1
|
Lavogina D, Kask K, Kopanchuk S, Visser N, Laws M, Flaws JA, Kallak TK, Olovsson M, Damdimopoulou P, Salumets A. Phthalate monoesters affect membrane fluidity and cell-cell contacts in endometrial stromal adherent cell lines and spheroids. Reprod Toxicol 2024; 130:108733. [PMID: 39396682 DOI: 10.1016/j.reprotox.2024.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Phthalate monoesters have been identified as endocrine disruptors in a variety of models, yet understanding of their exact mechanisms of action and molecular targets in cells remains incomplete. Here, we set to determine whether epidemiologically relevant mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) can affect biological processes by altering cell plasma membrane fluidity or formation of cell-cell contacts. As a model system, we chose endometrial stromal cell lines, one of which was previously used in a transcriptomic study with MEHHP or MEHHP-containing mixtures. A short-term exposure (1 h) of membrane preparations to endocrine disruptors was sufficient to induce changes in membrane fluidity/rigidity, whereas different mixtures showed different effects at various depths of the bilayer. A longer exposure (96 h) affected the ability of cells to form spheroids and highlighted issues with membrane integrity in loosely assembled spheroids. Finally, in spheroids assembled from T-HESC cells, MEHHP interfered with the formation of cell-cell contacts as indicated by the immunostaining of zonula occludens 1 protein. Overall, this study emphasized the need to consider plasma membrane, membrane-bound organelles, and secretory vesicles as possible biological targets of endocrine disruptors and offered an explanation for a multitude of endocrine disruptor roles documented earlier.
Collapse
Affiliation(s)
- Darja Lavogina
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia; Competence Centre on Health Technologies, Tartu, Estonia.
| | - Keiu Kask
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sergei Kopanchuk
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Nadja Visser
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
O'Connell CD, Dalton PD, Hutmacher DW. Why bioprinting in regenerative medicine should adopt a rational technology readiness assessment. Trends Biotechnol 2024; 42:1218-1229. [PMID: 38614839 DOI: 10.1016/j.tibtech.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
Bioprinting is an annex of additive manufacturing, as defined by the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) standards, characterized by the automated deposition of living cells and biomaterials. The tissue engineering and regenerative medicine (TE&RM) community has eagerly adopted bioprinting, while review articles regularly herald its imminent translation to the clinic as functional tissues and organs. Here we argue that such proclamations are premature and counterproductive; they place emphasis on technological progress while typically ignoring the critical stage-gates that must be passed through to bring a technology to market. We suggest the technology readiness level (TRL) scale as a valuable metric for gauging the relative maturity of a bioprinting technology in relation to how it has passed a series of key milestones. We suggest guidelines for a bioprinting-oriented scale and use this to discuss the state-of-the-art of bioprinting in regenerative medicine (BRM) today. Finally, we make corresponding recommendations for improvements to BRM research that would support its progression to clinical translation.
Collapse
Affiliation(s)
- Cathal D O'Connell
- Discipline of Electrical & Biomedical Engineering, RMIT University, Melbourne, VIC, Australia; Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia; Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology, Kelvin Grove, QLD, Australia; Centre for Behavioural Economics, Society & Technology (BEST), Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia; ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Crouchet E, Dachraoui M, Jühling F, Roehlen N, Oudot MA, Durand SC, Ponsolles C, Gadenne C, Meiss-Heydmann L, Moehlin J, Martin R, Brignon N, Del Zompo F, Teraoka Y, Aikata H, Abe-Chayama H, Chayama K, Saviano A, Heide D, Onea M, Geyer L, Wolf T, Felli E, Pessaux P, Heikenwälder M, Chambon P, Schuster C, Lupberger J, Mukherji A, Baumert TF. Targeting the liver clock improves fibrosis by restoring TGF-β signaling. J Hepatol 2024:S0168-8278(24)02480-2. [PMID: 39173955 DOI: 10.1016/j.jhep.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND & AIMS Liver fibrosis is the major driver of hepatocellular carcinoma and liver disease-related death. Approved antifibrotic therapies are absent and compounds in development have limited efficacy. Increased TGF-β signaling drives collagen deposition by hepatic stellate cells (HSCs)/myofibroblasts. Here, we aimed to dissect the role of the circadian clock (CC) in controlling TGF-β signaling and liver fibrosis. METHODS Using CC-mutant mice, enriched HSCs and myofibroblasts obtained from healthy and fibrotic mice in different CC phases and loss-of-function studies in human hepatocytes and myofibroblasts, we investigated the relationship between CC and TGF-β signaling. We explored hepatocyte-myofibroblast communication through bioinformatic analyses of single-nuclei transcriptomes and performed validation in cell-based models. Using mouse models for MASH (metabolic dysfunction-associated steatohepatitis)-related fibrosis and spheroids from patients with liver disease, we performed proof-of-concept studies to validate pharmacological targetability and clinical translatability. RESULTS We discovered that the CC oscillator temporally gates TGF-β signaling and this regulation is broken in fibrosis. We demonstrate that HSCs and myofibroblasts contain a functional CC with rhythmic expression of numerous genes, including fibrogenic genes. Perturbation studies in hepatocytes and myofibroblasts revealed a reciprocal relationship between TGF-β activation and CC perturbation, which was confirmed in patient-derived ex vivo and in vivo models. Pharmacological modulation of CC-TGF-β signaling inhibited fibrosis in mouse models in vivo as well as in patient-derived liver spheroids. CONCLUSION The CC regulates TGF-β signaling, and the breakdown of this control is associated with liver fibrosis in patients. Pharmacological proof-of-concept studies across different models have uncovered the CC as a novel therapeutic target for liver fibrosis - a growing unmet medical need. IMPACT AND IMPLICATIONS Liver fibrosis due to metabolic diseases is a global health challenge. Many liver functions are rhythmic throughout the day, being controlled by the circadian clock (CC). Here we demonstrate that regulation of the CC is perturbed upon chronic liver injury and this perturbation contributes to fibrotic disease. By showing that a compound targeting the CC improves liver fibrosis in patient-derived models, this study provides a novel therapeutic candidate strategy to treat fibrosis in patients. Additional studies will be needed for clinical translation. Since the findings uncover a previously undiscovered profibrotic mechanism and therapeutic target, the study is of interest for scientists investigating liver disease, clinical hepatologists and drug developers.
Collapse
Affiliation(s)
- Emilie Crouchet
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Mayssa Dachraoui
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Frank Jühling
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Natascha Roehlen
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France; Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marine A Oudot
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Sarah C Durand
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Clara Ponsolles
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Cloé Gadenne
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Laura Meiss-Heydmann
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Julien Moehlin
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Romain Martin
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France; ÆPIC Animal Facility Platform, University of Strasbourg, Inserm UMR_S1110, Strasbourg, France
| | - Nicolas Brignon
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France; ÆPIC Animal Facility Platform, University of Strasbourg, Inserm UMR_S1110, Strasbourg, France
| | - Fabio Del Zompo
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Yuji Teraoka
- Department of Gastroenterology, NHO Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | | | - Hiromi Abe-Chayama
- Hiroshima Institute of Life Sciences, Hiroshima, Japan; Center for Medical Specialist Graduate Education and Research, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Hiroshima Institute of Life Sciences, Hiroshima, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Antonio Saviano
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France; Pôle des Pathologies Hépatiques et Digestives, Strasbourg University Hospitals, Strasbourg, France
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mihaela Onea
- Biological Resource Center, Hautepierre, Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Lucas Geyer
- Biological Resource Center, Hautepierre, Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Thibaut Wolf
- Biological Resource Center, Hautepierre, Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Emanuele Felli
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France; Groupe Hospitalier Saint Vincent, Strasbourg, France
| | - Patrick Pessaux
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France; Pôle des Pathologies Hépatiques et Digestives, Strasbourg University Hospitals, Strasbourg, France
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Center, University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, Inserm U964, Illkirch, France; Collège de France, Illkirch, France
| | - Catherine Schuster
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Joachim Lupberger
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France.
| | - Atish Mukherji
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, Inserm U964, Illkirch, France
| | - Thomas F Baumert
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France; Pôle des Pathologies Hépatiques et Digestives, Strasbourg University Hospitals, Strasbourg, France; Institut Hospitalo-Universitaire (IHU) Strasbourg, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
5
|
Martínez-Campelo L, Blanco-Verea A, López-Fernández T, Martínez-Monzonís A, Buño A, Mazón P, Zamora P, Norton N, Reddy JS, Velasco-Ruiz A, González-Neira A, Vulsteke C, Alonso-Gordoa T, Cruz R, Diz-de Almeida S, Carracedo A, González-Juanatey JR, López-Sendón J, Brion M. Meta-analysis of genome-wide association studies for cancer therapy-related cardiovascular dysfunction and functional mapping highlight an intergenic region close to TP63. Sci Rep 2024; 14:18413. [PMID: 39117733 PMCID: PMC11310459 DOI: 10.1038/s41598-024-69064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer therapy-related cardiac dysfunction (CTRCD), which commonly includes left ventricular dysfunction and heart failure, is the main adverse effect of anticancer therapy. In recent years several candidate genes studies and genome-wide association studies have identified common genetic variants associated with CTRCD, but evidence remains limited and few genetic variants are robust. A genome-wide meta-analysis of CTRCD was performed with 852 oncology patients receiving cancer therapy. DNA samples were genotyped and imputed to perform a GWAS meta-analysis for case-control (N = 852 (380 cases and 472 controls) and extreme phenotypes (N = 618 (78 cases and 472 controls) looking for genetic variants that predispose to CTRCD. The results were validated in a replicate cohort of 1,191 oncology patients (245 cases and 946 controls). Functional mapping of the replicated loci was then performed. The meta-analysis showed 9 and 17 loci suggestively associated (P-value < 1 × 10-5) with CTRCD in case-control and extreme phenotypes analyses, respectively. The 3q28 locus (rs rs7652759, P = 5.64 × 10-6) in the case-control analysis was the strongest signal, with up to 64 SNPs above the suggestive significance threshold. The rs7652759, an intergenic variant between TPRG1 and TP63 genes, was the only variant validated in the replication cohort (P-value = 0.01). Functional mapping of this significant locus revealed up to 5 new genes potentially involved in the CTRCD. We identified the intergenic region near TP63 as a novel CTRCD susceptibility locus. In the future, the genotyping of these markers could be considered in new CTRCD risk scores to improve preventive strategies in cardio-oncology.
Collapse
Affiliation(s)
- L Martínez-Campelo
- Instituto de Investigación Sanitaria de Santiago, Xenética Cardiovascular, Santiago De Compostela, Spain.
| | - A Blanco-Verea
- Instituto de Investigación Sanitaria de Santiago, Xenética Cardiovascular, Santiago De Compostela, Spain
| | - T López-Fernández
- Hospital Universitario La Paz, Servicio de Cardiología, Madrid, Spain
| | - A Martínez-Monzonís
- Hospital Clínico Universitario de Santiago de Compostela, Servicio de Cardiología, CIBER de Enfermedades Cardiovasculares, Santiago De Compostela, Spain
| | - A Buño
- Hospital Universitario La Paz, Servicio de Análisis Clínicos, IdiPaz, Madrid, Spain
| | - P Mazón
- Hospital Clínico Universitario de Santiago de Compostela, Servicio de Cardiología, CIBER de Enfermedades Cardiovasculares, Santiago De Compostela, Spain
| | - P Zamora
- Hospital Universitario La Paz, Servicio de Oncología, Madrid, Spain
| | - N Norton
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, USA
| | - J S Reddy
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, USA
| | - A Velasco-Ruiz
- Spanish National Cancer Research Centre, Human Cancer Genetics Programme, Madrid, Spain
| | - A González-Neira
- Spanish National Cancer Research Centre, Human Cancer Genetics Programme, Madrid, Spain
| | - C Vulsteke
- Department of Medical Oncology, Integrated Cancer Center Ghent, Ghent, Belgium
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - T Alonso-Gordoa
- Department of Medical Oncology, University Hospital Ramón y Cajal, Madrid, Spain
| | - R Cruz
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras, Madrid, Spain
| | - S Diz-de Almeida
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras, Madrid, Spain
| | - A Carracedo
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras, Madrid, Spain
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica, Santiago De Compostela, Spain
| | - J R González-Juanatey
- Hospital Clínico Universitario de Santiago de Compostela, Servicio de Cardiología, CIBER de Enfermedades Cardiovasculares, Santiago De Compostela, Spain
| | - J López-Sendón
- Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - M Brion
- Instituto de Investigación Sanitaria de Santiago, Xenética Cardiovascular, Santiago De Compostela, Spain
- Hospital Clínico Universitario de Santiago de Compostela, Servicio de Cardiología, CIBER de Enfermedades Cardiovasculares, Santiago De Compostela, Spain
| |
Collapse
|
6
|
Pang S, Wu R, Lv W, Zou J, Li Y, Li Y, Zhang P, Ma X, Wang Y, Liu S. Use of a pH-responsive imatinib mesylate sustained-release hydrogel for the treatment of tendon adhesion by inhibiting PDGFRβ/CLDN1 pathway. Bioact Mater 2024; 38:124-136. [PMID: 38699245 PMCID: PMC11063598 DOI: 10.1016/j.bioactmat.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Adhesion after tendon injury, which can result in limb movement disorders, is a common clinical complication; however, effective treatment methods are lacking. Hyaluronic acid hydrogels are a new biomedical material used to prevent tendon adhesion owing to their good biocompatibility. In addition, potential drugs that inhibit adhesion formation have gradually been discovered. The anti-adhesion effects of a combination of loaded drugs into hydrogels have become an emerging trend. However, current drug delivery systems usually lack specific regulation of drug release, and the effectiveness of drugs for treating tendon adhesions is mostly flawed. In this study, we identified a new drug, imatinib mesylate (IM), that prevents tendon adhesion and explored its related molecular pathways. In addition, we designed a pH-responsive sustained-release hydrogel for delivery. Using the metal-organic framework ZIF-8 as a drug carrier, we achieved controlled drug release to increase the effective drug dose at the peak of adhesion formation to achieve better therapeutic effects. The results showed that IM blocked the formation of peritendon adhesions by inhibiting the PDGFRβ/ERK/STAT3/CLDN1 pathway. Furthermore, the hydrogel with ZIF-8 exhibited better physical properties and drug release curves than the hydrogel loaded only with drugs, showing better prevention and treatment effects on tendon adhesion.
Collapse
Affiliation(s)
- Sa Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Rongpu Wu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Wenxin Lv
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Jian Zou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yanhao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Peilin Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Xin Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| |
Collapse
|
7
|
Hasegawa K, Tamaki M, Shibata E, Inagaki T, Minato M, Yamaguchi S, Shimizu I, Miyakami S, Tada M, Wakino S. Ability of NAD and Sirt1 to epigenetically suppress albuminuria. Clin Exp Nephrol 2024; 28:599-607. [PMID: 38587753 PMCID: PMC11190001 DOI: 10.1007/s10157-024-02502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
The time for diabetic nephropathy (DN) to progress from mild to severe is long. Thus, methods to continuously repress DN are required to exert long-lasting effects mediated through epigenetic regulation. In this study, we demonstrated the ability of nicotinamide adenine dinucleotide (NAD) and its metabolites to reduce albuminuria through Sirt1- or Nampt-dependent epigenetic regulation. We previously reported that proximal tubular Sirt1 was lowered before glomerular Sirt1. Repressed glomerular Sirt1 was found to epigenetically elevate Claudin-1. In addition, we reported that proximal tubular Nampt deficiency epigenetically augmented TIMP-1 levels in Sirt6-mediated pathways, leading to type-IV collagen deposition and diabetic fibrosis. Altogether, we propose that the Sirt1/Claudin-1 axis may be crucial in the onset of albuminuria at the early stages of DN and that the Nampt/Sirt6/TIMP-1 axis promotes diabetic fibrosis in the middle to late stages of DN. Finally, administration of NMN, an NAD precursor, epigenetically potentiates the regression of the onset of DN to maintain Sirt1 and repress Claudin-1 in podocytes, suggesting the potential use of NAD metabolites as epigenetic medications for DN.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Masanori Tamaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Eriko Shibata
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Taizo Inagaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masanori Minato
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Sumiyo Yamaguchi
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ikuko Shimizu
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shinji Miyakami
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Miho Tada
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shu Wakino
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
8
|
Hernando-Calvo A, Rossi A, Vieito M, Voest E, Garralda E. Agnostic drug development revisited. Cancer Treat Rev 2024; 128:102747. [PMID: 38763053 DOI: 10.1016/j.ctrv.2024.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
The advent of molecular profiling and the generalization of next generation sequencing in oncology has enabled the identification of patients who could benefit from targeted agents. Since the tumor-agnostic approval of pembrolizumab for patients with MSI-High tumors in 2017, different molecularly-guided therapeutics have been awarded approvals and progressively incorporated in the treatment landscape across multiple tumor types. As the number of tumor-agnostic targets considered druggable expands in the clinic, novel challenges will reshape the drug development field involving all the stakeholders in oncology. In this review, we provide an overview of current tumor-agnostic approvals and discuss promising candidate therapeutics for tumor-agnostic designation and challenges for their broad implementation.
Collapse
Affiliation(s)
- Alberto Hernando-Calvo
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Alice Rossi
- Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Maria Vieito
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Emile Voest
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Elena Garralda
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain.
| |
Collapse
|
9
|
Saviano A, Roehlen N, Baumert TF. Tight Junction Proteins as Therapeutic Targets to Treat Liver Fibrosis and Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:180-190. [PMID: 38648796 DOI: 10.1055/s-0044-1785646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In the last decade tight junction proteins exposed at the surface of liver or cancer cells have been uncovered as mediators of liver disease biology: Claudin-1 and Occludin are host factors for hepatitis C virus entry and Claudin-1 has been identified as a driver for liver fibrosis and hepatocellular carcinoma (HCC). Moreover, Claudins have emerged as therapeutic targets for liver disease and HCC. CLDN1 expression is upregulated in liver fibrosis and HCC. Monoclonal antibodies (mAbs) targeting Claudin-1 have completed preclinical proof-of-concept studies for treatment of liver fibrosis and HCC and are currently in clinical development for advanced liver fibrosis. Claudin-6 overexpression is associated with an HCC aggressive phenotype and treatment resistance. Claudin-6 mAbs or chimeric antigen receptor-T cells therapies are currently being clinically investigated for Claudin-6 overexpressing tumors. In conclusion, targeting Claudin proteins offers a novel clinical opportunity for the treatment of patients with advanced liver fibrosis and HCC.
Collapse
Affiliation(s)
- Antonio Saviano
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Natascha Roehlen
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas F Baumert
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
10
|
Wang W, Zhou Y, Li W, Quan C, Li Y. Claudins and hepatocellular carcinoma. Biomed Pharmacother 2024; 171:116109. [PMID: 38185042 DOI: 10.1016/j.biopha.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high incidence and dismal prognosis, making it a significant global health burden. To change this, the development of new therapeutic strategies is imminent. The claudin (CLDN) family, as key components of tight junctions (TJs), plays an important role in the initiation and development of cancer. Dysregulated expression of CLDNs leads to loss of intercellular adhesion and aberrant cell signaling, which are closely related to cancer cell invasion, migration, and epithelial-mesenchymal transition (EMT). CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, CLDN10, CLDN11, CLDN14, and CLDN17 are aberrantly expressed in HCC, which drives the progression of the disease. Consequently, they have tremendous potential as prognostic indicators and therapeutic targets. This article summarizes the aberrant expression, molecular mechanisms, and clinical application studies of different subtypes of CLDNs in HCC, with a particular emphasis on CLDN1.
Collapse
Affiliation(s)
- Wentao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yi Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China.
| |
Collapse
|
11
|
Primeaux M, Liu X, Gowrikumar S, Fatima I, Fisher KW, Bastola D, Vecchio AJ, Singh AB, Dhawan P. Claudin-1 interacts with EPHA2 to promote cancer stemness and chemoresistance in colorectal cancer. Cancer Lett 2023; 579:216479. [PMID: 37924938 PMCID: PMC10765961 DOI: 10.1016/j.canlet.2023.216479] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Therapy resistance is the primary problem in treating late-stage colorectal cancer (CRC). Claudins are frequently dysregulated in cancer, and several are being investigated as novel therapeutic targets and biomarkers. We have previously demonstrated that Claudin-1 (CLDN1) expression in CRC promotes epithelial-mesenchymal transition, metastasis, and resistance to anoikis. Here, we hypothesize that CLDN1 promotes cancer stemness and chemoresistance in CRC. We found that high CLDN1 expression in CRC is associated with cancer stemness and chemoresistance signaling pathways in patient datasets, and it promotes chemoresistance both in vitro and in vivo. Using functional stemness assays, proteomics, biophysical binding assays, and patient-derived organoids, we found that CLDN1 promotes properties of cancer stemness including CD44 expression, tumor-initiating potential, and chemoresistance through a direct interaction with ephrin type-A receptor 2 (EPHA2) tyrosine kinase. This interaction is dependent on the CLDN1 PDZ-binding motif, increases EPHA2 protein expression by inhibiting its degradation, and enhances downstream AKT signaling and CD44 expression to promote stemness and chemoresistance. These results suggest CLDN1 is a viable target for pharmacological intervention and/or biomarker development.
Collapse
Affiliation(s)
- Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiangdong Liu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhundy Bastola
- Department of Bioinformatics, University of Nebraska Omaha, Omaha, NE, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
12
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
13
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|