1
|
Collins J, Oviatt AA, Chan PF, Osheroff N. Target-Mediated Fluoroquinolone Resistance in Neisseria gonorrhoeae: Actions of Ciprofloxacin against Gyrase and Topoisomerase IV. ACS Infect Dis 2024; 10:1351-1360. [PMID: 38606464 PMCID: PMC11015056 DOI: 10.1021/acsinfecdis.4c00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A. Oviatt
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Pan F. Chan
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Grossman S, Fishwick CWG, McPhillie MJ. Developments in Non-Intercalating Bacterial Topoisomerase Inhibitors: Allosteric and ATPase Inhibitors of DNA Gyrase and Topoisomerase IV. Pharmaceuticals (Basel) 2023; 16:261. [PMID: 37259406 PMCID: PMC9964621 DOI: 10.3390/ph16020261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 10/15/2023] Open
Abstract
Increases in antibiotic usage and antimicrobial resistance occurrence have caused a dramatic reduction in the effectiveness of many frontline antimicrobial treatments. Topoisomerase inhibitors including fluoroquinolones are broad-spectrum antibiotics used to treat a range of infections, which stabilise a topoisomerase-DNA cleavage complex via intercalation of the bound DNA. However, these are subject to bacterial resistance, predominantly in the form of single-nucleotide polymorphisms in the active site. Significant research has been undertaken searching for novel bioactive molecules capable of inhibiting bacterial topoisomerases at sites distal to the fluoroquinolone binding site. Notably, researchers have undertaken searches for anti-infective agents that can inhibit topoisomerases through alternate mechanisms. This review summarises work looking at the inhibition of topoisomerases predominantly through non-intercalating agents, including those acting at a novel allosteric site, ATPase domain inhibitors, and those offering unique binding modes and mechanisms of action.
Collapse
Affiliation(s)
- Scott Grossman
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
3
|
Boshta NM, El-Essawy FA, Alshammari MB, Noreldein SG, Darwesh OM. Discovery of Quinazoline-2,4(1 H,3 H)-Dione Derivatives as Potential Antibacterial Agent: Design, Synthesis, and Their Antibacterial Activity. Molecules 2022; 27:3853. [PMID: 35744976 PMCID: PMC9228007 DOI: 10.3390/molecules27123853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/31/2022] Open
Abstract
In this paper, we report on the design and synthesis of a novel series of quinazoline-2,4(1H,3H)-dione derivatives as fluoroquinolone-like inhibitors of bacterial gyrase and DNA topoisomerase IV to identify and develop antimicrobial agents to prevent bacterial resistance problems. Their structures were confirmed using spectroscopic analyses (IR, NMR, and EI-MS). The novel quinazoline-2,4(1H,3H)-dione derivatives were evaluated for their antimicrobial activities against Gram-positive and Gram-negative bacterial strains using the Agar well diffusion method to study the antimicrobial activities and compared them with the standard drugs. Most compounds displayed moderate activity. Among the tested compounds, the most promising compounds 13 and 15 provided broad bioactive spectrum against Gram-positive and Gram-negative strains compared to the standard drugs.
Collapse
Affiliation(s)
- Nader M. Boshta
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koam 32511, Egypt;
| | - Farag A. El-Essawy
- Preparatory Year Deanship, Basic Science Department, Prince Sattam Bin Abdulaziz University, P.O. Box 151, Alkharj 11942, Saudi Arabia;
| | - Mohammed B. Alshammari
- College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 151, Alkharj 11942, Saudi Arabia;
| | - Safaa G. Noreldein
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koam 32511, Egypt;
| | - Osama M. Darwesh
- Environmental Microbiology and Nanotechnology Group, Agricultural Microbiology Department, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
4
|
Lapointe G, Skepper CK, Holder LM, Armstrong D, Bellamacina C, Blais J, Bussiere D, Bian J, Cepura C, Chan H, Dean CR, De Pascale G, Dhumale B, Fisher LM, Fulsunder M, Kantariya B, Kim J, King S, Kossy L, Kulkarni U, Lakshman J, Leeds JA, Ling X, Lvov A, Ma S, Malekar S, McKenney D, Mergo W, Metzger L, Mhaske K, Moser HE, Mostafavi M, Namballa S, Noeske J, Osborne C, Patel A, Patel D, Patel T, Piechon P, Polyakov V, Prajapati K, Prosen KR, Reck F, Richie DL, Sanderson MR, Satasia S, Savani B, Selvarajah J, Sethuraman V, Shu W, Tashiro K, Thompson KV, Vaarla K, Vala L, Veselkov DA, Vo J, Vora B, Wagner T, Wedel L, Williams SL, Yendluri S, Yue Q, Yifru A, Zhang Y, Rivkin A. Discovery and Optimization of DNA Gyrase and Topoisomerase IV Inhibitors with Potent Activity against Fluoroquinolone-Resistant Gram-Positive Bacteria. J Med Chem 2021; 64:6329-6357. [PMID: 33929852 DOI: 10.1021/acs.jmedchem.1c00375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, we describe the discovery and optimization of a novel series that inhibits bacterial DNA gyrase and topoisomerase IV via binding to, and stabilization of, DNA cleavage complexes. Optimization of this series led to the identification of compound 25, which has potent activity against Gram-positive bacteria, a favorable in vitro safety profile, and excellent in vivo pharmacokinetic properties. Compound 25 was found to be efficacious against fluoroquinolone-sensitive Staphylococcus aureus infection in a mouse thigh model at lower doses than moxifloxacin. An X-ray crystal structure of the ternary complex formed by topoisomerase IV from Klebsiella pneumoniae, compound 25, and cleaved DNA indicates that this compound does not engage in a water-metal ion bridge interaction and forms no direct contacts with residues in the quinolone resistance determining region (QRDR). This suggests a structural basis for the reduced impact of QRDR mutations on antibacterial activity of 25 compared to fluoroquinolones.
Collapse
Affiliation(s)
- Guillaume Lapointe
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Colin K Skepper
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Lauren M Holder
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Duncan Armstrong
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Cornelia Bellamacina
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Johanne Blais
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Dirksen Bussiere
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Jianwei Bian
- Novartis Global Drug Development, Pudong, Shanghai 201203, China
| | - Cody Cepura
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Helen Chan
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Charles R Dean
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Gianfranco De Pascale
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Bhavesh Dhumale
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - L Mark Fisher
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, U.K
| | - Mangesh Fulsunder
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Bhavin Kantariya
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Julie Kim
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Sean King
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Lauren Kossy
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Upendra Kulkarni
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Jay Lakshman
- Novartis Global Drug Development, East Hanover, New Jersey 07936, United States
| | - Jennifer A Leeds
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Xiaolan Ling
- Novartis Global Drug Development, Pudong, Shanghai 201203, China
| | - Anatoli Lvov
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Sylvia Ma
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Swapnil Malekar
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - David McKenney
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Wosenu Mergo
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Louis Metzger
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Keshav Mhaske
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Heinz E Moser
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Mina Mostafavi
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Sunil Namballa
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Jonas Noeske
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Colin Osborne
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Ashish Patel
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Darshit Patel
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Tushar Patel
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Philippe Piechon
- Novartis Institutes for BioMedical Research, Basel 4002, Switzerland
| | - Valery Polyakov
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Krunal Prajapati
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Katherine R Prosen
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Folkert Reck
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Daryl L Richie
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Mark R Sanderson
- Randall Centre for Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, U.K
| | - Shailesh Satasia
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Bhautik Savani
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Jogitha Selvarajah
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, U.K
| | - Vijay Sethuraman
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Wei Shu
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Kyuto Tashiro
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Katherine V Thompson
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Krishniah Vaarla
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Lakhan Vala
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Dennis A Veselkov
- Randall Centre for Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, U.K
| | - Jason Vo
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Bhavesh Vora
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Trixie Wagner
- Novartis Institutes for BioMedical Research, Basel 4002, Switzerland
| | - Laura Wedel
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Sarah L Williams
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Satya Yendluri
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Qin Yue
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Aregahegn Yifru
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Yong Zhang
- Novartis Global Drug Development, Pudong, Shanghai 201203, China
| | - Alexey Rivkin
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| |
Collapse
|
5
|
Ligand-based pharmacophore modelling, in silico virtual screening, molecular docking and molecular dynamic simulation study to identify novel Francisella tularensis ParE inhibitors. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01274-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Skepper CK, Armstrong D, Balibar CJ, Bauer D, Bellamacina C, Benton BM, Bussiere D, De Pascale G, De Vicente J, Dean CR, Dhumale B, Fisher LM, Fuller J, Fulsunder M, Holder LM, Hu C, Kantariya B, Lapointe G, Leeds JA, Li X, Lu P, Lvov A, Ma S, Madhavan S, Malekar S, McKenney D, Mergo W, Metzger L, Moser HE, Mutnick D, Noeske J, Osborne C, Patel A, Patel D, Patel T, Prajapati K, Prosen KR, Reck F, Richie DL, Rico A, Sanderson MR, Satasia S, Sawyer WS, Selvarajah J, Shah N, Shanghavi K, Shu W, Thompson KV, Traebert M, Vala A, Vala L, Veselkov DA, Vo J, Wang M, Widya M, Williams SL, Xu Y, Yue Q, Zang R, Zhou B, Rivkin A. Topoisomerase Inhibitors Addressing Fluoroquinolone Resistance in Gram-Negative Bacteria. J Med Chem 2020; 63:7773-7816. [PMID: 32634310 DOI: 10.1021/acs.jmedchem.0c00347] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their discovery over 5 decades ago, quinolone antibiotics have found enormous success as broad spectrum agents that exert their activity through dual inhibition of bacterial DNA gyrase and topoisomerase IV. Increasing rates of resistance, driven largely by target-based mutations in the GyrA/ParC quinolone resistance determining region, have eroded the utility and threaten the future use of this vital class of antibiotics. Herein we describe the discovery and optimization of a series of 4-(aminomethyl)quinolin-2(1H)-ones, exemplified by 34, that inhibit bacterial DNA gyrase and topoisomerase IV and display potent activity against ciprofloxacin-resistant Gram-negative pathogens. X-ray crystallography reveals that 34 occupies the classical quinolone binding site in the topoisomerase IV-DNA cleavage complex but does not form significant contacts with residues in the quinolone resistance determining region.
Collapse
Affiliation(s)
- Colin K Skepper
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Duncan Armstrong
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Carl J Balibar
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Daniel Bauer
- Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Cornelia Bellamacina
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Bret M Benton
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Dirksen Bussiere
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Gianfranco De Pascale
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Javier De Vicente
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Charles R Dean
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Bhavesh Dhumale
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - L Mark Fisher
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, U.K
| | - John Fuller
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Mangesh Fulsunder
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Lauren M Holder
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Cheng Hu
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Bhavin Kantariya
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Guillaume Lapointe
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Jennifer A Leeds
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Xiaolin Li
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Peichao Lu
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Anatoli Lvov
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Sylvia Ma
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Shravanthi Madhavan
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Swapnil Malekar
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - David McKenney
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Wosenu Mergo
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Louis Metzger
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Heinz E Moser
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Daniel Mutnick
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Jonas Noeske
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Colin Osborne
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Ashish Patel
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Darshit Patel
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Tushar Patel
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Krunal Prajapati
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Katherine R Prosen
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Folkert Reck
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Daryl L Richie
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Alice Rico
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Mark R Sanderson
- Randall Centre for Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, U.K
| | - Shailesh Satasia
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - William S Sawyer
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Jogitha Selvarajah
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, U.K
| | - Nirav Shah
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Kartik Shanghavi
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Wei Shu
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Katherine V Thompson
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Martin Traebert
- Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Anand Vala
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Lakhan Vala
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Dennis A Veselkov
- Randall Centre for Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, U.K
| | - Jason Vo
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Michael Wang
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Marcella Widya
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Sarah L Williams
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Yongjin Xu
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Qin Yue
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Richard Zang
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Bo Zhou
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Alexey Rivkin
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| |
Collapse
|
7
|
Laponogov I, Pan XS, Veselkov DA, Skamrova GB, Umrekar TR, Fisher LM, Sanderson MR. Trapping of the transport-segment DNA by the ATPase domains of a type II topoisomerase. Nat Commun 2018; 9:2579. [PMID: 29968711 PMCID: PMC6030046 DOI: 10.1038/s41467-018-05005-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/25/2018] [Indexed: 11/09/2022] Open
Abstract
Type II topoisomerases alter DNA topology to control DNA supercoiling and chromosome segregation and are targets of clinically important anti-infective and anticancer therapeutics. They act as ATP-operated clamps to trap a DNA helix and transport it through a transient break in a second DNA. Here, we present the first X-ray crystal structure solved at 2.83 Å of a closed clamp complete with trapped T-segment DNA obtained by co-crystallizing the ATPase domain of S. pneumoniae topoisomerase IV with a nonhydrolyzable ATP analogue and 14-mer duplex DNA. The ATPase dimer forms a 22 Å protein hole occupied by the kinked DNA bound asymmetrically through positively charged residues lining the hole, and whose mutagenesis impacts the DNA decatenation, DNA relaxation and DNA-dependent ATPase activities of topo IV. These results and a side-bound DNA-ParE structure help explain how the T-segment DNA is captured and transported by a type II topoisomerase, and reveal a new enzyme-DNA interface for drug discovery.
Collapse
Affiliation(s)
- Ivan Laponogov
- Randall Centre for Cell and Molecular Biophysics, 3rd Floor New Hunt's House, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK.,Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK.,Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Xiao-Su Pan
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Dennis A Veselkov
- Randall Centre for Cell and Molecular Biophysics, 3rd Floor New Hunt's House, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Galyna B Skamrova
- Randall Centre for Cell and Molecular Biophysics, 3rd Floor New Hunt's House, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Trishant R Umrekar
- Randall Centre for Cell and Molecular Biophysics, 3rd Floor New Hunt's House, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK.,The Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet St., London, WC1E 7HX, UK
| | - L Mark Fisher
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK.
| | - Mark R Sanderson
- Randall Centre for Cell and Molecular Biophysics, 3rd Floor New Hunt's House, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
8
|
Germe T, Vörös J, Jeannot F, Taillier T, Stavenger RA, Bacqué E, Maxwell A, Bax BD. A new class of antibacterials, the imidazopyrazinones, reveal structural transitions involved in DNA gyrase poisoning and mechanisms of resistance. Nucleic Acids Res 2018; 46:4114-4128. [PMID: 29538767 PMCID: PMC5934680 DOI: 10.1093/nar/gky181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/16/2018] [Accepted: 03/02/2018] [Indexed: 12/24/2022] Open
Abstract
Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA ('poisoning') in an analogous fashion to fluoroquinolones, but without the requirement for the water-metal-ion bridge. Biochemical experiments and structural studies of cleavage complexes of IPYs compared with an uncleaved gyrase-DNA complex, reveal conformational transitions coupled to DNA cleavage at the DNA gate. These involve movement at the GyrA interface and tilting of the TOPRIM domains toward the scissile phosphate coupled to capture of the catalytic metal ion. Our experiments show that these structural transitions are involved generally in poisoning of gyrase by therapeutic compounds and resemble those undergone by the enzyme during its adenosine triphosphate-coupled strand-passage cycle. In addition to resistance mutations affecting residues that directly interact with the compounds, we characterized a mutant (D82N) that inhibits formation of the cleavage complex by the unpoisoned enzyme. The D82N mutant appears to act by stabilizing the binary conformation of DNA gyrase with uncleaved DNA without direct interaction with the compounds. This provides general insight into the resistance mechanisms to antibiotics targeting bacterial type II topoisomerases.
Collapse
Affiliation(s)
- Thomas Germe
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Judit Vörös
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Frederic Jeannot
- Sanofi R&D, TSU Infectious Diseases, 1541 Avenue Marcel Mérieux, 69280 Marcy L’Etoile, France
| | - Thomas Taillier
- Sanofi R&D, TSU Infectious Diseases, 1541 Avenue Marcel Mérieux, 69280 Marcy L’Etoile, France
| | - Robert A Stavenger
- Antibacterial Discovery Performance Unit, Infectious Diseases Therapy Area Unit, GlaxoSmithKline, 1250 Collegeville Road, Collegeville, PA 19426, USA
| | - Eric Bacqué
- Sanofi R&D, TSU Infectious Diseases, 1541 Avenue Marcel Mérieux, 69280 Marcy L’Etoile, France
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Benjamin D Bax
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| |
Collapse
|
9
|
Abstract
DNA topoisomerases are proven therapeutic targets of antibacterial agents. Quinolones, especially fluoroquinolones, are the most successful topoisomerase-targeting antibacterial drugs. These drugs target type IIA topoisomerases in bacteria. Recent structural and biochemical studies on fluoroquinolones have provided the molecular basis for both their mechanism of action, as well as the molecular basis of bacterial resistance. Due to the development of drug resistance, including fluoroquinolone resistance, among bacterial pathogens, there is an urgent need to discover novel antibacterial agents. Recent advances in topoisomerase inhibitors may lead to the development of novel antibacterial drugs that are effective against fluoroquinolone-resistant pathogens. They include type IIA topoisomerase inhibitors that either interact with the GyrB/ParE subunit or form nick-containing ternary complexes. In addition, several topoisomerase I inhibitors have recently been identified. Thus, DNA topoisomerases remain important targets of antibacterial agents.
Collapse
|
10
|
Ubiquitous Nature of Fluoroquinolones: The Oscillation between Antibacterial and Anticancer Activities. Antibiotics (Basel) 2017; 6:antibiotics6040026. [PMID: 29112154 PMCID: PMC5745469 DOI: 10.3390/antibiotics6040026] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Fluoroquinolones are synthetic antibacterial agents that stabilize the ternary complex of prokaryotic topoisomerase II enzymes (gyrase and Topo IV), leading to extensive DNA fragmentation and bacteria death. Despite the similar structural folds within the critical regions of prokaryotic and eukaryotic topoisomerases, clinically relevant fluoroquinolones display a remarkable selectivity for prokaryotic topoisomerase II, with excellent safety records in humans. Typical agents that target human topoisomerases (such as etoposide, doxorubicin and mitoxantrone) are associated with significant toxicities and secondary malignancies, whereas clinically relevant fluoroquinolones are not known to exhibit such propensities. Although many fluoroquinolones have been shown to display topoisomerase-independent antiproliferative effects against various human cancer cells, those that are significantly active against eukaryotic topoisomerase show the same DNA damaging properties as other topoisomerase poisons. Empirical models also show that fluoroquinolones mediate some unique immunomodulatory activities of suppressing pro-inflammatory cytokines and super-inducing interleukin-2. This article reviews the extended roles of fluoroquinolones and their prospects as lead for the unmet needs of "small and safe" multimodal-targeting drug scaffolds.
Collapse
|
11
|
Ashley RE, Lindsey RH, McPherson SA, Turnbough CL, Kerns RJ, Osheroff N. Interactions between Quinolones and Bacillus anthracis Gyrase and the Basis of Drug Resistance. Biochemistry 2017; 56:4191-4200. [PMID: 28708938 PMCID: PMC5560241 DOI: 10.1021/acs.biochem.7b00203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Gyrase appears to
be the primary cellular target for quinolone
antibacterials in multiple pathogenic bacteria, including Bacillus anthracis, the causative agent of anthrax. Given
the significance of this type II topoisomerase as a drug target, it
is critical to understand how quinolones interact with gyrase and
how specific mutations lead to resistance. However, these important
issues have yet to be addressed for a canonical gyrase. Therefore,
we utilized a mechanistic approach to characterize interactions of
quinolones with wild-type B. anthracis gyrase and
enzymes containing the most common quinolone resistance mutations.
Results indicate that clinically relevant quinolones interact with
the enzyme through a water–metal ion bridge in which a noncatalytic
divalent metal ion is chelated by the C3/C4 keto acid of the drug.
In contrast to other bacterial type II topoisomerases that have been
examined, the bridge is anchored to gyrase primarily through a single
residue (Ser85). Substitution of groups at the quinolone C7 and C8
positions generated drugs that were less dependent on the water–metal
ion bridge and overcame resistance. Thus, by analyzing the interactions
of drugs with type II topoisomerases from individual bacteria, it
may be possible to identify specific quinolone derivatives that can
overcome target-mediated resistance in important pathogenic species.
Collapse
Affiliation(s)
| | | | - Sylvia A McPherson
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Charles L Turnbough
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Robert J Kerns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy , Iowa City, Iowa 52242, United States
| | - Neil Osheroff
- VA Tennessee Valley Healthcare System , Nashville, Tennessee 37212, United States
| |
Collapse
|
12
|
Molecular insights on analogs of imidazo[1,2-a]pyridine, azaindole, and pyridylurea towards ParE using pharmacophore modeling, molecular docking, and dynamic simulation. Struct Chem 2017. [DOI: 10.1007/s11224-017-0919-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Al-Emran HM, Heisig A, Dekker D, Adu-Sarkodie Y, Cruz Espinoza LM, Panzner U, von Kalckreuth V, Marks F, Park SE, Sarpong N, May J, Heisig P. Detection of a Novel gyrB Mutation Associated With Fluoroquinolone-Nonsusceptible Salmonella enterica serovar Typhimurium Isolated From a Bloodstream Infection in Ghana. Clin Infect Dis 2016; 62 Suppl 1:S47-9. [PMID: 26933021 DOI: 10.1093/cid/civ790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A multidrug-resistant Salmonella enterica serovar Typhimurium with reduced susceptibility to ciprofloxacin was isolated from the blood of a hospitalized child in Ghana. DNA sequencing identified a novel gyrB mutation at codon 466 (Glu466Asp). An increase in fluoroquinolone susceptibility after the introduction of a wild-type gyrB(+) allele demonstrated that the gyrB466 mutation had a direct effect on fluoroquinolone susceptibility.
Collapse
Affiliation(s)
- Hassan M Al-Emran
- Bernhard-Nocht Institute for Tropical Medicine German Center for Infection Research, partner site Hamburg-Borstel-Lübeck
| | - Anke Heisig
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Germany
| | - Denise Dekker
- Bernhard-Nocht Institute for Tropical Medicine German Center for Infection Research, partner site Hamburg-Borstel-Lübeck
| | - Yaw Adu-Sarkodie
- Kumasi Centre for Collaborative Research in Tropical Medicine, Ghana
| | | | - Ursula Panzner
- International Vaccine Institute, Seoul, Republic of Korea
| | | | - Florian Marks
- International Vaccine Institute, Seoul, Republic of Korea
| | - Se Eun Park
- International Vaccine Institute, Seoul, Republic of Korea
| | - Nimako Sarpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Ghana
| | - Jürgen May
- Bernhard-Nocht Institute for Tropical Medicine German Center for Infection Research, partner site Hamburg-Borstel-Lübeck
| | - Peter Heisig
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Germany
| |
Collapse
|
14
|
Laponogov I, Pan XS, Veselkov DA, Cirz RT, Wagman A, Moser HE, Fisher LM, Sanderson MR. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV-DNA cleavage complex with novel 7,8-bridged fluoroquinolones. Open Biol 2016; 6:rsob.160157. [PMID: 27655731 PMCID: PMC5043579 DOI: 10.1098/rsob.160157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site—the E-site—found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem.280, 14 252–14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of β-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site.
Collapse
Affiliation(s)
- Ivan Laponogov
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Xiao-Su Pan
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Dennis A Veselkov
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Ryan T Cirz
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - Allan Wagman
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - Heinz E Moser
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - L Mark Fisher
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Mark R Sanderson
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK
| |
Collapse
|
15
|
The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity. Molecules 2016; 21:268. [PMID: 27043501 PMCID: PMC6274096 DOI: 10.3390/molecules21040268] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 11/17/2022] Open
Abstract
Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites--the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV. Quinolones increase the concentration of drug-enzyme-DNA cleavage complexes and convert them into cellular toxins; as a result they are bactericidal. High bioavailability, relative low toxicity and favorable pharmacokinetics have resulted in the clinical success of fluoroquinolones and quinolones. Due to these superior properties, quinolones have been extensively utilized and this increased usage has resulted in some quinolone-resistant bacterial strains. Bacteria become resistant to quinolones by three mechanisms: (1) mutation in the target site (gyrase and/or topoisomerase IV) of quinolones; (2) plasmid-mediated resistance; and (3) chromosome-mediated quinolone resistance. In plasmid-mediated resistance, the efflux of quinolones is increased along with a decrease in the interaction of the drug with gyrase (topoisomerase IV). In the case of chromosome-mediated quinolone resistance, there is a decrease in the influx of the drug into the cell.
Collapse
|
16
|
Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2016; 113:1706-13. [PMID: 26792525 DOI: 10.1073/pnas.1525047113] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects one-third of the world's population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. To better explain known differences in fluoroquinolone action, the crystal structures of the WT Mtb DNA gyrase cleavage core and a fluoroquinolone-sensitized mutant were determined in complex with DNA and five fluoroquinolones. The structures, ranging from 2.4- to 2.6-Å resolution, show that the intrinsically low susceptibility of Mtb to fluoroquinolones correlates with a reduction in contacts to the water shell of an associated magnesium ion, which bridges fluoroquinolone-gyrase interactions. Surprisingly, the structural data revealed few differences in fluoroquinolone-enzyme contacts from drugs that have very different activities against Mtb. By contrast, a stability assay using purified components showed a clear relationship between ternary complex reversibility and inhibitory activities reported with cultured cells. Collectively, our data indicate that the stability of fluoroquinolone/DNA interactions is a major determinant of fluoroquinolone activity and that moieties that have been appended to the C7 position of different quinolone scaffolds do not take advantage of specific contacts that might be made with the enzyme. These concepts point to new approaches for developing quinolone-class compounds that have increased potency against Mtb and the ability to overcome resistance.
Collapse
|
17
|
Fluoroquinolone interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type and resistant gyrase. Proc Natl Acad Sci U S A 2016; 113:E839-46. [PMID: 26792518 DOI: 10.1073/pnas.1525055113] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis is a significant source of global morbidity and mortality. Moxifloxacin and other fluoroquinolones are important therapeutic agents for the treatment of tuberculosis, particularly multidrug-resistant infections. To guide the development of new quinolone-based agents, it is critical to understand the basis of drug action against M. tuberculosis gyrase and how mutations in the enzyme cause resistance. Therefore, we characterized interactions of fluoroquinolones and related drugs with WT gyrase and enzymes carrying mutations at GyrA(A90) and GyrA(D94). M. tuberculosis gyrase lacks a conserved serine that anchors a water-metal ion bridge that is critical for quinolone interactions with other bacterial type II topoisomerases. Despite the fact that the serine is replaced by an alanine (i.e., GyrA(A90)) in M. tuberculosis gyrase, the bridge still forms and plays a functional role in mediating quinolone-gyrase interactions. Clinically relevant mutations at GyrA(A90) and GyrA(D94) cause quinolone resistance by disrupting the bridge-enzyme interaction, thereby decreasing drug affinity. Fluoroquinolone activity against WT and resistant enzymes is enhanced by the introduction of specific groups at the C7 and C8 positions. By dissecting fluoroquinolone-enzyme interactions, we determined that an 8-methyl-moxifloxacin derivative induces high levels of stable cleavage complexes with WT gyrase and two common resistant enzymes, GyrA(A90V) and GyrA(D94G). 8-Methyl-moxifloxacin was more potent than moxifloxacin against WT M. tuberculosis gyrase and displayed higher activity against the mutant enzymes than moxifloxacin did against WT gyrase. This chemical biology approach to defining drug-enzyme interactions has the potential to identify novel drugs with improved activity against tuberculosis.
Collapse
|
18
|
Oppegard LM, Schwanz HA, Towle TR, Kerns RJ, Hiasa H. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg(2+) to the second metal binding site. Biochim Biophys Acta Gen Subj 2015; 1860:569-75. [PMID: 26723176 DOI: 10.1016/j.bbagen.2015.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. METHODS We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg(2+)-, Mn(2+)-, or Ca(2+)-supported DNA cleavage activity of Escherichia coli Topo IV. RESULTS In the absence of any drug, 20-30 mM Mg(2+) was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1mM of either Mn(2+) or Ca(2+) was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg(2+) concentrations where Topo IV alone could not efficiently cleave DNA. CONCLUSIONS AND GENERAL SIGNIFICANCE At low Mg(2+) concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg(2+) binding to metal binding site B through the structural distortion in DNA. As Mg(2+) concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg(2+) at site B or inhibition the binding of Mg(2+) to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg(2+) binding.
Collapse
Affiliation(s)
- Lisa M Oppegard
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | - Heidi A Schwanz
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, USA.
| | - Tyrell R Towle
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, USA.
| | - Robert J Kerns
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, USA.
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Protective effect of Qnr on agents other than quinolones that target DNA gyrase. Antimicrob Agents Chemother 2015; 59:6689-95. [PMID: 26239981 DOI: 10.1128/aac.01292-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022] Open
Abstract
Qnr is a plasmid-encoded and chromosomally determined protein that protects DNA gyrase and topoisomerase IV from inhibition by quinolones. Despite its prevalence worldwide and existence prior to the discovery of quinolones, its native function is not known. Other synthetic compounds and natural products also target bacterial topoisomerases. A number were studied as molecular probes to gain insight into how Qnr acts. Qnr blocked inhibition by synthetic compounds with somewhat quinolone-like structure that target the GyrA subunit, such as the 2-pyridone ABT-719, the quinazoline-2,4-dione PD 0305970, and the spiropyrimidinetrione pyrazinyl-alkynyl-tetrahydroquinoline (PAT), indicating that Qnr is not strictly quinolone specific, but Qnr did not protect against GyrA-targeting simocyclinone D8 despite evidence that both simocyclinone D8 and Qnr affect DNA binding to gyrase. Qnr did not affect the activity of tricyclic pyrimidoindole or pyrazolopyridones, synthetic inhibitors of the GyrB subunit, or nonsynthetic GyrB inhibitors, such as coumermycin A1, novobiocin, gyramide A, or microcin B17.Thus, in this set of compounds the protective activity of Qnr was confined to those that, like quinolones, trap gyrase on DNA in cleaved complexes.
Collapse
|
21
|
Azam MA, Thathan J, Jubie S. Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: A review. Bioorg Chem 2015; 62:41-63. [PMID: 26232660 DOI: 10.1016/j.bioorg.2015.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Abstract
GyrB and ParE are type IIA topoisomerases and found in most bacteria. Its function is vital for DNA replication, repair and decatenation. The highly conserved ATP-binding subunits of DNA GyrB and ParE are structurally related and have been recognized as prime candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, no natural product or small molecule inhibitors targeting ATPase catalytic domain of both GyrB and ParE enzymes have succeeded in the clinic. Moreover, no inhibitors of these enzymes with broad-spectrum antibacterial activity against Gram-negative pathogens have been reported. Availability of high resolution crystal structures of GyrB and ParE made it possible for the design of many different classes of inhibitors with dual mechanism of action. Among them benzimidazoles, benzothiazoles, thiazolopyridines, imidiazopyridazoles, pyridines, indazoles, pyrazoles, imidazopyridines, triazolopyridines, pyrrolopyrimidines, pyrimidoindoles as well as related structures are disclosed in literatures. Unfortunately most of these inhibitors are found to be active against Gram-positive pathogens. In the present review we discuss about studies on novel dual targeting ATPase inhibitors.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Udhagamandalam 643001, Tamil Nadu, India.
| | - Janarthanan Thathan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Udhagamandalam 643001, Tamil Nadu, India
| | - Selvaraj Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Udhagamandalam 643001, Tamil Nadu, India
| |
Collapse
|
22
|
Heppell JT, Al-Rawi JMA. Synthesis, antibacterial, and DNA-PK evaluation of some novel 6-fluoro-7-(cyclic amino)-2-(thioxo or oxo)-3-substituted quinazolin-4-ones as structural analogues of quinolone and quinazolin-2,4-dione antibiotics. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Aldred KJ, Schwanz HA, Li G, Williamson BH, McPherson SA, Turnbough CL, Kerns RJ, Osheroff N. Activity of quinolone CP-115,955 against bacterial and human type II topoisomerases is mediated by different interactions. Biochemistry 2015; 54:1278-86. [PMID: 25586498 DOI: 10.1021/bi501073v] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CP-115,955 is a quinolone with a 4-hydroxyphenyl at C7 that displays high activity against both bacterial and human type II topoisomerases. To determine the basis for quinolone cross-reactivity between bacterial and human enzymes, the activity of CP-115,955 and a series of related quinolones and quinazolinediones against Bacillus anthracis topoisomerase IV and human topoisomerase IIα was analyzed. Results indicate that the activity of CP-115,955 against the bacterial and human enzymes is mediated by different interactions. On the basis of the decreased activity of quinazolinediones against wild-type and resistant mutant topoisomerase IV and the low activity of quinolones against resistant mutant enzymes, it appears that the primary interaction of CP-115,955 with the bacterial system is mediated through the C3/C4 keto acid and the water-metal ion bridge. In contrast, the drug interacts with the human enzyme primarily through the C7 4-hydroxyphenyl ring and has no requirement for a substituent at C8 in order to attain high activity. Despite the fact that the human type II enzyme is unable to utilize the water-metal ion bridge, quinolones in the CP-115,955 series display higher activity against topoisomerase IIα in vitro and in cultured human cells than the corresponding quinazolinediones. Thus, quinolones may be a viable platform for the development of novel drugs with anticancer potential.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry and ⊥Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Characterization of the novel DNA gyrase inhibitor AZD0914: low resistance potential and lack of cross-resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2014; 59:1478-86. [PMID: 25534723 DOI: 10.1128/aac.04456-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The unmet medical need for novel intervention strategies to treat Neisseria gonorrhoeae infections is significant and increasing, as rapidly emerging resistance in this pathogen is threatening to eliminate the currently available treatment options. AZD0914 is a novel bacterial gyrase inhibitor that possesses potent in vitro activities against isolates with high-level resistance to ciprofloxacin and extended-spectrum cephalosporins, and it is currently in clinical development for the treatment of N. gonorrhoeae infections. The propensity to develop resistance against AZD0914 was examined in N. gonorrhoeae and found to be extremely low, a finding supported by similar studies with Staphylococcus aureus. The genetic characterization of both first-step and second-step mutants that exhibited decreased susceptibilities to AZD0914 identified substitutions in the conserved GyrB TOPRIM domain, confirming DNA gyrase as the primary target of AZD0914 and providing differentiation from fluoroquinolones. The analysis of available bacterial gyrase and topoisomerase IV structures, including those bound to fluoroquinolone and nonfluoroquinolone inhibitors, has allowed the rationalization of the lack of cross-resistance that AZD0914 shares with fluoroquinolones. Microbiological susceptibility data also indicate that the topoisomerase inhibition mechanisms are subtly different between N. gonorrhoeae and other bacterial species. Taken together, these data support the progression of AZD0914 as a novel treatment option for the oral treatment of N. gonorrhoeae infections.
Collapse
|
25
|
Drlica K, Mustaev A, Towle TR, Luan G, Kerns RJ, Berger JM. Bypassing fluoroquinolone resistance with quinazolinediones: studies of drug-gyrase-DNA complexes having implications for drug design. ACS Chem Biol 2014; 9:2895-904. [PMID: 25310082 PMCID: PMC4273985 DOI: 10.1021/cb500629k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Widespread
fluoroquinolone resistance has drawn attention to quinazolinediones
(diones), fluoroquinolone-like topoisomerase poisons that are unaffected
by common quinolone-resistance mutations. To better understand differences
between quinolones and diones, we examined their impact on the formation
of cleaved complexes (drug–topoisomerase–DNA complexes
in which the DNA moiety is broken) with gyrase, one of two bacterial
targets of the drugs. Formation of cleaved complexes, measured by
linearization of a circular DNA substrate, required lower concentrations
of quinolone than dione. The reverse reaction, detected as resealing
of DNA breaks in cleaved complexes, required higher temperatures and
EDTA concentrations for quinolones than diones. The greater stability
of quinolone-containing complexes was attributed to the unique ability
of the quinolone C3/C4 keto acid to complex with magnesium and form
a previously described drug–magnesium–water bridge with
GyrA-Ser83 and GyrA-Asp87. A nearby substitution in GyrA (G81C) reduced
activity differences between quinolone and dione, indicating that
resistance due to this variation derives from perturbation of the
magnesium–water bridge. To increase dione activity, we examined
a relatively small, flexible C-7-3-(aminomethyl)pyrrolidinyl substituent,
which is distal to the bridging C3/C4 keto acid substituent of quinolones.
The 3-(aminomethyl)pyrrolidinyl group at position C-7 was capable
of forming binding interactions with GyrB-Glu466, as indicated by
inspection of crystal structures, computer-aided docking, and measurement
of cleaved-complex formation with mutant and wild-type GyrB proteins.
Thus, modification of dione C-7 substituents constitutes a strategy
for obtaining compounds active against common quinolone-resistant
mutants.
Collapse
Affiliation(s)
- Karl Drlica
- Public Health Research Institute and Department of Microbiology & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Arkady Mustaev
- Public Health Research Institute and Department of Microbiology & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Tyrell R. Towle
- Division of Medicinal & Natural Products Chemistry, Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa College of Pharmacy, 115 South Grand Avenue, Iowa City, Iowa 52246, United States
| | - Gan Luan
- Public Health Research Institute and Department of Microbiology & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Robert J. Kerns
- Division of Medicinal & Natural Products Chemistry, Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa College of Pharmacy, 115 South Grand Avenue, Iowa City, Iowa 52246, United States
| | - James M. Berger
- Molecular
and Cell Biology Department, Quantitative Biosciences Institute, University of California, Stanley Hall, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Bacillus anthracis GrlAV96A topoisomerase IV, a quinolone resistance mutation that does not affect the water-metal ion bridge. Antimicrob Agents Chemother 2014; 58:7182-7. [PMID: 25246407 DOI: 10.1128/aac.03734-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rise in quinolone resistance is threatening the clinical use of this important class of broad-spectrum antibacterials. Quinolones kill bacteria by increasing the level of DNA strand breaks generated by the type II topoisomerases gyrase and topoisomerase IV. Most commonly, resistance is caused by mutations in the serine and acidic amino acid residues that anchor a water-metal ion bridge that facilitates quinolone-enzyme interactions. Although other mutations in gyrase and topoisomerase IV have been reported in quinolone-resistant strains, little is known regarding their contributions to cellular quinolone resistance. To address this issue, we characterized the effects of the V96A mutation in the A subunit of Bacillus anthracis topoisomerase IV on quinolone activity. The results indicate that this mutation causes an ∼ 3-fold decrease in quinolone potency and reduces the stability of covalent topoisomerase IV-cleaved DNA complexes. However, based on metal ion usage, the V96A mutation does not disrupt the function of the water-metal ion bridge. A similar level of resistance to quinazolinediones (which do not use the bridge) was seen. V96A is the first topoisomerase IV mutation distal to the water-metal ion bridge demonstrated to decrease quinolone activity. It also represents the first A subunit mutation reported to cause resistance to quinazolinediones. This cross-resistance suggests that the V96A change has a global effect on the structure of the drug-binding pocket of topoisomerase IV.
Collapse
|
27
|
Aldred KJ, Breland EJ, Vlčková V, Strub MP, Neuman KC, Kerns RJ, Osheroff N. Role of the water-metal ion bridge in mediating interactions between quinolones and Escherichia coli topoisomerase IV. Biochemistry 2014; 53:5558-67. [PMID: 25115926 PMCID: PMC4151693 DOI: 10.1021/bi500682e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Although
quinolones have been in clinical use for decades, the
mechanism underlying drug activity and resistance has remained elusive.
However, recent studies indicate that clinically relevant quinolones
interact with Bacillus anthracis (Gram-positive)
topoisomerase IV through a critical water–metal ion bridge
and that the most common quinolone resistance mutations decrease drug
activity by disrupting this bridge. As a first step toward determining
whether the water–metal ion bridge is a general mechanism of
quinolone–topoisomerase interaction, we characterized drug
interactions with wild-type Escherichia coli (Gram-negative)
topoisomerase IV and a series of ParC enzymes with mutations (S80L,
S80I, S80F, and E84K) in the predicted bridge-anchoring residues.
Results strongly suggest that the water–metal ion bridge is
essential for quinolone activity against E. coli topoisomerase
IV. Although the bridge represents a common and critical mechanism
that underlies broad-spectrum quinolone function, it appears to play
different roles in B. anthracis and E. coli topoisomerase IV. The water–metal ion bridge is the most
important binding contact of clinically relevant quinolones with the
Gram-positive enzyme. However, it primarily acts to properly align
clinically relevant quinolones with E. coli topoisomerase
IV. Finally, even though ciprofloxacin is unable to increase levels
of DNA cleavage mediated by several of the Ser80 and Glu84 mutant E. coli enzymes, the drug still retains the ability to inhibit
the overall catalytic activity of these topoisomerase IV proteins.
Inhibition parallels drug binding, suggesting that the presence of
the drug in the active site is sufficient to diminish DNA relaxation
rates.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry and ‡Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
![]()
Quinolones
are one of the most commonly prescribed classes of antibacterials
in the world and are used to treat a variety of bacterial infections
in humans. Because of the wide use (and overuse) of these drugs, the
number of quinolone-resistant bacterial strains has been growing steadily
since the 1990s. As is the case with other antibacterial agents, the
rise in quinolone resistance threatens the clinical utility of this
important drug class. Quinolones act by converting their targets,
gyrase and topoisomerase IV, into toxic enzymes that fragment the
bacterial chromosome. This review describes the development of the
quinolones as antibacterials, the structure and function of gyrase
and topoisomerase IV, and the mechanistic basis for quinolone action
against their enzyme targets. It will then discuss the following three
mechanisms that decrease the sensitivity of bacterial cells to quinolones.
Target-mediated resistance is the most common and clinically significant
form of resistance. It is caused by specific mutations in gyrase and
topoisomerase IV that weaken interactions between quinolones and these
enzymes. Plasmid-mediated resistance results from extrachromosomal
elements that encode proteins that disrupt quinolone–enzyme
interactions, alter drug metabolism, or increase quinolone efflux.
Chromosome-mediated resistance results from the underexpression of
porins or the overexpression of cellular efflux pumps, both of which
decrease cellular concentrations of quinolones. Finally, this review
will discuss recent advancements in our understanding of how quinolones
interact with gyrase and topoisomerase IV and how mutations in these
enzymes cause resistance. These last findings suggest approaches to
designing new drugs that display improved activity against resistant
strains.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry and ‡Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | |
Collapse
|
29
|
Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard LM, Hiasa H, Marks KR, Kerns RJ, Berger JM, Drlica K. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding. J Biol Chem 2014; 289:12300-12. [PMID: 24497635 DOI: 10.1074/jbc.m113.529164] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.
Collapse
Affiliation(s)
- Arkady Mustaev
- From the Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aldred KJ, Schwanz HA, Li G, McPherson SA, Turnbough CL, Kerns RJ, Osheroff N. Overcoming target-mediated quinolone resistance in topoisomerase IV by introducing metal-ion-independent drug-enzyme interactions. ACS Chem Biol 2013; 8:2660-8. [PMID: 24047414 DOI: 10.1021/cb400592n] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quinolones, which target gyrase and topoisomerase IV, are the most widely prescribed antibacterials worldwide. Unfortunately, their use is threatened by the increasing prevalence of target-mediated drug resistance. Greater than 90% of mutations that confer quinolone resistance act by disrupting enzyme-drug interactions coordinated by a critical water-metal ion bridge. Quinazolinediones are quinolone-like drugs but lack the skeletal features necessary to support the bridge interaction. These compounds are of clinical interest, however, because they retain activity against the most common quinolone resistance mutations. We utilized a chemical biology approach to determine how quinazolinediones overcome quinolone resistance in Bacillus anthracis topoisomerase IV. Quinazolinediones that retain activity against quinolone-resistant topoisomerase IV do so primarily by establishing novel interactions through the C7 substituent, rather than the drug skeleton. Because some quinolones are highly active against human topoisomerase IIα, we also determined how clinically relevant quinolones discriminate between the bacterial and human enzymes. Clinically relevant quinolones display poor activity against topoisomerase IIα because the human enzyme cannot support drug interactions mediated by the water-metal ion bridge. However, the inclusion of substituents that allow quinazolinediones to overcome topoisomerase IV-mediated quinolone resistance can cause cross-reactivity against topoisomerase IIα. Therefore, a major challenge in designing drugs that overcome quinolone resistance lies in the ability to identify substituents that mediate strong interactions with the bacterial, but not the human, enzymes. On the basis of our understanding of quinolone-enzyme interactions, we have identified three compounds that display high activity against quinolone-resistant B. anthracis topoisomerase IV but low activity against human topoisomerase IIα.
Collapse
Affiliation(s)
| | - Heidi A. Schwanz
- Division
of Medicinal and Natural Products Chemistry, University of Iowa College of Pharmacy, Iowa City, Iowa 52242, United States
| | - Gangqin Li
- Division
of Medicinal and Natural Products Chemistry, University of Iowa College of Pharmacy, Iowa City, Iowa 52242, United States
| | - Sylvia A. McPherson
- Department
of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Charles L. Turnbough
- Department
of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Robert J. Kerns
- Division
of Medicinal and Natural Products Chemistry, University of Iowa College of Pharmacy, Iowa City, Iowa 52242, United States
| | | |
Collapse
|
31
|
|
32
|
Laponogov I, Veselkov DA, Crevel IMT, Pan XS, Fisher LM, Sanderson MR. Structure of an 'open' clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Res 2013; 41:9911-23. [PMID: 23965305 PMCID: PMC3834822 DOI: 10.1093/nar/gkt749] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type II topoisomerases regulate DNA supercoiling and chromosome segregation. They act as ATP-operated clamps that capture a DNA duplex and pass it through a transient DNA break in a second DNA segment via the sequential opening and closure of ATPase-, G-DNA- and C-gates. Here, we present the first ‘open clamp’ structures of a 3-gate topoisomerase II-DNA complex, the seminal complex engaged in DNA recognition and capture. A high-resolution structure was solved for a (full-length ParE-ParC55)2 dimer of Streptococcus pneumoniae topoisomerase IV bound to two DNA molecules: a closed DNA gate in a B-A-B form double-helical conformation and a second B-form duplex associated with closed C-gate helices at a novel site neighbouring the catalytically important β-pinwheel DNA-binding domain. The protein N gate is present in an ‘arms-wide-open’ state with the undimerized N-terminal ParE ATPase domains connected to TOPRIM domains via a flexible joint and folded back allowing ready access both for gate and transported DNA segments and cleavage-stabilizing antibacterial drugs. The structure shows the molecular conformations of all three gates at 3.7 Å, the highest resolution achieved for the full complex to date, and illuminates the mechanism of DNA capture and transport by a type II topoisomerase.
Collapse
Affiliation(s)
- Ivan Laponogov
- Randall Division of Cell and Molecular Biophysics, 3rd floor New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK and Division of Biomedical Sciences, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | | | | | | | | | | |
Collapse
|
33
|
Arnoldi E, Pan XS, Fisher LM. Functional determinants of gate-DNA selection and cleavage by bacterial type II topoisomerases. Nucleic Acids Res 2013; 41:9411-23. [PMID: 23939623 PMCID: PMC3814380 DOI: 10.1093/nar/gkt696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antibacterial fluoroquinolones trap a cleavage complex of gyrase and topoisomerase (topo) IV inducing site-specific DNA breakage within a bent DNA gate engaged in DNA transport. Despite its importance for drug action and in revealing potential sites of topoisomerase catalysis, the mechanism of DNA selectivity is poorly understood. To explore its functional basis, we generated mutant versions of the strongly cleaved E-site and used a novel competitive assay to examine their gemifloxacin-mediated DNA breakage by Streptococcus pneumoniae topo IV and gyrase. Parallel studies of Ca2+-induced cleavage distinguished ‘intrinsic recognition’ of DNA cleavage sites by topo IV from drug-induced preferences. Analysis revealed strong enzyme-determined requirements for −4G, −2A and −1T bases preceding the breakage site (between −1 and +1) and enzyme-unique or degenerate determinants at −3, plus drug-specific preferences at +2/+3 and for +1 purines associated with drug intercalation. Similar cleavage rules were seen additionally at the novel V-site identified here in ColE1-derived plasmids. In concert with DNA binding data, our results provide functional evidence for DNA, enzyme and drug contributions to DNA cleavage at the gate, suggest a mechanism for DNA discrimination involving enzyme-induced DNA bending/helix distortion and cleavage complex stabilization and advance understanding of fluoroquinolones as important cleavage-enhancing therapeutics.
Collapse
Affiliation(s)
- Elisa Arnoldi
- Division of Biomedical Sciences, St.George's, University of London, London SW17 0RE, UK
| | | | | |
Collapse
|
34
|
Huang Z, Lin K, You Q. De novo design of novel DNA–gyrase inhibitors based on 2D molecular fingerprints. Bioorg Med Chem Lett 2013; 23:4166-71. [DOI: 10.1016/j.bmcl.2013.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/01/2013] [Accepted: 05/09/2013] [Indexed: 11/26/2022]
|
35
|
Aldred KJ, McPherson SA, Turnbough CL, Kerns RJ, Osheroff N. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res 2013; 41:4628-39. [PMID: 23460203 PMCID: PMC3632122 DOI: 10.1093/nar/gkt124] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although quinolones are the most commonly prescribed antibacterials, their use is threatened by an increasing prevalence of resistance. The most common causes of quinolone resistance are mutations of a specific serine or acidic residue in the A subunit of gyrase or topoisomerase IV. These amino acids are proposed to serve as a critical enzyme-quinolone interaction site by anchoring a water-metal ion bridge that coordinates drug binding. To probe the role of the proposed water-metal ion bridge, we characterized wild-type, GrlAE85K, GrlAS81F/E85K, GrlAE85A, GrlAS81F/E85A and GrlAS81FBacillus anthracis topoisomerase IV, their sensitivity to quinolones and related drugs and their use of metal ions. Mutations increased the Mg2+ concentration required to produce maximal quinolone-induced DNA cleavage and restricted the divalent metal ions that could support quinolone activity. Individual mutation of Ser81 or Glu85 partially disrupted bridge function, whereas simultaneous mutation of both residues abrogated protein–quinolone interactions. Results provide functional evidence for the existence of the water-metal ion bridge, confirm that the serine and glutamic acid residues anchor the bridge, demonstrate that the bridge is the primary conduit for interactions between clinically relevant quinolones and topoisomerase IV and provide a likely mechanism for the most common causes of quinolone resistance.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | |
Collapse
|
36
|
Gould IM, Bal AM. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence 2013; 4:185-91. [PMID: 23302792 PMCID: PMC3654619 DOI: 10.4161/viru.22507] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial resistance is a growing threat and yet few new antibiotics active against multi-resistant bacteria are being explored. A combination of falling profits, regulatory mechanisms and irrational and injudicious use of antibiotics has led to an alarming situation where some infections have no cure. In this article, we summarize the new developments that have been suggested to incentivize the pharmaceutical industries toward the field of infections. We also briefly mention the new compounds on the horizon and some newly approved compounds that might help us tide over this crisis.
Collapse
|
37
|
Yokoyama K, Kim H, Mukai T, Matsuoka M, Nakajima C, Suzuki Y. Impact of amino acid substitutions in B subunit of DNA gyrase in Mycobacterium leprae on fluoroquinolone resistance. PLoS Negl Trop Dis 2012; 6:e1838. [PMID: 23071850 PMCID: PMC3469482 DOI: 10.1371/journal.pntd.0001838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ofloxacin is a fluoroquinolone (FQ) used for the treatment of leprosy. FQs are known to interact with both A and B subunits of DNA gyrase and inhibit supercoiling activity of this enzyme. Mutations conferring FQ resistance have been reported to be found only in the gene encoding A subunit of this enzyme (gyrA) of M. leprae, although there are many reports on the FQ resistance-associated mutation in gyrB in other bacteria, including M. tuberculosis, a bacterial species in the same genus as M. leprae. METHODOLOGY/PRINCIPAL FINDINGS To reveal the possible contribution of mutations in gyrB to FQ resistance in M. leprae, we examined the inhibitory activity of FQs against recombinant DNA gyrases with amino acid substitutions at position 464, 502 and 504, equivalent to position 461, 499 and 501 in M. tuberculosis, which are reported to contribute to reduced sensitivity to FQ. The FQ-inhibited supercoiling assay and FQ-induced cleavage assay demonstrated the important roles of these amino acid substitutions in reduced sensitivity to FQ with marked influence by amino acid substitution, especially at position 502. Additionally, effectiveness of sitafloxacin, a FQ, to mutant DNA gyrases was revealed by low inhibitory concentration of this FQ. SIGNIFICANCE Data obtained in this study suggested the possible emergence of FQ-resistant M. leprae with mutations in gyrB and the necessity of analyzing both gyrA and gyrB for an FQ susceptibility test. In addition, potential use of sitafloxacin for the treatment of problematic cases of leprosy by FQ resistant M. leprae was suggested.
Collapse
Affiliation(s)
- Kazumasa Yokoyama
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Hyun Kim
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Tetsu Mukai
- Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Masanori Matsuoka
- Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Chie Nakajima
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
- JST/JICA-SATREPS, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Li H, Pan JY, Liu XJ, Gao JX, Wu HK, Wang C, Peng XX. Alterations of protein complexes and pathways in genetic information flow and response to stimulus contribute to Escherichia coli resistance to balofloxacin. MOLECULAR BIOSYSTEMS 2012; 8:2303-11. [PMID: 22729160 DOI: 10.1039/c2mb25090j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein-protein interactions are important biological processes and essential for a global understanding of cell functions. To date, little is known about the protein interactions and roles of the protein interacting networks and protein complexes in bacterial resistance to antibiotics. In the present study, we investigated protein complexes in Escherichia coli exposed to an antibiotic balofloxacin (BLFX). One homomeric and eight heteromeric protein complexes involved in BLFX resistance were detected. Potential roles of these complexes that are played in BLFX resistance were characterized and categorized into four functional areas: information streams, monosaccharide metabolism, response to stimulus and amino acid metabolic processes. Protein complexes involved in information streams and response to stimulus played more significant roles in the resistance. These results are consistent with previously published mechanisms on the acquired quinolone-resistance through the GyrA-GyrB complex, and two novel antibiotic-resistant pathways were identified: upregulation of genetic information flow and alteration of the response to a stimulus. The balance of the two pathways will be a viable means of reducing BLFX-resistance.
Collapse
Affiliation(s)
- Hui Li
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Aldred KJ, McPherson SA, Wang P, Kerns RJ, Graves DE, Turnbough CL, Osheroff N. Drug interactions with Bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance. Biochemistry 2011; 51:370-81. [PMID: 22126453 DOI: 10.1021/bi2013905] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, is considered a serious threat as a bioweapon. The drugs most commonly used to treat anthrax are quinolones, which act by increasing the levels of DNA cleavage mediated by topoisomerase IV and gyrase. Quinolone resistance most often is associated with specific serine mutations in these enzymes. Therefore, to determine the basis for quinolone action and resistance, we characterized wild-type B. anthracis topoisomerase IV, the GrlA(S81F) and GrlA(S81Y) quinolone-resistant mutants, and the effects of quinolones and a related quinazolinedione on these enzymes. Ser81 is believed to anchor a water-Mg(2+) bridge that coordinates quinolones to the enzyme through the C3/C4 keto acid. Consistent with this hypothesized bridge, ciprofloxacin required increased Mg(2+) concentrations to support DNA cleavage by GrlA(S81F) topoisomerase IV. The three enzymes displayed similar catalytic activities in the absence of drugs. However, the resistance mutations decreased the affinity of topoisomerase IV for ciprofloxacin and other quinolones, diminished quinolone-induced inhibition of DNA religation, and reduced the stability of the enzyme-quinolone-DNA ternary complex. Wild-type DNA cleavage levels were generated by mutant enzymes at high quinolone concentrations, suggesting that increased drug potency could overcome resistance. 8-Methyl-quinazoline-2,4-dione, which lacks the quinolone keto acid (and presumably does not require the water-Mg(2+) bridge to mediate protein interactions), was more potent than quinolones against wild-type topoisomerase IV and was equally efficacious. Moreover, it maintained high potency and efficacy against the mutant enzymes, effectively inhibited DNA religation, and formed stable ternary complexes. Our findings provide an underlying biochemical basis for the ability of quinazolinediones to overcome clinically relevant quinolone resistance mutations in bacterial type II topoisomerases.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Bush K, Pucci MJ. New antimicrobial agents on the horizon. Biochem Pharmacol 2011; 82:1528-39. [PMID: 21798250 DOI: 10.1016/j.bcp.2011.07.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance issues necessitate the continued discovery and development of new antibacterial agents. Efforts are ongoing in two approaches to find new compounds that are effective against antibiotic-resistant pathogens. These efforts involve modification of existing classes including fluoroquinolones, tetracyclines, aminoglycosides, and β-lactams and identification of inhibitors against previously unexploited antibacterial targets. Examples of both approaches are described here with emphasis on compounds in late pre-clinical or clinical stages of development.
Collapse
Affiliation(s)
- Karen Bush
- Department of Biology, Jordan Hall, 1001 E. Third Street, Indiana University, Bloomington, IN 47405, United States.
| | | |
Collapse
|
41
|
Impact of the E540V amino acid substitution in GyrB of Mycobacterium tuberculosis on quinolone resistance. Antimicrob Agents Chemother 2011; 55:3661-7. [PMID: 21646485 DOI: 10.1128/aac.00042-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amino acid substitutions conferring resistance to quinolones in Mycobacterium tuberculosis have generally been found within the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase (GyrA) rather than the B subunit of DNA gyrase (GyrB). To clarify the contribution of an amino acid substitution, E540V, in GyrB to quinolone resistance in M. tuberculosis, we expressed recombinant DNA gyrases in Escherichia coli and characterized them in vitro. Wild-type and GyrB-E540V DNA gyrases were reconstituted in vitro by mixing recombinant GyrA and GyrB. Correlation between the amino acid substitution and quinolone resistance was assessed by the ATP-dependent DNA supercoiling assay, quinolone-inhibited supercoiling assay, and DNA cleavage assay. The 50% inhibitory concentrations of eight quinolones against DNA gyrases bearing the E540V amino acid substitution in GyrB were 2.5- to 36-fold higher than those against the wild-type enzyme. Similarly, the 25% maximum DNA cleavage concentrations were 1.5- to 14-fold higher for the E540V gyrase than for the wild-type enzyme. We further demonstrated that the E540V amino acid substitution influenced the interaction between DNA gyrase and the substituent(s) at R-7, R-8, or both in quinolone structures. This is the first detailed study of the contribution of the E540V amino acid substitution in GyrB to quinolone resistance in M. tuberculosis.
Collapse
|
42
|
Fluoroquinolone and quinazolinedione activities against wild-type and gyrase mutant strains of Mycobacterium smegmatis. Antimicrob Agents Chemother 2011; 55:2335-43. [PMID: 21383100 DOI: 10.1128/aac.00033-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinazolinediones (diones) are fluoroquinolone-like inhibitors of bacterial gyrase and DNA topoisomerase IV. To assess activity against mycobacteria, C-8-methoxy dione derivatives were compared with cognate fluoroquinolones by using cultured Mycobacterium smegmatis. Diones exhibited higher MIC values than fluoroquinolones; however, MICs for fluoroquinolone-resistant gyrA mutants, normalized to the MIC for wild-type cells, were lower. Addition of a 3-amino group to the 2,4-dione core increased relative activity against mutants, while alteration of the 8-methoxy group to a methyl or of the 2,4-dione core to a 1,3-dione core lowered activity against mutants. A GyrA G89C bacterial variant was strikingly susceptible to most of the diones tested; in contrast, low susceptibility to fluoroquinolones was observed. Many of the bacteriostatic differences between diones and fluoroquinolones were explained by interactions at the N terminus of GyrA helix IV revealed by recently published X-ray structures of drug-topoisomerase-DNA complexes. When lethal activity was normalized to the MIC in order to minimize the effects of drug uptake, efflux, and ternary complex formation, a 3-amino-2,4-dione exhibited killing activity comparable to that of a cognate fluoroquinolone. Surprisingly, the lethal activity of the dione was inhibited less by chloramphenicol than that of the cognate fluoroquinolone. This observation adds the 2,4-dione structural motif to the list of structural features known to impart lethality to fluoroquinolone-like compounds in the absence of protein synthesis, a phenomenon that is not explained by X-ray structures of drug-enzyme-DNA complexes.
Collapse
|
43
|
Abstract
The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, 955 S. Springfield Ave., Unit C403, Springfield, NJ 07081, USA.
| |
Collapse
|
44
|
Koay N, Campeau LC. Efficient preparation of 3-substituted quinazolinediones directly from anthranilic acids and isocyanates. J Heterocycl Chem 2010. [DOI: 10.1002/jhet.551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010; 466:935-40. [DOI: 10.1038/nature09197] [Citation(s) in RCA: 514] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 05/20/2010] [Indexed: 11/08/2022]
|
46
|
Laponogov I, Pan XS, Veselkov DA, McAuley KE, Fisher LM, Sanderson MR. Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS One 2010; 5:e11338. [PMID: 20596531 PMCID: PMC2893164 DOI: 10.1371/journal.pone.0011338] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/07/2010] [Indexed: 11/23/2022] Open
Abstract
Type II DNA topoisomerases are ubiquitous enzymes with essential functions in DNA replication, recombination and transcription. They change DNA topology by forming a transient covalent cleavage complex with a gate-DNA duplex that allows transport of a second duplex though the gate. Despite its biological importance and targeting by anticancer and antibacterial drugs, cleavage complex formation and reversal is not understood for any type II enzyme. To address the mechanism, we have used X-ray crystallography to study sequential states in the formation and reversal of a DNA cleavage complex by topoisomerase IV from Streptococcus pneumoniae, the bacterial type II enzyme involved in chromosome segregation. A high resolution structure of the complex captured by a novel antibacterial dione reveals two drug molecules intercalated at a cleaved B-form DNA gate and anchored by drug-specific protein contacts. Dione release generated drug-free cleaved and resealed DNA complexes in which the DNA gate instead adopts an unusual A/B-form helical conformation with a Mg2+ ion repositioned to coordinate each scissile phosphodiester group and promote reversible cleavage by active-site tyrosines. These structures, the first for putative reaction intermediates of a type II topoisomerase, suggest how a type II enzyme reseals DNA during its normal reaction cycle and illuminate aspects of drug arrest important for the development of new topoisomerase-targeting therapeutics.
Collapse
Affiliation(s)
- Ivan Laponogov
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
- Division of Basic Medical Sciences, St George's University of London, London, United Kingdom
| | - Xiao-Su Pan
- Division of Basic Medical Sciences, St George's University of London, London, United Kingdom
| | - Dennis A. Veselkov
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | | | - L. Mark Fisher
- Division of Basic Medical Sciences, St George's University of London, London, United Kingdom
- * E-mail: (LMF); (MRS)
| | - Mark R. Sanderson
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
- * E-mail: (LMF); (MRS)
| |
Collapse
|
47
|
Sissi C, Palumbo M. In front of and behind the replication fork: bacterial type IIA topoisomerases. Cell Mol Life Sci 2010; 67:2001-24. [PMID: 20165898 PMCID: PMC11115839 DOI: 10.1007/s00018-010-0299-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 01/03/2023]
Abstract
Topoisomerases are vital enzymes specialized in controlling DNA topology, in particular supercoiling and decatenation, to properly handle nucleic acid packing and cell dynamics. The type IIA enzymes act by cleaving both strands of a double helix and having another strand from the same or another molecule cross the DNA gate before a re-sealing event completes the catalytic cycle. Here, we will consider the two types of IIA prokaryotic topoisomerases, DNA Gyrase and Topoisomerase IV, as crucial regulators of bacterial cell cycle progression. Their synergistic action allows control of chromosome packing and grants occurrence of functional transcription and replication processes. In addition to displaying a fascinating molecular mechanism of action, which transduces chemical energy into mechanical energy by means of large conformational changes, these enzymes represent attractive pharmacological targets for antibacterial chemotherapy.
Collapse
Affiliation(s)
- Claudia Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131, Padua, Italy.
| | | |
Collapse
|
48
|
Comparison of in vitro activities of fluoroquinolone-like 2,4- and 1,3-diones. Antimicrob Agents Chemother 2010; 54:3011-4. [PMID: 20404126 DOI: 10.1128/aac.00190-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial resistance presents a difficult issue for fluoroquinolone treatment of bacterial infections. In previous work, we reported that 8-methoxy-quinazoline-2,4-diones are active against quinolone-resistant mutants of Escherichia coli. Here, we demonstrate the activity of a representative 8-methoxy-quinazoline-2,4-dione against quinolone-resistant gyrases. Furthermore, 8-methoxy-quinazoline-2,4-dione and other diones are shown to inhibit Staphylococcus aureus gyrase and topoisomerase IV with similar degrees of efficacy, suggesting that the diones might act as dual-targeting agents against S. aureus.
Collapse
|