1
|
Ragunathan P, Sae-Lao P, Harikishore A, Daher W, Roquet-Banères F, Kremer L, Bates RW, Grüber G. SQ31f is a potent non-tuberculous mycobacteria antibiotic by specifically targeting the mycobacterial F-ATP synthase. J Antimicrob Chemother 2025; 80:270-280. [PMID: 39499211 DOI: 10.1093/jac/dkae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) infection presents a growing global health problem and requires new antibiotics targeting enzymes that are essential for the pathogens under various metabolic conditions, with high target specificity, good solubility and with attractive combinatory potency. METHODS SQ31f was synthesized by a simplified synthesis protocol, and its effect on growth inhibition of fast- and slow-growing NTM and clinical isolates, whole-cell ATP depletion, ex vivo macrophages and its potency in combination with other antibiotics were evaluated. Molecular docking studies were employed to assess SQ31f's binding mode. RESULTS We present- squaramide SQ31f as a novel anti-NTM inhibitor targeting the NTM F1FO-ATP synthase, essential for ATP formation, regulation of ATP homeostasis and proton motive force under multiple growth conditions. The potency of SQ31f in growth inhibition of fast- and slow-growing NTM and clinical isolates correlates with whole-cell ATP depletion, which is not caused by altered oxygen consumption. SQ31f's high aqueous solubility enables binding to the waterfilled cytosolic proton half channel in the subunits a-c interface of the FO domain. As presented for the fast-growing Mycobacterium abscessus, the compound is active against intracellular-residing M. abscessus. Importantly, SQ31f shows an additive effect of the anti-M. abscessus drugs clofazimine, rifabutin or amikacin, and an attractive potentiation of linezolid, clarithromycin, or the oral pair tebipenem and avibactam. CONCLUSIONS SQ31f represents an attractive inhibitor to tackle the issues associated with NTM drug tolerance and toxicity. Its combinatory potency with anti-M. abscessus drugs holds potential for overcoming resistance, while also reducing intensive compound synthesis and associated costs.
Collapse
Affiliation(s)
- Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Patcharaporn Sae-Lao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
| | - Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Françoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Roderick W Bates
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str., #07-01 Matrix, Singapore 138671, Republic of Singapore
| |
Collapse
|
2
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024; 37:e0008023. [PMID: 39360834 PMCID: PMC11629636 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
3
|
Saw WG, Le KCM, Shin J, Kwek JHM, Wong CF, Ragunathan P, Fong TC, Müller V, Grüber G. Atomic insights of an up and down conformation of the Acinetobacter baumannii F 1 -ATPase subunit ε and deciphering the residues critical for ATP hydrolysis inhibition and ATP synthesis. FASEB J 2023; 37:e23040. [PMID: 37318822 DOI: 10.1096/fj.202300175rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
The Acinetobacter baumannii F1 FO -ATP synthase (α3 :β3 :γ:δ:ε:a:b2 :c10 ), which is essential for this strictly respiratory opportunistic human pathogen, is incapable of ATP-driven proton translocation due to its latent ATPase activity. Here, we generated and purified the first recombinant A. baumannii F1 -ATPase (AbF1 -ATPase) composed of subunits α3 :β3 :γ:ε, showing latent ATP hydrolysis. A 3.0 Å cryo-electron microscopy structure visualizes the architecture and regulatory element of this enzyme, in which the C-terminal domain of subunit ε (Abε) is present in an extended position. An ε-free AbF1 -ɑβγ complex generated showed a 21.5-fold ATP hydrolysis increase, demonstrating that Abε is the major regulator of AbF1 -ATPase's latent ATP hydrolysis. The recombinant system enabled mutational studies of single amino acid substitutions within Abε or its interacting subunits β and γ, respectively, as well as C-terminal truncated mutants of Abε, providing a detailed picture of Abε's main element for the self-inhibition mechanism of ATP hydrolysis. Using a heterologous expression system, the importance of Abε's C-terminus in ATP synthesis of inverted membrane vesicles, including AbF1 FO -ATP synthases, has been explored. In addition, we are presenting the first NMR solution structure of the compact form of Abε, revealing interaction of its N-terminal β-barrel and C-terminal ɑ-hairpin domain. A double mutant of Abε highlights critical residues for Abε's domain-domain formation which is important also for AbF1 -ATPase's stability. Abε does not bind MgATP, which is described to regulate the up and down movements in other bacterial counterparts. The data are compared to regulatory elements of F1 -ATPases in bacteria, chloroplasts, and mitochondria to prevent wasting of ATP.
Collapse
Affiliation(s)
- Wuan-Geok Saw
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Khoa Cong Minh Le
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jes Hui Min Kwek
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chui Fann Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Tuck Choy Fong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Volker Müller
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Wong CF, Leow CY, Grüber G. Cryo-EM structure of the Mycobacterium abscessus F 1-ATPase. Biochem Biophys Res Commun 2023; 671:140-145. [PMID: 37302287 DOI: 10.1016/j.bbrc.2023.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
The cases of lung disease caused by non-tuberculous mycobacterium Mycobacterium abscessus (Mab) are increasing and not reliably curable. Repurposing of anti-tuberculosis inhibitors brought the oxidative phosphorylation pathway with its final product ATP, formed by the essential F1FO-ATP synthase (subunits α3:β3:γ:δ:ε:a:b:b':c9), into focus as an attractive inhibitor target against Mab. Because of the pharmacological attractiveness of this enzyme, we generated and purified a recombinant and enzymatically active Mab F1-ATPase complex, including subunits α3:β3:γ:δ:ε (MabF1-αβγδε) to achieve mechanistic, regulatory, and structural insights. The high purity of the complex enabled the first cryo-electron microscopy structure determination of the Mab F1-ATPase complex to 7.3 Å resolution. The enzyme showed low ATP hydrolysis activity, which was stimulated by trypsin treatment. No effect was observed in the presence of the detergent lauryldimethylamine oxide.
Collapse
Affiliation(s)
- Chui-Fann Wong
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Chen-Yen Leow
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
5
|
Structural Elements Involved in ATP Hydrolysis Inhibition and ATP Synthesis of Tuberculosis and Nontuberculous Mycobacterial F-ATP Synthase Decipher New Targets for Inhibitors. Antimicrob Agents Chemother 2022; 66:e0105622. [PMID: 36445139 PMCID: PMC9764993 DOI: 10.1128/aac.01056-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The F1FO-ATP synthase is required for the viability of tuberculosis (TB) and nontuberculous mycobacteria (NTM) and has been validated as a drug target. Here, we present the cryo-EM structures of the Mycobacterium smegmatis F1-ATPase and the F1FO-ATP synthase with different nucleotide occupation within the catalytic sites and visualize critical elements for latent ATP hydrolysis and efficient ATP synthesis. Mutational studies reveal that the extended C-terminal domain (αCTD) of subunit α is the main element for the self-inhibition mechanism of ATP hydrolysis for TB and NTM bacteria. Rotational studies indicate that the transition between the inhibition state by the αCTD and the active state is a rapid process. We demonstrate that the unique mycobacterial γ-loop and subunit δ are critical elements required for ATP formation. The data underline that these mycobacterium-specific elements of α, γ, and δ are attractive targets, providing a platform for the discovery of species-specific inhibitors.
Collapse
|