1
|
Schalkwijk HH, Gillemot S, Reynders M, Selleslag D, Andrei G, Snoeck R. Heterogeneity and viral replication fitness of HSV-1 clinical isolates with mutations in the thymidine kinase and DNA polymerase. J Antimicrob Chemother 2022; 77:3153-3162. [PMID: 36059135 DOI: 10.1093/jac/dkac297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/04/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Prolonged antiviral therapy in immunocompromised individuals can result in the emergence of (multi)drug-resistant herpes simplex virus 1 (HSV-1) infections, forming a therapeutic challenge. OBJECTIVES To evaluate spatial and temporal differences in drug resistance of HSV-1 samples from a HSCT recipient and to determine the effect of resistance mutations on viral replication fitness. PATIENTS AND METHODS Five HSV-1 isolates were recovered from a HSCT recipient who suffered from persistent HSV-1 lesions, consecutively treated with aciclovir, foscarnet, cidofovir and a combination of ganciclovir and cidofovir. Spatial and temporal differences in HSV-1 drug resistance were evaluated genotypically [Sanger sequencing and next-generation sequencing (NGS) of the viral thymidine kinase (TK) and DNA polymerase (DP)] and phenotypically (plaque reduction assay). Viral replication fitness was determined by dual infection competition assays. RESULTS Rapid evolution to aciclovir and foscarnet resistance was observed due to acquisition of TK (A189V and R222H) and DP (L778M and L802F) mutations. Virus isolates showed heterogeneous populations, spatial virus compartmentalization and minor viral variants in three out of five isolates (detectable by NGS but not by Sanger sequencing). Mutations in the TK and DP genes did not alter replication fitness without drug pressure. TK and/or DP mutants influenced replication fitness under antiviral pressure and showed increased fitness under pressure of the drug they showed resistance to. CONCLUSIONS The use of NGS and dual infection competition assays revealed rapid evolution of HSV-1 drug resistance in a HSCT recipient with spatial and temporal compartmentalization of viral variants that had altered replication fitness under antiviral pressure.
Collapse
Affiliation(s)
- Hanna Helena Schalkwijk
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sarah Gillemot
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Marijke Reynders
- Department of Laboratory Medicine, AZ Sint-Jan Brugge, Brugge, Belgium
| | - Dominik Selleslag
- Department of Internal Medicine, AZ Sint-Jan Brugge, Brugge, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Development of Human Immunodeficiency Virus Type 1 Resistance to 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine (EFdA) Starting with Wild-Type or Nucleoside Reverse Transcriptase Inhibitor Resistant-Strains. Antimicrob Agents Chemother 2021; 65:e0116721. [PMID: 34516245 DOI: 10.1128/aac.01167-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against WT and drug-resistant HIV-1, in Phase III clinical trials. EFdA resistance is not well characterized. To study EFdA-resistance patterns as it may emerge in naïve or tenofovir- (TFV), emtricitabine/lamivudine- (FTC/3TC), or zidovudine- (AZT) treated patients we performed viral passaging experiments starting with wild-type, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless the starting viral sequence, all selected EFdA-resistant variants included the M184V RT mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than WT HIV-1. These mutants also had significantly lower specific infectivity than WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT vs. A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data, suggest that EFdA is an excellent therapeutic candidate for naïve, AZT-, FTC/3TC, and especially tenofovir-treated patients.
Collapse
|
3
|
Trompet E, Temblador A, Gillemot S, Topalis D, Snoeck R, Andrei G. An MHV-68 Mutator Phenotype Mutant Virus, Confirmed by CRISPR/Cas9-Mediated Gene Editing of the Viral DNA Polymerase Gene, Shows Reduced Viral Fitness. Viruses 2021; 13:v13060985. [PMID: 34073189 PMCID: PMC8227558 DOI: 10.3390/v13060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022] Open
Abstract
Drug resistance studies on human γ-herpesviruses are hampered by the absence of an in vitro system that allows efficient lytic viral replication. Therefore, we employed murine γ-herpesvirus-68 (MHV-68) that efficiently replicates in vitro as a model to study the antiviral resistance of γ-herpesviruses. In this study, we investigated the mechanism of resistance to nucleoside (ganciclovir (GCV)), nucleotide (cidofovir (CDV), HPMP-5azaC, HPMPO-DAPy) and pyrophosphate (foscarnet (PFA)) analogues and the impact of these drug resistance mutations on viral fitness. Viral fitness was determined by dual infection competition assays, where MHV-68 drug-resistant viral clones competed with the wild-type virus in the absence and presence of antivirals. Using next-generation sequencing, the composition of the viral populations was determined at the time of infection and after 5 days of growth. Antiviral drug resistance selection resulted in clones harboring mutations in the viral DNA polymerase (DP), denoted Y383SGCV, Q827RHPMP-5azaC, G302WPFA, K442TPFA, G302W+K442TPFA, C297WHPMPO-DAPy and C981YCDV. Without antiviral pressure, viral clones Q827RHPMP-5azaC, G302WPFA, K442TPFA and G302W+K442TPFA grew equal to the wild-type virus. However, in the presence of antivirals, these mutants had a growth advantage over the wild-type virus that was moderately to very strongly correlated with antiviral resistance. The Y383SGCV mutant was more fit than the wild-type virus with and without antivirals, except in the presence of brivudin. The C297W and C981Y changes were associated with a mutator phenotype and had a severely impaired viral fitness in the absence and presence of antivirals. The mutator phenotype caused by C297W in MHV-68 DP was validated by using a CRISPR/Cas9 genome editing approach.
Collapse
|
4
|
Andreatta K, Willkom M, Martin R, Chang S, Wei L, Liu H, Liu YP, Graham H, Quirk E, Martin H, White KL. Switching to bictegravir/emtricitabine/tenofovir alafenamide maintained HIV-1 RNA suppression in participants with archived antiretroviral resistance including M184V/I. J Antimicrob Chemother 2020; 74:3555-3564. [PMID: 31430369 PMCID: PMC6857193 DOI: 10.1093/jac/dkz347] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/01/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives Studies 1878 and 1844 demonstrated non-inferior efficacy of switching suppressed HIV-1-infected adults to bictegravir/emtricitabine/tenofovir alafenamide (BIC/FTC/TAF) versus continuing boosted PI-based triple regimens or dolutegravir/abacavir/lamivudine (DTG/ABC/3TC). Here, detailed analyses of pre-existing resistance in the two BIC/FTC/TAF switch studies and efficacy at week 48 are described. Methods Pre-existing resistance was assessed from historical genotypes (documented resistance to study drugs was excluded) and by retrospective baseline proviral archive DNA genotyping from whole blood. Outcomes were based on HIV-1 RNA at week 48 with missing values imputed using the last on-treatment observation carried forward method. Results Cumulative pre-existing resistance data from historical and proviral genotypes were obtained for 95% (543/570) of participants who switched to BIC/FTC/TAF. Altogether, 40% (217/543) had one or more pre-existing primary resistance substitutions in protease, reverse transcriptase and/or integrase. Pre-switch NRTI resistance was detected in 16% (89/543) of BIC/FTC/TAF-treated participants, with M184V or M184I detected by proviral genotyping in 10% (54/543). At week 48, 98% (561/570) of all BIC/FTC/TAF-treated participants versus 98% (213/217) with pre-existing resistance and 96% (52/54) with archived M184V/I had HIV-1 RNA <50 copies/mL. No BIC/FTC/TAF-treated participants developed treatment-emergent resistance to study drugs. Conclusions Pre-existing resistance substitutions, notably M184V/I, were unexpectedly common among suppressed participants who switched to BIC/FTC/TAF. High rates of virological suppression were maintained in the overall study population and in those with pre-existing resistance, including M184V/I, for up to 48 weeks of BIC/FTC/TAF treatment with no resistance development. These results indicate that BIC/FTC/TAF is an effective treatment option for suppressed patients, including those with evidence of archived NRTI resistance.
Collapse
Affiliation(s)
- Kristen Andreatta
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Madeleine Willkom
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Ross Martin
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Silvia Chang
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Lilian Wei
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Hui Liu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Ya-Pei Liu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Hiba Graham
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Erin Quirk
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Hal Martin
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Kirsten L White
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| |
Collapse
|
5
|
Trompet E, Topalis D, Gillemot S, Snoeck R, Andrei G. Viral fitness of MHV-68 viruses harboring drug resistance mutations in the protein kinase or thymidine kinase. Antiviral Res 2020; 182:104901. [PMID: 32763314 DOI: 10.1016/j.antiviral.2020.104901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Murine γ-herpesvirus-68 (MHV-68), genetically and biologically related to human γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, can be easily propagated in vitro allowing drug resistance studies. Previously, we described specific changes in MHV-68 protein kinase (PK) or thymidine kinase (TK) associated with resistance to various purine or pyrimidine nucleoside analogues, respectively. To investigate how specific TK and PK mutations affect viral replication capacity, we performed dual infection competition assays in which wild-type and drug-resistant virus compete in absence or presence of antivirals in Vero cells. The composition of the mixed viral population was analyzed using next-generation sequencing and relative fitness of seven MHV-68 PK or TK mutants was calculated based on the frequency of viral variants at the time of infection and after 5-days growth. A MHV-68 mutant losing the PK function due to a 2-nucleotide deletion was less fit than the wild-type virus in absence of antivirals, consistent with the essential role of viral PKs during lytic replication, but overgrew the wild-type virus under pressure of purine nucleosides. TK mutant viruses, with frameshift or missense mutations, grew equal to wild-type virus in absence of antivirals, in accordance with the viral TK function only being essential in non-replicating or in TK-deficient cells, but were more fit when treated with pyrimidine nucleosides. Moreover, TK missense mutant viruses also increased fitness under pressure of antivirals other than pyrimidine nucleosides, indicating that MHV-68 TK mutations might influence viral fitness by acting on cellular and/or viral functions that are unrelated to nucleoside activation.
Collapse
Affiliation(s)
- Erika Trompet
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Sarah Gillemot
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Amano M, Bulut H, Tamiya S, Nakamura T, Koh Y, Mitsuya H. Amino-acid inserts of HIV-1 capsid (CA) induce CA degradation and abrogate viral infectivity: Insights for the dynamics and mechanisms of HIV-1 CA decomposition. Sci Rep 2019; 9:9806. [PMID: 31285456 PMCID: PMC6614453 DOI: 10.1038/s41598-019-46082-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 11/09/2022] Open
Abstract
Accumulation of amino acid (AA) insertions/substitutions are observed in the Gag-protein of HIV-1 variants resistant to HIV-1 protease inhibitors. Here, we found that HIV-1 carrying AA insertions in capsid protein (CA) undergoes aberrant CA degradation. When we generated recombinant HIV-1s (rHIV-1s) containing 19-AAs in Gag, such insertions caused significant CA degradation, which initiated in CA's C-terminal. Such rHIV-1s had remarkable morphological abnormality, decreased infectivity, and no replicative ability, which correlated with levels of CA degradation. The CA degradation observed was energy-independent and had no association with cellular/viral proteolytic mechanisms, suggesting that the CA degradation occurs due to conformational/structural incompatibility caused by the 19-AA insertions. The incorporation of degradation-prone CA into the wild-type CA resulted in significant disruption of replication competence in "chimeric" virions. The data should allow better understanding of the dynamics and mechanisms of CA decomposition/degradation and retroviral uncoating, which may lead to new approach for antiretroviral modalities.
Collapse
Affiliation(s)
- Masayuki Amano
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan.,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sadahiro Tamiya
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan.,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tomofumi Nakamura
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan
| | - Yasuhiro Koh
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan
| | - Hiroaki Mitsuya
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan. .,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan.
| |
Collapse
|
7
|
Pham HT, Mesplède T, Wainberg MA. Effect on HIV-1 viral replication capacity of DTG-resistance mutations in NRTI/NNRTI resistant viruses. Retrovirology 2016; 13:31. [PMID: 27130466 PMCID: PMC4851780 DOI: 10.1186/s12977-016-0265-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022] Open
Abstract
Background Recommended regimens for HIV-positive individuals include the co-administration of dolutegravir (DTG) with two reverse transcriptase inhibitors (RTIs). Although rare, emerging resistance against DTG is often associated with the R263K substitution in integrase. In-vitro-selected R263K was associated with impaired viral replication capacity, DNA integration, and integrase strand-transfer activity, especially when accompanied by the secondary mutation H51Y. Given the reduced fitness of RTI-resistant viruses, we investigated potential impacts on viral replication of combining R263K and H51Y/R263K with major RTI-resistance substitutions including K65R, L74V, K103N, E138K, and M184I/V. Results We combined the R263K or H51Y/R263K with RTI-resistance mutations into the proviral plasmid pNL4.3 and measured the resulting viral infectiousness, replication capacity, and ability to integrate viral DNA into host cells. Infectiousness was determined by luciferase assay in TZM-bl cells. Replicative capacity was monitored over 7 days and viral DNA integration was studied by real-time Alu-qPCR in PM1 cells. We found that viral infectiousness, replication capacities and integration levels were greatly reduced in triple mutants, i.e. H51Y/R263K plus a RT mutation, and moderately reduced in double mutants, i.e. R263K plus a RT mutation, compared to wild-type and single RT-mutant viruses. Conclusions Our findings help to explain the absence of RTI mutations in individuals who experienced DTG-treatment failure.
Collapse
Affiliation(s)
- Hanh T Pham
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Côte-Ste-Catherine, Montreal, QC, H3T 1E2, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Côte-Ste-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Côte-Ste-Catherine, Montreal, QC, H3T 1E2, Canada. .,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Drug Susceptibility and Viral Fitness of HIV-1 with Integrase Strand Transfer Inhibitor Resistance Substitution Q148R or N155H in Combination with Nucleoside/Nucleotide Reverse Transcriptase Inhibitor Resistance Substitutions. Antimicrob Agents Chemother 2015; 60:757-65. [PMID: 26574015 DOI: 10.1128/aac.02096-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023] Open
Abstract
In clinical trials of coformulated elvitegravir (EVG), cobicistat (COBI), emtricitabine (FTC), and tenofovir disoproxil fumarate (TDF), emergent drug resistance predominantly involved the FTC resistance substitution M184V/I in reverse transcriptase (RT), with or without the tenofovir (TFV) resistance substitution K65R, accompanied by a primary EVG resistance substitution (E92Q, N155H, or Q148R) in integrase (IN). We previously reported that the RT-K65R, RT-M184V, and IN-E92Q substitutions lacked cross-class phenotypic resistance and replicative fitness compensation. As a follow-up, the in vitro characteristics of mutant HIV-1 containing RT-K65R and/or RT-M184V with IN-Q148R or IN-N155H were also evaluated, alone and in combination, for potential interactions. Single mutants displayed reduced susceptibility to their corresponding inhibitor classes, with no cross-class resistance. Viruses with IN-Q148R or IN-N155H exhibited reduced susceptibility to EVG (137- and 40-fold, respectively) that was not affected by the addition of RT-M184V or RT-K65R/M184V. All viruses containing RT-M184V were resistant to FTC (>1,000-fold). Mutants with RT-K65R had reduced susceptibility to TFV (3.3- to 3.6-fold). Without drugs present, the viral fitness of RT and/or IN mutants was diminished relative to that of the wild type in the following genotypic order: wild type > RT-M184V ≥ IN-N155H ≈ IN-Q148R ≥ RT-M184V + IN-N155H ≥ RT-M184V + IN-Q148R ≥ RT-K65R/M184V + IN-Q148R ≈ RT-K65R/M184V + IN-N155H. In the presence of drug concentrations approaching physiologic levels, drug resistance counteracted replication defects, allowing single mutants to outcompete the wild type with one drug present and double mutants to outcompete single mutants with two drugs present. These results suggest that during antiretroviral treatment with multiple drugs, the development of viruses with combinations of resistance substitutions may be favored despite diminished viral fitness.
Collapse
|