform/springboard for advancing the discovery and comprehensive characterization of physiologically relevant CLR interactome at a proteome-wide level in a range of cell types and diseases in future studies.
Collapse
Affiliation(s)
- Dimitrios Manolis
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Shirin Hasan
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Anthony Maraveyas
- Queens Centre for Oncology and Haematology, Castle Hill Hospital, Hull University Teaching Hospitals NHS Teaching Trust, Hull, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holger Kramer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Leonid L Nikitenko
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| |
Collapse
|
8
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
9
|
Pozner A, Li L, Verma SP, Wang S, Barrott JJ, Nelson ML, Yu JSE, Negri GL, Colborne S, Hughes CS, Zhu JF, Lambert SL, Carroll LS, Smith-Fry K, Stewart MG, Kannan S, Jensen B, John CM, Sikdar S, Liu H, Dang NH, Bourdage J, Li J, Vahrenkamp JM, Mortenson KL, Groundland JS, Wustrack R, Senger DL, Zemp FJ, Mahoney DJ, Gertz J, Zhang X, Lazar AJ, Hirst M, Morin GB, Nielsen TO, Shen PS, Jones KB. ASPSCR1-TFE3 reprograms transcription by organizing enhancer loops around hexameric VCP/p97. Nat Commun 2024; 15:1165. [PMID: 38326311 PMCID: PMC10850509 DOI: 10.1038/s41467-024-45280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Amir Pozner
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Li Li
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shiv Prakash Verma
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shuxin Wang
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jared J Barrott
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Mary L Nelson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jamie S E Yu
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Shane Colborne
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | - Ju-Fen Zhu
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sydney L Lambert
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lara S Carroll
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kyllie Smith-Fry
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael G Stewart
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sarmishta Kannan
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bodrie Jensen
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Cini M John
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Saif Sikdar
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer Bourdage
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jinxiu Li
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Katelyn L Mortenson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John S Groundland
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Rosanna Wustrack
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Donna L Senger
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, McGill University and Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Franz J Zemp
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Douglas J Mahoney
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Xiaoyang Zhang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alexander J Lazar
- Departments of Anatomic Pathology, Translational Molecular Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Peter S Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Lee DM, Kim IY, Lee HJ, Seo MJ, Cho MY, Lee HI, Yoon G, Ji JH, Park SS, Jeong SY, Choi EK, Choi YH, Yun CO, Yeo M, Kim E, Choi KS. Akt enhances the vulnerability of cancer cells to VCP/p97 inhibition-mediated paraptosis. Cell Death Dis 2024; 15:48. [PMID: 38218922 PMCID: PMC10787777 DOI: 10.1038/s41419-024-06434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Valosin-containing protein (VCP)/p97, an AAA+ ATPase critical for maintaining proteostasis, emerges as a promising target for cancer therapy. This study reveals that targeting VCP selectively eliminates breast cancer cells while sparing non-transformed cells by inducing paraptosis, a non-apoptotic cell death mechanism characterized by endoplasmic reticulum and mitochondria dilation. Intriguingly, oncogenic HRas sensitizes non-transformed cells to VCP inhibition-mediated paraptosis. The susceptibility of cancer cells to VCP inhibition is attributed to the non-attenuation and recovery of protein synthesis under proteotoxic stress. Mechanistically, mTORC2/Akt activation and eIF3d-dependent translation contribute to translational rebound and amplification of proteotoxic stress. Furthermore, the ATF4/DDIT4 axis augments VCP inhibition-mediated paraptosis by activating Akt. Given that hyperactive Akt counteracts chemotherapeutic-induced apoptosis, VCP inhibition presents a promising therapeutic avenue to exploit Akt-associated vulnerabilities in cancer cells by triggering paraptosis while safeguarding normal cells.
Collapse
Affiliation(s)
- Dong Min Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - In Young Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hong Jae Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Min Ji Seo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Mi-Young Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hae In Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Gyesoon Yoon
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Seok Soon Park
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong-Yun Jeong
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyung Choi
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Hyeon Choi
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Mirae Yeo
- Department of Biological Sciences, Ulsan National Institute Science and Technology, Ulsan, South Korea
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute Science and Technology, Ulsan, South Korea.
| | - Kyeong Sook Choi
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
11
|
Yu G, Bai Y, Zhang ZY. Valosin-Containing Protein (VCP)/p97 Oligomerization. Subcell Biochem 2024; 104:485-501. [PMID: 38963497 DOI: 10.1007/978-3-031-58843-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.
Collapse
Affiliation(s)
- Guimei Yu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
12
|
Wang F, Qi Q, Qin B, Wang Y, Huang Y, Li Q, Shen X, Wang X, Yang S, Pan G, Chen J, Qin Z, Chen X, Yang Y, Zeng Y, Liu J, Li Y, Li Y, Cheng Z, Lin X, Xing F, Zhang Y, Wang G, Li K, Jiang Z, Zhang H. Targeting VCP potentiates immune checkpoint therapy for colorectal cancer. Cell Rep 2023; 42:113318. [PMID: 37865914 DOI: 10.1016/j.celrep.2023.113318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Immune checkpoint blockade therapies are still ineffective for most patients with colorectal cancer (CRC). Immunogenic cell death (ICD) enables the release of key immunostimulatory signals to drive efficient anti-tumor immunity, which could be used to potentiate the effects of immune checkpoint inhibitors. Here, we showed that inhibition of valosin-containing protein (VCP) elicits ICD in CRC. Meanwhile, VCP inhibitor upregulates PD-L1 expression and compromises anti-tumor immunity in vivo. Mechanistically, VCP transcriptionally regulates PD-L1 expression in a JAK1-dependent manner. Combining VCP inhibitor with anti-PD1 remodels tumor immune microenvironment and reduces tumor growth in mouse models of CRC. Addition of oncolytic virus further augments the therapeutic activity of the combination regimen. Our study shows the molecular mechanism for regulating PD-L1 expression by VCP and suggests that inhibition of VCP has the potential to increase the efficacy of immunotherapy in CRC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qi Qi
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China; MOE Key Laboratory of Tumor Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Baifu Qin
- Institute of Molecular and Medical Virology, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China; Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Yiwei Wang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Youwei Huang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China; Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong 510632, China
| | - Qing Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xi Shen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiangyu Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shangqi Yang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Guopeng Pan
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiahong Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China; The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zixi Qin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xueqin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuqing Yang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuequan Zeng
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jun Liu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuqin Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ying Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zexiong Cheng
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Fan Xing
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Yubo Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Kai Li
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
13
|
Hoff FW, Qiu Y, Brown BD, Gerbing RB, Leonti AR, Ries RE, Gamis AS, Aplenc R, Kolb EA, Alonzo TA, Meshinchi S, Jenkins GN, Horton T, Kornblau SM. Valosin-containing protein (VCP/p97) is prognostically unfavorable in pediatric AML, and negatively correlates with unfolded protein response proteins IRE1 and GRP78: A report from the Children's Oncology Group. Proteomics Clin Appl 2023; 17:e2200109. [PMID: 37287368 PMCID: PMC10700663 DOI: 10.1002/prca.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE The endoplasmic reticulum (ER) is the major site of protein synthesis and folding in the cell. ER-associated degradation (ERAD) and unfolded protein response (UPR) are the main mechanisms of ER-mediated cell stress adaptation. Targeting the cell stress response is a promising therapeutic approach in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN Protein expression levels of valosin-containing protein (VCP), a chief element of ERAD, were measured in peripheral blood samples from in 483 pediatric AML patients using reverse phase protein array methodology. Patients participated in the Children's Oncology Group AAML1031 phase 3 clinical trial that randomized patients to standard chemotherapy (cytarabine (Ara-C), daunorubicin, and etoposide [ADE]) versus ADE plus bortezomib (ADE+BTZ). RESULTS Low-VCP expression was significantly associated with favorable 5-year overall survival (OS) rate compared to middle-high-VCP expression (81% versus 63%, p < 0.001), independent of additional bortezomib treatment. Multivariable Cox regression analysis identified VCP as independent predictor of clinical outcome. UPR proteins IRE1 and GRP78 had significant negative correlation with VCP. Five-year OS in patients characterized by low-VCP, moderately high-IRE1 and high-GRP78 improved after treatment with ADE+BTZ versus ADE (66% versus 88%, p = 0.026). CONCLUSION AND CLINICAL RELEVANCE Our findings suggest the potential of the protein VCP as biomarker in prognostication prediction in pediatric AML.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yihua Qiu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brandon D. Brown
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Amanda R. Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alan S. Gamis
- Department of Hematology-Oncology, Children’s Mercy Hospitals and Clinics, Kansas City, MO
| | - Richard Aplenc
- Division of Pediatric Oncology/Stem Cell Transplant, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Todd A. Alonzo
- COG Statistics and Data Center, Monrovia, CA
- Keck School of Medicine, University of Southern California, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Gaye N Jenkins
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children’s Cancer Center, Houston, Texas
| | - Terzah Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children’s Cancer Center, Houston, Texas
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Pozner A, Verma SP, Li L, Wang S, Barrott JJ, Nelson ML, Yu JSE, Negri GL, Colborne S, Hughes CS, Zhu JF, Lambert SL, Carroll LS, Smith-Fry K, Stewart MG, Kannan S, Jensen B, Mortenson KL, John C, Sikdar S, Liu H, Dang NH, Bourdage J, Li J, Vahrenkamp JM, Groundland JS, Wustrack R, Senger DL, Zemp FJ, Mahoney DJ, Gertz J, Zhang X, Lazar AJ, Hirst M, Morin GB, Nielsen TO, Shen PS, Jones KB. ASPSCR1-TFE3 reprograms transcription by organizing enhancer loops around hexameric VCP/p97. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560242. [PMID: 37873234 PMCID: PMC10592841 DOI: 10.1101/2023.09.29.560242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.
Collapse
|
15
|
Shakya A, Liu P, Godek J, McKee NW, Dodson M, Anandhan A, Ooi A, Garcia JGN, Costa M, Chapman E, Zhang DD. The NRF2-p97-NRF2 negative feedback loop. Redox Biol 2023; 65:102839. [PMID: 37573837 PMCID: PMC10428046 DOI: 10.1016/j.redox.2023.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Abstract
p97 is a ubiquitin-targeted ATP-dependent segregase that regulates proteostasis, in addition to a variety of other cellular functions. Previously, we demonstrated that p97 negatively regulates NRF2 by extracting ubiquitylated NRF2 from the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex, facilitating proteasomal destruction. In the current study, we identified p97 as an NRF2-target gene that contains a functional ARE, indicating the presence of an NRF2-p97-NRF2 negative feedback loop that maintains redox homeostasis. Using CRISPR/Cas9 genome editing, we generated endogenous p97 ARE-mutated BEAS-2B cell lines. These p97 ARE-mutated cell lines exhibit altered expression of p97 and NRF2, as well as a compromised response to NRF2 inducers. Importantly, we also found a positive correlation between NRF2 activation and p97 expression in human cancer patients. Finally, using chronic arsenic-transformed cell lines, we demonstrated a synergistic effect of NRF2 and p97 inhibition in killing cancer cells with high NRF2 and p97 expression. Our study suggests dual upregulation of NRF2 and p97 occurs in certain types of cancers, suggesting that inhibition of both NRF2 and p97 could be a promising treatment strategy for stratified cancer patients.
Collapse
Affiliation(s)
- Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jack Godek
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Nicholas W McKee
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Joe G N Garcia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, FL, 33458, USA
| | - Max Costa
- Departments of Environmental Medicine, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10010, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
16
|
Wei R, Cao Y, Wu H, Liu X, Jiang M, Luo X, Deng Z, Wang Z, Ke M, Zhu Y, Chen S, Gu C, Yang Y. Inhibition of VCP modulates NF-κB signaling pathway to suppress multiple myeloma cell proliferation and osteoclast differentiation. Aging (Albany NY) 2023; 15:8220-8236. [PMID: 37606987 PMCID: PMC10497005 DOI: 10.18632/aging.204965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, in which the dysfunction of the ubiquitin-proteasome pathway is associated with the pathogenesis. The valosin containing protein (VCP)/p97, a member of the AAA+ ATPase family, possesses multiple functions to regulate the protein quality control including ubiquitin-proteasome system and molecular chaperone. VCP is involved in the occurrence and development of various tumors while still elusive in MM. VCP inhibitors have gradually shown great potential for cancer treatment. This study aims to identify if VCP is a therapeutic target in MM and confirm the effect of a novel inhibitor of VCP (VCP20) on MM. We found that VCP was elevated in MM patients and correlated with shorter survival in clinical TT2 cohort. Silencing VCP using siRNA resulted in decreased MM cell proliferation via NF-κB signaling pathway. VCP20 evidently inhibited MM cell proliferation and osteoclast differentiation. Moreover, exosomes containing VCP derived from MM cells partially alleviated the inhibitory effect of VCP20 on cell proliferation and osteoclast differentiation. Mechanism study revealed that VCP20 inactivated the NF-κB signaling pathway by inhibiting ubiquitination degradation of IκBα. Furthermore, VCP20 suppressed MM cell proliferation, prolonged the survival of MM model mice and improved bone destruction in vivo. Collectively, our findings suggest that VCP is a novel target in MM progression. Targeting VCP with VCP20 suppresses malignancy progression of MM via inhibition of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rongfang Wei
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhao Cao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongjie Wu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingmei Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xian Luo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhendong Deng
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ze Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengying Ke
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Siqing Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
LaPorte M, Alverez C, Chatterley A, Kovaliov M, Carder EJ, Houghton MJ, Lim C, Miller ER, Samankumara LP, Liang M, Kerrigan K, Yue Z, Li S, Tomaino F, Wang F, Green N, Stott GM, Srivastava A, Chou TF, Wipf P, Huryn DM. Optimization of 1,2,4-Triazole-Based p97 Inhibitors for the Treatment of Cancer. ACS Med Chem Lett 2023; 14:977-985. [PMID: 37465292 PMCID: PMC10351062 DOI: 10.1021/acsmedchemlett.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
The AAA+ ATPase p97 (valosin-containing protein, VCP) is a master regulator of protein homeostasis and therefore represents a novel target for cancer therapy. Starting from a known allosteric inhibitor, NMS-873, we systematically optimized this scaffold, in particular, by applying a benzene-to-acetylene isosteric replacement strategy, specific incorporation of F, and eutomer/distomer identification, which led to compounds that exhibited nanomolar biochemical and cell-based potency. In cellular pharmacodynamic assays, robust effects on biomarkers of p97 inhibition and apoptosis, including increased levels of ubiquitinated proteins, CHOP and cleaved caspase 3, were observed. Compound (R)-29 (UPCDC-30766) represents the most potent allosteric inhibitor of p97 reported to date.
Collapse
Affiliation(s)
- Matthew
G. LaPorte
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Celeste Alverez
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Chatterley
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Marina Kovaliov
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Evan J. Carder
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. Houghton
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chaemin Lim
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Eric R. Miller
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lalith P. Samankumara
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mary Liang
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kaylan Kerrigan
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhizhou Yue
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shan Li
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Francesca Tomaino
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Feng Wang
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Neal Green
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Gordon M. Stott
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Apurva Srivastava
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Tsui-Fen Chou
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Peter Wipf
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Donna M. Huryn
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
18
|
Valimehr S, Sethi A, Shukla M, Bhattacharyya S, Kazemi M, Rouiller I. Molecular Mechanisms Driving and Regulating the AAA+ ATPase VCP/p97, an Important Therapeutic Target for Treating Cancer, Neurological and Infectious Diseases. Biomolecules 2023; 13:biom13050737. [PMID: 37238606 DOI: 10.3390/biom13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
p97/VCP, a highly conserved type II ATPase associated with diverse cellular activities (AAA+ ATPase), is an important therapeutic target in the treatment of neurodegenerative diseases and cancer. p97 performs a variety of functions in the cell and facilitates virus replication. It is a mechanochemical enzyme that generates mechanical force from ATP-binding and hydrolysis to perform several functions, including unfolding of protein substrates. Several dozens of cofactors/adaptors interact with p97 and define the multifunctionality of p97. This review presents the current understanding of the molecular mechanism of p97 during the ATPase cycle and its regulation by cofactors and small-molecule inhibitors. We compare detailed structural information obtained in different nucleotide states in the presence and absence of substrates and inhibitors. We also review how pathogenic gain-of-function mutations modify the conformational changes of p97 during the ATPase cycle. Overall, the review highlights how the mechanistic knowledge of p97 helps in designing pathway-specific modulators and inhibitors.
Collapse
Affiliation(s)
- Sepideh Valimehr
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Ian Holmes Imaging Centre, Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Manjari Shukla
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Mohsen Kazemi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
19
|
Lee YS, Klomp JE, Stalnecker CA, Goodwin CM, Gao Y, Droby GN, Vaziri C, Bryant KL, Der CJ, Cox AD. VCP/p97, a pleiotropic protein regulator of the DNA damage response and proteostasis, is a potential therapeutic target in KRAS-mutant pancreatic cancer. Genes Cancer 2023; 14:30-49. [PMID: 36923647 PMCID: PMC10010283 DOI: 10.18632/genesandcancer.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023] Open
Abstract
We and others have recently shown that proteins involved in the DNA damage response (DDR) are critical for KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) cell growth in vitro. However, the CRISPR-Cas9 library that enabled us to identify these key proteins had limited representation of DDR-related genes. To further investigate the DDR in this context, we performed a comprehensive, DDR-focused CRISPR-Cas9 loss-of-function screen. This screen identified valosin-containing protein (VCP) as an essential gene in KRAS-mutant PDAC cell lines. We observed that genetic and pharmacologic inhibition of VCP limited cell growth and induced apoptotic death. Addressing the basis for VCP-dependent growth, we first evaluated the contribution of VCP to the DDR and found that loss of VCP resulted in accumulation of DNA double-strand breaks. We next addressed its role in proteostasis and found that loss of VCP caused accumulation of polyubiquitinated proteins. We also found that loss of VCP increased autophagy. Therefore, we reasoned that inhibiting both VCP and autophagy could be an effective combination. Accordingly, we found that VCP inhibition synergized with the autophagy inhibitor chloroquine. We conclude that concurrent targeting of autophagy can enhance the efficacy of VCP inhibitors in KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Ye S. Lee
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A. Stalnecker
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gaith N. Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L. Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J. Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrienne D. Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Meyer H, van den Boom J. Targeting of client proteins to the VCP/p97/Cdc48 unfolding machine. Front Mol Biosci 2023; 10:1142989. [PMID: 36825201 PMCID: PMC9941556 DOI: 10.3389/fmolb.2023.1142989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
The AAA+ ATPase p97 (also called VCP or Cdc48) is a major protein unfolding machine with hundreds of clients in diverse cellular pathways that are critical for cell homeostasis, proliferation and signaling. In this review, we summarize recent advances in understanding how diverse client proteins are targeted to the p97 machine to facilitate client degradation or to strip clients from binding partners for regulation. We describe an elaborate system that is governed by at least two types of alternative adapters. The Ufd1-Npl4 adapter along with accessory adapters targets ubiquitylated clients in the majority of pathways and uses ubiquitin as a universal unfolding tag. In contrast, the family of SEP-domain adapters such as p37 can target clients directly to p97 in a ubiquitin-independent manner. Despite the different targeting strategies, both pathways converge by inserting the client into the p97 pore to initiate a peptide threading mechanism through the central channel of p97 that drives client protein unfolding, protein extraction from membranes and protein complex disassembly processes.
Collapse
Affiliation(s)
- Hemmo Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
21
|
Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: From basic research to clinical applications. Cell Chem Biol 2023; 30:3-21. [PMID: 36640759 DOI: 10.1016/j.chembiol.2022.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.
Collapse
Affiliation(s)
- Susan Kilgas
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
22
|
Wang X, Wen T, Miao H, Hu W, Lei M, Zhu Y. Discovery of a new class of valosine containing protein (VCP/P97) inhibitors for the treatment of colorectal cancer. Bioorg Med Chem 2022; 74:117050. [DOI: 10.1016/j.bmc.2022.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
23
|
Ahlstedt BA, Ganji R, Raman M. The functional importance of VCP to maintaining cellular protein homeostasis. Biochem Soc Trans 2022; 50:1457-1469. [PMID: 36196920 PMCID: PMC9704522 DOI: 10.1042/bst20220648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
The AAA-ATPase (ATPases associated with diverse cellular activities) valosin-containing protein (VCP), is essential for many cellular pathways including but not limited to endoplasmic reticulum-associated degradation (ERAD), DNA damage responses, and cell cycle regulation. VCP primarily identifies ubiquitylated proteins in these pathways and mediates their unfolding and degradation by the 26S proteasome. This review summarizes recent research on VCP that has uncovered surprising new ways that this ATPase is regulated, new aspects of recognition of substrates and novel pathways and substrates that utilize its activity.
Collapse
Affiliation(s)
- Brittany A. Ahlstedt
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, U.S.A
| | - Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, U.S.A
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, U.S.A
| |
Collapse
|
24
|
Arnaud M, Loiselle M, Vaganay C, Pons S, Letavernier E, Demonchy J, Fodil S, Nouacer M, Placier S, Frère P, Arrii E, Lion J, Mooney N, Itzykson R, Djediat C, Puissant A, Zafrani L. Tumor Lysis Syndrome and AKI: Beyond Crystal Mechanisms. J Am Soc Nephrol 2022; 33:1154-1171. [PMID: 35523579 PMCID: PMC9161807 DOI: 10.1681/asn.2021070997] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/12/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The pathophysiology of AKI during tumor lysis syndrome (TLS) is not well understood due to the paucity of data. We aimed to decipher crystal-dependent and crystal-independent mechanisms of TLS-induced AKI. METHODS Crystalluria, plasma cytokine levels, and extracellular histones levels were measured in two cohorts of patients with TLS. We developed a model of TLS in syngeneic mice with acute myeloid leukemia, and analyzed ultrastructural changes in kidneys and endothelial permeability using intravital confocal microscopy. In parallel, we studied the endothelial toxicity of extracellular histones in vitro. RESULTS: The study provides the first evidence that previously described crystal-dependent mechanisms are insufficient to explain TLS-induced AKI. Extracellular histones that are released in huge amounts during TLS caused profound endothelial alterations in the mouse model. The mechanisms of histone-mediated damage implicates endothelial cell activation mediated by Toll-like receptor 4. Heparin inhibits extracellular histones and mitigates endothelial dysfunction during TLS. CONCLUSION This study sheds new light on the pathophysiology of TLS-induced AKI and suggests that extracellular histones may constitute a novel target for therapeutic intervention in TLS when endothelial dysfunction occurs.
Collapse
Affiliation(s)
- Marine Arnaud
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France
| | - Maud Loiselle
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France
| | - Camille Vaganay
- INSERM UMR 944, Saint Louis Hospital, University of Paris Cité, Paris, France
| | - Stéphanie Pons
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France
| | - Emmanuel Letavernier
- INSERM UMR S 1155, Sorbonne University, Paris, France,Multidisciplinary Functional Explorations Department, Assistance Publique des Hôpitaux de Paris, Tenon Hospital, Paris, France
| | - Jordane Demonchy
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France
| | - Sofiane Fodil
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France
| | - Manal Nouacer
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France
| | | | - Perrine Frère
- INSERM UMR S 1155, Sorbonne University, Paris, France
| | - Eden Arrii
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France
| | - Julien Lion
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France
| | - Nuala Mooney
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France
| | - Raphael Itzykson
- INSERM UMR 944, Saint Louis Hospital, University of Paris Cité, Paris, France,Department of Hematology, Assistance Publique des Hôpitaux de Paris, Saint Louis Hospital, Paris, France
| | - Chakib Djediat
- Electron Microscopy Department, UMR 7245, Museum National D’Histoire Naturelle, Paris, France
| | - Alexandre Puissant
- INSERM UMR 944, Saint Louis Hospital, University of Paris Cité, Paris, France
| | - Lara Zafrani
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France .,Medical Intensive Care Unit, Assistance Publique des Hôpitaux de Paris, Saint Louis Hospital, Paris, France
| |
Collapse
|
25
|
Wang F, Li S, Rosencrans WM, Cheng KW, Stott GM, Mroczkowski B, Chou TF. Sulforaphane is Synergistic with CB-5083 and Inhibits Colony Formation of CB-5083-Resistant HCT116 Cells. ChemMedChem 2022; 17:e202200030. [PMID: 35451199 DOI: 10.1002/cmdc.202200030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Human p97 is a potential drug target in oncology. Mutation-driven drug resistance is an obstacle to the long-term efficacy of targeted therapy. We found that the ATPase activity for one of the CB-5083-resistant p97 mutants was reduced, which also attenuated the degradation of K48 ubiquitinated proteins in cells. To understand how p97 mutant cells with significantly reduced ATPase activity can still grow, we discovered reduced levels of CHOP and NF-κB activation in the p97 mutant cells and these cellular changes can potentially protect HCT116 cells from death due to lowered p97 activity. In addition, the NF-kB inhibitor Sulforaphane reduces proliferation of CB-5083 resistant cells and acts synergistically with CB-5083 to block proliferation of the parental HCT116 cells. The combination of Sulforaphane and CB-5083 may be a useful treatment strategy to combat CB-5083 resistance.
Collapse
Affiliation(s)
- Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M Rosencrans
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gordon M Stott
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barbara Mroczkowski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
26
|
Szczęśniak PP, Heidelberger JB, Serve H, Beli P, Wagner SA. VCP inhibition induces an unfolded protein response and apoptosis in human acute myeloid leukemia cells. PLoS One 2022; 17:e0266478. [PMID: 35385564 PMCID: PMC8986003 DOI: 10.1371/journal.pone.0266478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy characterized by the accumulation of undifferentiated white blood cells (blasts) in the bone marrow. Valosin-containing protein (VCP) is an abundant molecular chaperone that extracts ubiquitylated substrates from protein complexes and cellular compartments prior to their degradation by the proteasome. We found that treatment of AML cell lines with the VCP inhibitor CB-5083 leads to an accumulation of ubiquitylated proteins, activation of unfolded protein response (UPR) and apoptosis. Using quantitative mass spectrometry-based proteomics we assessed the effects of VCP inhibition on the cellular ubiquitin-modified proteome. We could further show that CB-5083 decreases the survival of the AML cell lines THP-1 and MV4-11 in a concentration-dependent manner, and acts synergistically with the antimetabolite cytarabine and the BH3-mimetic venetoclax. Finally, we showed that prolonged treatment of AML cells with CB-5083 leads to development of resistance mediated by mutations in VCP. Taken together, inhibition of VCP leads to a lethal unfolded protein response in AML cells and might be a relevant therapeutic strategy for treatment of AML, particularly when combined with other drugs. The toxicity and development of resistance possibly limit the utility of VCP inhibitors and have to be further explored in animal models and clinical trials.
Collapse
Affiliation(s)
- Paweł P. Szczęśniak
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | | | - Hubert Serve
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian A. Wagner
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- * E-mail:
| |
Collapse
|
27
|
Johnson MA, Klickstein JA, Khanna R, Gou Y, Raman M. The Cure VCP Scientific Conference 2021: Molecular and clinical insights into neurodegeneration and myopathy linked to multisystem proteinopathy-1 (MSP-1). Neurobiol Dis 2022; 169:105722. [PMID: 35405261 PMCID: PMC9169230 DOI: 10.1016/j.nbd.2022.105722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
The 2021 VCP Scientific Conference took place virtually from September 9–10, 2021. This conference, planned and organized by the nonprofit patient advocacy group Cure VCP Disease, Inc. (https://www.curevcp.org), was the first VCP focused meeting since the 215th ENMC International Workshop VCP-related multi-system proteinopathy in 2016 (Evangelista et al., 2016). Mutations in VCP cause a complex and heterogenous disease termed inclusion body myopathy (IBM) with Paget’s disease of the bone (PDB) and frontotemporal dementia (FTD) (IBMPFD), or multisystem proteinopathy 1 (MSP-1) Kimonis (n.d.), Kovach et al. (2001), Kimonis et al. (2000). In addition, VCP mutations also cause other age-related neurodegenerative disorders including amyptrophic lateral sclerosis (ALS), Parkinsonism, Charcot-Marie type II-B, vacuolar tauopathy among others (Korb et al., 2022). The objectives of this conference were as follows: (1) to provide a forum that facilitates sharing of published and unpublished information on physiological roles of p97/VCP, and on how mutations of VCP lead to diseases; (2) to bolster understanding of mechanisms involved in p97/VCP-relevant diseases and to enable identification of therapeutics to treat these conditions; (3) to identify gaps and barriers of further discoveries and translational research in the p97/VCP field; (4) to set a concrete basic and translational research agenda for future studies including crucial discussions on biomarker discoveries and patient longitudinal studies to facilitate near-term clinical trials; (5) to accelerate cross-disciplinary research collaborations among p97/VCP researchers; (6) to enable attendees to learn about new tools and reagents with the potential to facilitate p97/VCP research; (7) to assist trainees in propelling their research and to foster mentorship from leaders in the field; and (8) to promote diversity and inclusion of under-represented minorities in p97/VCP research as diversity is critically important for strong scientific research. Given the range of topics, the VCP Scientific Conference brought together over one hundred and forty individuals representing a diverse group of research scientists, trainees, medical practitioners, industry representatives, and patient advocates. Twenty-five institutions with individuals from thirteen countries attended this virtual meeting. In this report, we summarize the major topics presented at this conference by a range of experts.
Collapse
Affiliation(s)
- Michelle A Johnson
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Jacob A Klickstein
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Richa Khanna
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Yunzi Gou
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States of America
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
28
|
NMS-873 Leads to Dysfunctional Glycometabolism in A p97-Independent Manner in HCT116 Colon Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14040764. [PMID: 35456598 PMCID: PMC9024726 DOI: 10.3390/pharmaceutics14040764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/28/2022] Open
Abstract
Adenosine triphosphate (ATP)–competitive p97 inhibitor CB-5339, the successor of CB-5083, is being evaluated in Phase 1 clinical trials for anti-cancer therapy. Different modes-of-action p97 inhibitors such as allosteric inhibitors are useful to overcome drug-induced resistance, one of the major problems of targeted therapy. We previously demonstrated that allosteric p97 inhibitor NMS-873 can overcome CB-5083-induced resistance in HCT116. Here we employed chemical proteomics and drug-induced thermal proteome changes to identify drug targets, in combination with drug-resistant cell lines to dissect on- and off-target effects. We found that NMS-873 but not CB-5083 affected glycometabolism. By establishing NMS-873-resistant HCT116 cell lines and performing both cell-based and proteomic analysis, we confirmed that NMS-873 dysregulates glycometabolism in a p97-independent manner. We then used proteome integral solubility alteration with a temperature-based method (PISA T) to identify NDUFAF5 as one of the potential targets of NMS-873 in the mitochondrial complex I. We also demonstrated that glycolysis inhibitor 2-DG enhanced the anti-proliferative effect of NMS-873. The polypharmacology of NMS-873 can be advantageous for anti-cancer therapy for colon cancer.
Collapse
|
29
|
Wang F, Li S, Cheng KW, Rosencrans WM, Chou TF. The p97 Inhibitor UPCDC-30245 Blocks Endo-Lysosomal Degradation. Pharmaceuticals (Basel) 2022; 15:ph15020204. [PMID: 35215314 PMCID: PMC8880557 DOI: 10.3390/ph15020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The diverse modes of action of small molecule inhibitors provide versatile tools to investigate basic biology and develop therapeutics. However, it remains a challenging task to evaluate their exact mechanisms of action. We identified two classes of inhibitors for the p97 ATPase: ATP competitive and allosteric. We showed that the allosteric p97 inhibitor, UPCDC-30245, does not affect two well-known cellular functions of p97, endoplasmic-reticulum-associated protein degradation and the unfolded protein response pathway; instead, it strongly increases the lipidated form of microtubule-associated proteins 1A/1B light chain 3B (LC3-II), suggesting an alteration of autophagic pathways. To evaluate the molecular mechanism, we performed proteomic analysis of UPCDC-30245 treated cells. Our results revealed that UPCDC-30245 blocks endo-lysosomal degradation by inhibiting the formation of early endosome and reducing the acidity of the lysosome, an effect not observed with the potent p97 inhibitor CB-5083. This unique effect allows us to demonstrate UPCDC-30245 exhibits antiviral effects against coronavirus by blocking viral entry.
Collapse
Affiliation(s)
- Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
- Correspondence: (F.W.); (T.-F.C.); Tel.: +1 626-395-6772 (T.-F.C.)
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - William M. Rosencrans
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (F.W.); (T.-F.C.); Tel.: +1 626-395-6772 (T.-F.C.)
| |
Collapse
|
30
|
Phospho-Ser 784-VCP Drives Resistance of Pancreatic Ductal Adenocarcinoma to Genotoxic Chemotherapies and Predicts the Chemo-Sensitizing Effect of VCP Inhibitor. Cancers (Basel) 2021; 13:cancers13205076. [PMID: 34680224 PMCID: PMC8534018 DOI: 10.3390/cancers13205076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients have a dismal prognosis due in large part to chemotherapy resistance. However, a small subset containing defects in the DNA damage response (DDR) pathways are chemotherapy-sensitive. Identifying intrinsic and therapeutically inducible DDR defects can improve precision and efficacy of chemotherapies for PDAC. DNA repair requires dynamic reorganization of chromatin-associated proteins, which is orchestrated by the AAA+ ATPase VCP. We recently discovered that the DDR function of VCP is selectively activated by Ser784 phosphorylation. In this paper, we show that pSer784-VCP but not total VCP levels in primary PDAC tumors negatively correlate with patient survival. In PDAC cell lines, different pSer784-VCP levels are induced by genotoxic chemotherapy agents and positively correlate with genome stability and cell survival. Causal effects of pSer784-VCP on DNA repair and cell survival were confirmed using VCP knockdown and functional rescue. Importantly, DNA damage-induced pSer784-VCP rather than total VCP levels in PDAC cell lines predict their chemotherapy response and chemo-sensitizing ability of selective VCP inhibitor NMS-873. Therefore, pSer784-VCP drives genotoxic chemotherapy resistance of PDAC, and can potentially be used as a predictive biomarker as well as a sensitizing target to enhance the chemotherapy response of PDAC.
Collapse
|
31
|
Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer. Int J Mol Sci 2021; 22:ijms221810177. [PMID: 34576340 PMCID: PMC8469696 DOI: 10.3390/ijms221810177] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP)/p97, a member of the AAA+ ATPase family, is a molecular chaperone recruited to the endoplasmic reticulum (ER) membrane by binding to membrane adapters (nuclear protein localization protein 4 (NPL4), p47 and ubiquitin regulatory X (UBX) domain-containing protein 1 (UBXD1)), where it is involved in ER-associated protein degradation (ERAD). However, VCP/p97 interacts with many cofactors to participate in different cellular processes that are critical for cancer cell survival and aggressiveness. Indeed, VCP/p97 is reported to be overexpressed in many cancer types and is considered a potential cancer biomarker and therapeutic target. This review summarizes the role of VCP/p97 in different cancers and the advances in the discovery of small-molecule inhibitors with therapeutic potential, focusing on the challenges associated with cancer-related VCP mutations in the mechanisms of resistance to inhibitors.
Collapse
|
32
|
AAA+ ATPase p97/VCP mutants and inhibitor binding disrupt inter-domain coupling and subsequent allosteric activation. J Biol Chem 2021; 297:101187. [PMID: 34520757 PMCID: PMC8517850 DOI: 10.1016/j.jbc.2021.101187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022] Open
Abstract
The human AAA+ ATPase p97, also known as valosin-containing protein, a potential target for cancer therapeutics, plays a vital role in the clearing of misfolded proteins. p97 dysfunction is also known to play a crucial role in several neurodegenerative disorders, such as MultiSystem Proteinopathy 1 (MSP-1) and Familial Amyotrophic Lateral Sclerosis (ALS). However, the structural basis of its role in such diseases remains elusive. Here, we present cryo-EM structural analyses of four disease mutants p97R155H, p97R191Q, p97A232E, p97D592N, as well as p97E470D, implicated in resistance to the drug CB-5083, a potent p97 inhibitor. Our cryo-EM structures demonstrate that these mutations affect nucleotide-driven allosteric activation across the three principal p97 domains (N, D1, and D2) by predominantly interfering with either (1) the coupling between the D1 and N-terminal domains (p97R155H and p97R191Q), (2) the interprotomer interactions (p97A232E), or (3) the coupling between D1 and D2 nucleotide domains (p97D592N, p97E470D). We also show that binding of the competitive inhibitor, CB-5083, to the D2 domain prevents conformational changes similar to those seen for mutations that affect coupling between the D1 and D2 domains. Our studies enable tracing of the path of allosteric activation across p97 and establish a common mechanistic link between active site inhibition and defects in allosteric activation by disease-causing mutations and have potential implications for the design of novel allosteric compounds that can modulate p97 function.
Collapse
|