Abdullah LN, Chow EKH. Mechanisms of chemoresistance in cancer stem cells.
Clin Transl Med 2013;
2:3. [PMID:
23369605 PMCID:
PMC3565873 DOI:
10.1186/2001-1326-2-3]
[Citation(s) in RCA: 544] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy is one of the standard methods of treatment in many cancers. While chemotherapy is often capable of inducing cell death in tumors and reducing the tumor bulk, many cancer patients experience recurrence and ultimately death because of treatment failure. In recent years, cancer stem cells (CSCs) have gained intense interest as key tumor-initiating cells that may also play an integral role in recurrence following chemotherapy. As such, a number of mechanisms of chemoresistance have been identified in CSCs. In this review, we describe a number of these mechanisms of chemoresistance including ABC transporter expression, aldehyde dehydrogenase (ALDH) activity, B-cell lymphoma-2 (BCL2) related chemoresistance, enhanced DNA damage response and activation of key signaling pathways. Furthermore, we evaluate studies that demonstrate potential methods for overcoming chemoresistance and treating chemoresistant cancers that are driven by CSCs. By understanding how tumor-initiating cells such as CSCs escape chemotherapy, more informed approaches to treating cancer will develop and may improve clinical outcomes for cancer patients.
Collapse