1
|
Reinhard J, Oláh T, Laschke MW, Goebel LKH, Schmitt G, Speicher-Mentges S, Menger MD, Cucchiarini M, Pape D, Madry H. Modulation of early osteoarthritis by tibiofemoral re-alignment in sheep. Osteoarthritis Cartilage 2024; 32:690-701. [PMID: 38442768 DOI: 10.1016/j.joca.2024.02.892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE To investigate whether tibiofemoral alignment influences early knee osteoarthritis (OA). We hypothesized that varus overload exacerbates early degenerative osteochondral changes, and that valgus underload diminishes early OA. METHOD Normal, over- and underload were induced by altering alignment via high tibial osteotomy in adult sheep (n = 8 each). Simultaneously, OA was induced by partial medial anterior meniscectomy. At 6 weeks postoperatively, OA was examined in five individual subregions of the medial tibial plateau using Kellgren-Lawrence grading, quantification of macroscopic OA, semiquantitative histopathological OA and immunohistochemical type-II collagen, ADAMTS-5, and MMP-13 scoring, biochemical determination of DNA and proteoglycan contents, and micro-computed tomographic evaluation of the subchondral bone. RESULTS Multivariate analyses revealed that OA cartilaginous changes had a temporal priority over subchondral bone changes. Underload inhibited early cartilage degeneration in a characteristic topographic pattern (P ≥ 0.0983 vs. normal), in particular below the meniscal damage, avoided alterations of the subarticular spongiosa (P ≥ 0.162 vs. normal), and prevented the disturbance of otherwise normal osteochondral correlations. Overload induced early alterations of the subchondral bone plate microstructure towards osteopenia, including significantly decreased percent bone volume and increased bone surface-to-volume ratio (all P ≤ 0.0359 vs. normal). CONCLUSION The data provide high-resolution evidence that tibiofemoral alignment modulates early OA induced by a medial meniscus injury in adult sheep. Since underload inhibits early OA, these data also support the clinical value of strategies to reduce the load in an affected knee compartment to possibly decelerate structural OA progression.
Collapse
Affiliation(s)
- Jan Reinhard
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany.
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, 66421 Homburg, Germany.
| | - Lars K H Goebel
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany.
| | | | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, 66421 Homburg, Germany.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| | - Dietrich Pape
- Cartilage Net of the Greater Region, 66421 Homburg, Germany; Clinique d'Eich, Centre Hospitalier de Luxembourg, Eich, 1460 Luxembourg, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany; Cartilage Net of the Greater Region, 66421 Homburg, Germany.
| |
Collapse
|
2
|
Delsmann J, Eissele J, Simon A, Alimy AR, von Kroge S, Mushumba H, Püschel K, Busse B, Ries C, Amling M, Beil FT, Rolvien T. Alterations in compositional and cellular properties of the subchondral bone are linked to cartilage degeneration in hip osteoarthritis. Osteoarthritis Cartilage 2024; 32:535-547. [PMID: 38403152 DOI: 10.1016/j.joca.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The subchondral bone is an emerging regulator of osteoarthritis (OA). However, knowledge of how specific subchondral alterations relate to cartilage degeneration remains incomplete. METHOD Femoral heads were obtained from 44 patients with primary OA during total hip arthroplasty and from 30 non-OA controls during autopsy. A multiscale assessment of the central subchondral bone region comprising histomorphometry, quantitative backscattered electron imaging, nanoindentation, and osteocyte lacunocanalicular network characterization was employed. RESULTS In hip OA, thickening of the subchondral bone coincided with a higher number of osteoblasts (controls: 3.7 ± 4.5 mm-1, OA: 16.4 ± 10.2 mm-1, age-adjusted mean difference 10.5 mm-1 [95% CI 4.7 to 16.4], p < 0.001) but a similar number of osteoclasts compared to controls (p = 0.150). Furthermore, higher matrix mineralization heterogeneity (CaWidth, controls: 2.8 ± 0.2 wt%, OA: 3.1 ± 0.3 wt%, age-adjusted mean difference 0.2 wt% [95% CI 0.1 to 0.4], p = 0.011) and lower tissue hardness (controls: 0.69 ± 0.06 GPa, OA: 0.67 ± 0.06 GPa, age-adjusted mean difference -0.05 GPa [95% CI -0.09 to -0.01], p = 0.032) were detected. While no evidence of altered osteocytic perilacunar/canalicular remodeling in terms of fewer osteocyte canaliculi was found in OA, specimens with advanced cartilage degeneration showed a higher number of osteocyte canaliculi and larger lacunocanalicular network area compared to those with low-grade cartilage degeneration. Multiple linear regression models indicated that several subchondral bone properties, especially osteoblast and osteocyte parameters, were closely related to cartilage degeneration (R2 adjusted = 0.561, p < 0.001). CONCLUSION Subchondral bone properties in OA are affected at the compositional, mechanical, and cellular levels. Based on their strong interaction with cartilage degeneration, targeting osteoblasts/osteocytes may be a promising therapeutic OA approach. DATA AND MATERIALS AVAILABILITY All data are available in the main text or the supplementary materials.
Collapse
Affiliation(s)
- Julian Delsmann
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Eissele
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Simon
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ries
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Du S, Zhou X, Zheng B. Beyond Traditional Medicine: EVs-Loaded Hydrogels as a Game Changer in Disease Therapeutics. Gels 2024; 10:162. [PMID: 38534580 DOI: 10.3390/gels10030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/28/2024] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, have shown great therapeutic potential in the treatment of diseases, as they can target cells or tissues. However, the therapeutic effect of EVs is limited due to the susceptibility of EVs to immune system clearance during transport in vivo. Hydrogels have become an ideal delivery platform for EVs due to their good biocompatibility and porous structure. This article reviews the preparation and application of EVs-loaded hydrogels as a cell-free therapy strategy in the treatment of diseases. The article also discusses the challenges and future outlook of EVs-loaded hydrogels.
Collapse
Affiliation(s)
- Shutong Du
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
4
|
Oláh T, Cucchiarini M, Madry H. Subchondral bone remodeling patterns in larger animal models of meniscal injuries inducing knee osteoarthritis - a systematic review. Knee Surg Sports Traumatol Arthrosc 2023; 31:5346-5364. [PMID: 37742232 PMCID: PMC10719152 DOI: 10.1007/s00167-023-07579-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Elucidating subchondral bone remodeling in preclinical models of traumatic meniscus injury may address clinically relevant questions about determinants of knee osteoarthritis (OA). METHODS Studies on subchondral bone remodeling in larger animal models applying meniscal injuries as standardizing entity were systematically analyzed. Of the identified 5367 papers reporting total or partial meniscectomy, meniscal transection or destabilization, 0.4% (in guinea pigs, rabbits, dogs, minipigs, sheep) remained eligible. RESULTS Only early or mid-term time points were available. Larger joint sizes allow reporting higher topographical details. The most frequently reported parameters were BV/TV (61%), BMD (41%), osteophytes (41%) and subchondral bone plate thickness (39%). Subchondral bone plate microstructure is not comprehensively, subarticular spongiosa microstructure is well characterized. The subarticular spongiosa is altered shortly before the subchondral bone plate. These early changes involve degradation of subarticular trabecular elements, reduction of their number, loss of bone volume and reduced mineralization. Soon thereafter, the previously normal subchondral bone plate becomes thicker. Its porosity first increases, then decreases. CONCLUSION The specific human topographical pattern of a thinner subchondral bone plate in the region below both menisci is present solely in the larger species (partly in rabbits), but absent in rodents, an important fact to consider when designing animal studies examining subchondral consequences of meniscus damage. Large animal models are capable of providing high topographical detail, suggesting that they may represent suitable study systems reflecting the clinical complexities. For advanced OA, significant gaps of knowledge exist. Future investigations assessing the subchondral bone in a standardized fashion are warranted.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Straße, Building 37, 66421, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Straße, Building 37, 66421, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Straße, Building 37, 66421, Homburg/Saar, Germany.
| |
Collapse
|
5
|
Lee DH, Lee HS, Kim BH, Lee SW. Is the Surface Anatomy of the Popliteal Crease Related to Lower Extremity Alignment or Knee Osseous Morphology? A Radiographic Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1849. [PMID: 37893567 PMCID: PMC10608488 DOI: 10.3390/medicina59101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
Background and objectives: The popliteal crease varies among individuals, and there has been no prior study on this aspect. We assumed that it may be associated with lower extremity alignment and osseous morphology. To demonstrate this, we conducted a radiographic analysis. Materials and Methods: The study was conducted on 121 knees of 63 patients, whose popliteal creases were well distinguished on clinical photographs. PCOA was defined as the angle between the longitudinal axis of the lower leg and the popliteal crease. Through the radiologic examinations performed, the HKA, MPTA, mLDFA, JLCA, MFCA/TEA, and PCA/TEA were measured. Pearson correlation analysis and multiple linear regression analysis were performed on the PCOA and the six radiologic measurements to analyze the relationship. Results: Pearson correlation analysis found HKA had the highest coefficient at 0.568. In multiple linear regression, only HKA was associated, excluding all other measurements. Conclusions: Popliteal crease obliquity is significantly associated with coronal plane lower extremity alignment and exhibits a stronger correlation than with underlying knee osseous morphology. If future research is conducted based on this, popliteal crease could serve as a valuable clue for predicting lower extremity alignment and the risk of osteoarthritis development.
Collapse
Affiliation(s)
| | | | | | - Se-Won Lee
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Seoul 07345, Republic of Korea; (D.H.L.); (B.-H.K.)
| |
Collapse
|
6
|
Gao L, Beninatto R, Oláh T, Goebel L, Tao K, Roels R, Schrenker S, Glomm J, Venkatesan JK, Schmitt G, Sahin E, Dahhan O, Pavan M, Barbera C, Lucia AD, Menger MD, Laschke MW, Cucchiarini M, Galesso D, Madry H. A Photopolymerizable Biocompatible Hyaluronic Acid Hydrogel Promotes Early Articular Cartilage Repair in a Minipig Model In Vivo. Adv Healthc Mater 2023; 12:e2300931. [PMID: 37567219 PMCID: PMC11468502 DOI: 10.1002/adhm.202300931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Articular cartilage defects represent an unsolved clinical challenge. Photopolymerizable hydrogels are attractive candidates supporting repair. This study investigates the short-term safety and efficacy of two novel hyaluronic acid (HA)-triethylene glycol (TEG)-coumarin hydrogels photocrosslinked in situ in a clinically relevant large animal model. It is hypothesized that HA-hydrogel-augmented microfracture (MFX) is superior to MFX in enhancing early cartilage repair, and that the molar degree of substitution and concentration of HA affects repair. Chondral full-thickness defects in the knees of adult minipigs are treated with either 1) debridement (No MFX), 2) debridement and MFX, 3) debridement, MFX, and HA hydrogel (30% molar derivatization, 30 mg mL-1 HA; F3) (MFX+F3), and 4) debridement, MFX, and HA hydrogel (40% molar derivatization, 20 mg mL-1 HA; F4) (MFX+F4). After 8 weeks postoperatively, MFX+F3 significantly improves total macroscopic and histological scores compared with all other groups without negative effects, besides significantly enhancing the individual repair parameters "defect architecture," "repair tissue surface" (compared with No MFX, MFX), and "subchondral bone" (compared with MFX). These data indicate that photopolymerizable HA hydrogels enable a favorable metastable microenvironment promoting early chondrogenesis in vivo. This work also uncovers a mechanism for effective HA-augmented cartilage repair by combining lower molar derivatization with higher concentrations.
Collapse
Affiliation(s)
- Liang Gao
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Riccardo Beninatto
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Tamás Oláh
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Lars Goebel
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ke Tao
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Rebecca Roels
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Steffen Schrenker
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Julianne Glomm
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Gertrud Schmitt
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ebrar Sahin
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ola Dahhan
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Mauro Pavan
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Alba Di Lucia
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland UniversityKirrberger Straße 100, Building 65 and 66D‐66421HomburgGermany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland UniversityKirrberger Straße 100, Building 65 and 66D‐66421HomburgGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Devis Galesso
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| |
Collapse
|
7
|
Madry H. Surgical therapy in osteoarthritis. Osteoarthritis Cartilage 2022; 30:1019-1034. [PMID: 35183776 DOI: 10.1016/j.joca.2022.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To provide an evidence-based overview of the different surgical procedures in osteoarthritis (OA). DESIGN This narrative review reports on surgical therapies (1) for severe, end stage OA and (2) of surgical options aiming to possibly reduce OA development earlier in the course of the disease. RESULTS Surgical practice guidelines provide evidence-based recommendations to assist in the clinical decision-making. Total joint arthroplasty represents the only valuable, established surgical option for severe, end stage OA. For hip and knee OA, it is by far the most common surgical procedure and provides considerable pain relief, functional restoration, and improved quality of life. Surgical therapy aiming to postpone OA essentially addresses extra- or intraarticular pre-osteoarthritic deformities, defined as congenital or acquired disturbances of the joint structure that adversely affect its function. Approaches in this category include osteotomies and different cartilage repair procedures such as osteochondral autograft and allograft transfer, marrow stimulation techniques, and autologous chondrocyte implantation. However, they are not only less commonly performed than arthroplasty, but the scientific clinical evidence in favour of this type of surgery to reduce the long-term risk of developing OA is considerably reduced. CONCLUSION Total knee and hip arthroplasty are two of the most successful procedures in all of medicine. As the progression of this insidious disease is often asymptomatic and slow, it is imperative to judge reparative procedures at their potential to reduce OA development at long-term, besides their primary clinical outcomes. Evidence-based guidelines provide a valuable tool for high-quality surgical decision making in OA.
Collapse
Affiliation(s)
- H Madry
- Institute of Experimental Orthopaedics, Saarland University, Homburg, Saar, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Saar, Germany.
| |
Collapse
|