1
|
Aslan AT, Ezure Y, Horcajada JP, Harris PNA, Paterson DL. In vitro, in vivo and clinical studies comparing the efficacy of ceftazidime-avibactam monotherapy with ceftazidime-avibactam-containing combination regimens against carbapenem-resistant Enterobacterales and multidrug-resistant Pseudomonas aeruginosa isolates or infections: a scoping review. Front Med (Lausanne) 2023; 10:1249030. [PMID: 37727767 PMCID: PMC10506411 DOI: 10.3389/fmed.2023.1249030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Carbapenem-resistant Enterobacterales (CRE) and multidrug-resistant Pseudomonas aeruginosa (MDR-PA) infections are associated with a high risk of morbidity, mortality, and treatment costs. We aimed to evaluate in vitro, in vivo and clinical studies comparing the efficacy of ceftazidime-avibactam (CZA) combination regimens with CZA alone against CRE and/or MDR-PA isolates or infections. Methods We systematically reviewed the relevant literature in CINAHL/MEDLINE, Pubmed, Cochrane, Web of Science, Embase, and Scopus until December 1, 2022. Review articles, grey literature, abstracts, comments, editorials, non-peer reviewed articles, non-English articles, and in vitro synergy studies conducted on single isolates were excluded. Results 22 in vitro, 7 in vivo and 20 clinical studies were evaluated. In vitro studies showed reliable synergy between CZA and aztreonam against metallo-β-lactamase (MBL)-producing isolates. Some studies indicated good in vitro synergy between CZA and amikacin, meropenem, fosfomycin and polymyxins against CRE isolates. For MDR-PA isolates, there are comparatively fewer in vitro or in vivo studies. In observational clinical studies, mortality, clinical cure, adverse events, and development of CZA resistance after exposure were generally similar in monotherapy and combination therapy groups. However, antibiotic-related nephrotoxicity and infection relapses were higher in patients receiving CZA combination therapies. Discussion The benefit, if any, of CZA combination regimens in MDR-PA infections is elusive, as very few clinical studies have included these infections. There is no currently documented clinical benefit for the use of CZA combination regimens rather than CZA monotherapy. CZA combined with aztreonam for serious infections due to MBL producers should be evaluated by randomized controlled trials. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=278552, CRD42021278552.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Yukiko Ezure
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Juan Pablo Horcajada
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Infectious Diseases Department, Hospital del Mar, Institut Hospital Del Mar d’Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Patrick N. A. Harris
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - David L. Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Ventilator-associated pneumonia (VAP) is a common nosocomial infection in critically ill patients requiring endotracheal intubation and mechanical ventilation. Recently, the emergence of multidrug-resistant Gram-negative bacteria, including carbapenem-resistant Enterobacterales, multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species, has complicated the selection of appropriate antimicrobials and contributed to treatment failure. Although novel antimicrobials are crucial to treating VAP caused by these multidrug-resistant organisms, knowledge of how to optimize their efficacy while minimizing the development of resistance should be a requirement for their use. RECENT FINDINGS Several studies have assessed the efficacy of novel antimicrobials against multidrug-resistant organisms, but high-quality studies focusing on optimal dosing, infusion time and duration of therapy in patients with VAP are still lacking. Antimicrobial and diagnostic stewardship should be combined to optimize the use of these novel agents. SUMMARY Improvements in diagnostic tests, stewardship practices and a better understanding of dosing, infusion time, duration of treatment and the effects of combining various antimicrobials should help optimize the use of novel antimicrobials for VAP and maximize clinical outcomes while minimizing the development of resistance.
Collapse
|
3
|
Beta-lactam monotherapy or combination therapy for bloodstream infections or pneumonia due to P. aeruginosa: a meta-analysis. Int J Antimicrob Agents 2021; 59:106512. [PMID: 34971728 DOI: 10.1016/j.ijantimicag.2021.106512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES . The aim of the present meta-analysis was to compare the clinical and microbiological outcomes of patients treated with beta-lactam monotherapy or combination therapy for Pseudomonas aeruginosa infections. DATA SOURCES MEDLINE, Google Scholar and the Cochrane Library STUDY ELIGIBILITY CRITERIA AND INTERVENTIONS: . Experimental and observational studies published as full papers up to December 2020 that compared the efficacy of beta-lactams used in monotherapy or in combination with other active agents as empirical or targeted therapy for bloodstream infections or Hospital-Acquired or Ventilator-Associated Pneumonia (HAP/VAP) due to P. aeruginosa. The outcomes evaluated were hospital-mortality, 14-day- or 30-day-mortality rate, microbiological eradication rate and clinical cure rate. RESULTS . Of a total of 8,363 citations screened, 6 Randomized Controlled Trials (RCTs), 6 prospective cohort studies, and 21 retrospective cohort studies were included in the analysis, accounting for a total of 3,861 subjects. Considering the 14 studies evaluating the empirical therapy, no significant difference in mortality rate was observed between the two groups (RR: 1.06; 95% CI 0.86-1.30, p=0.6). Similar findings were obtained among the 18 studies analysing the targeted therapy (RR: 1.04; 95% CI 0.83-1.31, p=0.708); however, grouping the studies according to the design, a higher mortality among patients receiving monotherapy was observed in 5 prospective studies (RR: 1.37; 95% CI 1.06-1.79, p=0.018). Finally, no difference was observed among groups considering the microbiological and the clinical cure. CONCLUSIONS . Our meta-analysis demonstrated no difference in the mortality rate, clinical cure and microbiological cure in patients treated with beta-lactam monotherapy or combination for P. aeruginosa infections.
Collapse
|
4
|
van Os W, Zeitlinger M. Predicting Antimicrobial Activity at the Target Site: Pharmacokinetic/Pharmacodynamic Indices versus Time-Kill Approaches. Antibiotics (Basel) 2021; 10:antibiotics10121485. [PMID: 34943697 PMCID: PMC8698708 DOI: 10.3390/antibiotics10121485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Antibiotic dosing strategies are generally based on systemic drug concentrations. However, drug concentrations at the infection site drive antimicrobial effect, and efficacy predictions and dosing strategies should be based on these concentrations. We set out to review different translational pharmacokinetic-pharmacodynamic (PK/PD) approaches from a target site perspective. The most common approach involves calculating the probability of attaining animal-derived PK/PD index targets, which link PK parameters to antimicrobial susceptibility measures. This approach is time efficient but ignores some aspects of the shape of the PK profile and inter-species differences in drug clearance and distribution, and provides no information on the PD time-course. Time–kill curves, in contrast, depict bacterial response over time. In vitro dynamic time–kill setups allow for the evaluation of bacterial response to clinical PK profiles, but are not representative of the infection site environment. The translational value of in vivo time–kill experiments, conversely, is limited from a PK perspective. Computational PK/PD models, especially when developed using both in vitro and in vivo data and coupled to target site PK models, can bridge translational gaps in both PK and PD. Ultimately, clinical PK and experimental and computational tools should be combined to tailor antibiotic treatment strategies to the site of infection.
Collapse
|
5
|
Kang Y, Zhou Q, Cui J. Pharmacokinetic/pharmacodynamic modelling to evaluate the efficacy of various dosing regimens of ceftazidime/avibactam in patients with pneumonia caused by Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae: a multicentre study in northern China. J Glob Antimicrob Resist 2021; 27:67-71. [PMID: 34428596 DOI: 10.1016/j.jgar.2021.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The objective of this study was to evaluate the efficacy of different dosing regimens of ceftazidime/avibactam (CZA) in patients with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) pulmonary infections. METHODS A total of 70 KPC-Kp strains were isolated from sputum and bronchoalveolar lavage samples of patients with pulmonary infections in three hospitals in northern China from April 2015 to October 2015. Monte Carlo simulation (MCS) was performed using population pharmacokinetic parameters of CZA combined with the minimum inhibitory concentration (MIC) distributions gained from antimicrobial susceptibility testing to predict the efficacy of different dosing regimens. Various CZA dosing regimens were modelled using MCS. RESULTS The in vitro study showed potent activity of CZA against KPC-Kp strains with MIC50/90 values of 1/2 mg/L, with a susceptibility rate of 95.7%. The values of cumulative fraction of response (CFR) for bactericidal (50%fT>5 × MIC) target were as follows: for patients with creatinine clearance (CLCr) >51 mL/min, the CFR was 96.01% for 2.5 g CZA every 12 h (q12h) and 97.14% for 2.5 g CZA every 8 h (q8h); and for patients with moderate renal impairment (CLCr >30 to ≤50 mL/min), the CFR was 95.75% for 1.25 g CZA q12h and 97.09% for 1.25 g CZA q8h. CONCLUSION This study indicated that the recommended dose of CZA can provide adequate pharmacodynamic exposure for treating KPC-Kp pneumonia.
Collapse
Affiliation(s)
- Yixin Kang
- Department of Respiratory Diseases, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Qian Zhou
- Department of Respiratory Diseases, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China; Department of Respiratory Diseases, People's Hospital of Hainan District, Wuhai 016000, China
| | - Junchang Cui
- Department of Respiratory Diseases, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China.
| |
Collapse
|
6
|
Tait JR, Bilal H, Kim TH, Oh A, Peleg AY, Boyce JD, Oliver A, Bergen PJ, Nation RL, Landersdorfer CB. Pharmacodynamics of ceftazidime plus tobramycin combination dosage regimens against hypermutable Pseudomonas aeruginosa isolates at simulated epithelial lining fluid concentrations in a dynamic in vitro infection model. J Glob Antimicrob Resist 2021; 26:55-63. [PMID: 34023531 DOI: 10.1016/j.jgar.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Hypermutable Pseudomonas aeruginosa strains are a major challenge in cystic fibrosis. We investigated bacterial killing and resistance emergence for approved ceftazidime and tobramycin regimens, alone and in combination. METHODS Pseudomonas aeruginosa PAOΔmutS and six hypermutable clinical isolates were examined using 48-h static concentration time-kill (SCTK) studies (inoculum ~107.5 CFU/mL); four strains were also studied in a dynamic in vitro model (IVM) (inoculum ~108 CFU/mL). The IVM simulated concentration-time profiles in epithelial lining fluid following intravenous administration of ceftazidime (3 g/day and 9 g/day continuous infusion), tobramycin (5 mg/kg and 10 mg/kg via 30-min infusion 24-hourly; half-life 3.5 h), and their combinations. Time courses of total and less-susceptible populations were determined. RESULTS Ceftazidime plus tobramycin demonstrated synergistic killing in SCTK studies for all strains, although to a lesser extent for ceftazidime-resistant strains. In the IVM, ceftazidime and tobramycin monotherapies provided ≤5.4 and ≤3.4 log10 initial killing, respectively; however, re-growth with resistance occurred by 72 h. Against strains susceptible to one or both antibiotics, high-dose combination regimens provided >6 log10 initial killing, which was generally synergistic from 8-24 h, and marked suppression of re-growth and resistance at 72 h. The time course of bacterial density in the IVM was well described by mechanism-based models, enabling Monte Carlo simulations (MCSs) to predict likely effectiveness of the combination in patients. CONCLUSION Results of the IVM and MCS suggested antibacterial effect depends both on the strain's susceptibility and hypermutability. Further investigation of the combination against hypermutable P. aeruginosa strains is warranted.
Collapse
Affiliation(s)
- Jessica R Tait
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Hajira Bilal
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Tae Hwan Kim
- College of Pharmacy, Daegu Catholic University, Daegu, South Korea
| | - Abigail Oh
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia; Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - John D Boyce
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| | - Phillip J Bergen
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Cornelia B Landersdorfer
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Zhou Q, Wang H, Zhan T, Yang X, Wen L. Successful Treatment of Ventriculitis Caused by MDR/XDR Gram-Negative Bacillus Using Ceftazidime/Avibactam: Case Series and Literature Review. Infect Drug Resist 2021; 14:1691-1701. [PMID: 33981150 PMCID: PMC8107005 DOI: 10.2147/idr.s306222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background Central nervous system (CNS) infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacillus, including carbapenem-resistant Enterobacteriaceae (CRE) and Pseudomonas aeruginosa, are associated with high mortality rates. Clinical trials of ceftazidime/avibactam (CAZ/AVI) on infections of other systems indicate that they are effective against these infections. However, clinical studies on the efficacies of CAZ/AVI in the treatment of CNS infections have not been done. Case Presentation We evaluated 3 patients diagnosed with MDR/XDR Gram-negative bacillus-associated CNS infections, and effectively treated with CAZ/AVI. Moreover, we performed literature reviews. Before the onset of CNS infections, the 3 patients were subjected to neurosurgical operations, treated with mechanical ventilation, long-term intensive care unit therapy, and various antibiotics. By intravenously administering CAZ/AVI, combined with another antibiotic, the MDR/XDR K. pneumoniae and P. aeruginosa associated ventriculitis was effectively treated in the 3 patients. Conclusion CAZ/AVI is a viable treatment option for CNS infections caused by MDR/XDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Emergency and Trauma Center, The International Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Hao Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Tianxiang Zhan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Xiaofeng Yang
- Department of Emergency and Trauma Center, The International Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Liang Wen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| |
Collapse
|
8
|
Scudeller L, Righi E, Chiamenti M, Bragantini D, Menchinelli G, Cattaneo P, Giske CG, Lodise T, Sanguinetti M, Piddock LJV, Franceschi F, Ellis S, Carrara E, Savoldi A, Tacconelli E. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. Int J Antimicrob Agents 2021; 57:106344. [PMID: 33857539 DOI: 10.1016/j.ijantimicag.2021.106344] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023]
Abstract
The superiority of combination therapy for carbapenem-resistant Gram-negative bacilli (CR-GNB) infections remains controversial. In vitro models may predict the efficacy of antibiotic regimens against CR-GNB. A systematic review and meta-analysis was performed including pharmacokinetic/pharmacodynamic (PK/PD) and time-kill (TK) studies examining the in vitro efficacy of antibiotic combinations against CR-GNB [PROSPERO registration no. CRD42019128104]. The primary outcome was in vitro synergy based on the effect size (ES): high, ES ≥ 0.75, moderate, 0.35 < ES < 0.75; low, ES ≤ 0.35; and absent, ES = 0). A network meta-analysis assessed the bactericidal effect and re-growth rate (secondary outcomes). An adapted version of the ToxRTool was used for risk-of-bias assessment. Over 180 combination regimens from 136 studies were included. The most frequently analysed classes were polymyxins and carbapenems. Limited data were available for ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. High or moderate synergism was shown for polymyxin/rifampicin against Acinetobacter baumannii [ES = 0.91, 95% confidence interval (CI) 0.44-1.00], polymyxin/fosfomycin against Klebsiella pneumoniae (ES = 1.00, 95% CI 0.66-1.00) and imipenem/amikacin against Pseudomonas aeruginosa (ES = 1.00, 95% CI 0.21-1.00). Compared with monotherapy, increased bactericidal activity and lower re-growth rates were reported for colistin/fosfomycin and polymyxin/rifampicin in K. pneumoniae and for imipenem/amikacin or imipenem/tobramycin against P. aeruginosa. High quality was documented for 65% and 53% of PK/PD and TK studies, respectively. Well-designed in vitro studies should be encouraged to guide the selection of combination therapies in clinical trials and to improve the armamentarium against carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Luigia Scudeller
- Clinical Epidemiology and Biostatistics, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano Foundation, Milan, Italy
| | - Elda Righi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Margherita Chiamenti
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Damiano Bragantini
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Giulia Menchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Cattaneo
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Christian G Giske
- Clinical Microbiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura J V Piddock
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - François Franceschi
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Sally Ellis
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Alessia Savoldi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Otfried Müller Straße 12, 72074 Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| |
Collapse
|
9
|
Lupia T, Corcione S, Mornese Pinna S, De Rosa FG. New cephalosporins for the treatment of pneumonia in internal medicine wards. J Thorac Dis 2020; 12:3747-3763. [PMID: 32802454 PMCID: PMC7399401 DOI: 10.21037/jtd-20-417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
The burden of hospital admission for pneumonia in internal medicine wards may not be underestimated; otherwise, cases of pneumonia are a frequent indication for antimicrobial prescriptions. Community- and hospital-acquired pneumonia are characterized by high healthcare costs, morbidity and non-negligible rates of fatality. The overcoming prevalence of resistant gram-negative and positive bacteria (e.g., methicillin-resistant Staphylococcus aureus, penicillin and ceftriaxone-resistant Streptococcus pneumoniae, extended-spectrum β-lactamases and carbapenemases producing Enterobacteriaceae) has made the most of the first-line agents ineffective for treating lower respiratory tract infections. A broad-spectrum of activity, favourable pulmonary penetration, harmlessness and avoiding in some cases a combination therapy, characterise new cephalosporins such as ceftolozane/tazobactam, ceftobiprole, ceftazidime/avibactam and ceftaroline. We aimed to summarise the role and place in therapy of new cephalosporins in community- and hospital-acquired pneumonia within the setting of internal medicine wards. The "universal pneumonia antibiotic strategy" is no longer acceptable for treating lung infections. Antimicrobial therapy should be individualized considering local antimicrobial resistance and epidemiology, the stage of the illness and potential host factors predisposing to a high risk for specific pathogens.
Collapse
Affiliation(s)
- Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
- School of Medicine, Tufts University, Boston, MA, USA
| | - Simone Mornese Pinna
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | | |
Collapse
|
10
|
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019; 32:32/4/e00031-19. [PMID: 31462403 PMCID: PMC6730496 DOI: 10.1128/cmr.00031-19] [Citation(s) in RCA: 465] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.
Collapse
Affiliation(s)
- Juan P Horcajada
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Milagro Montero
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Antonio Oliver
- Service of Microbiology, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Sorlí
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Sònia Luque
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Natividad Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Liu T, Zhang Y, Wan Q. Pseudomonas aeruginosa bacteremia among liver transplant recipients. Infect Drug Resist 2018; 11:2345-2356. [PMID: 30532566 PMCID: PMC6247952 DOI: 10.2147/idr.s180283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa bacteremia remains as a life-threatening complication after liver transplantation (LT) and is intractable because of the high rate of drug resistance to commonly used antibiotics. To better understand the characteristics of this postoperative complication, PubMed and Embase searches as well as reference mining was done for relevant literature from the start of the databases through August 2018. Among LT recipients, the incidence of P. aeruginosa bacteremia ranged from 0.5% to 14.4% and mortality rates were up to 40%. Approximately 35% of all episodes of bloodstream infections (BSIs) were P. aeruginosa bacteremia, of which 47% were multidrug resistant and 63% were extensively drug resistant. Several factors are known to affect the mortality of LT recipients with P. aeruginosa bacteremia, including hypotension, mechanical ventilation, and increasing severity of illness. In LT recipients with P. aeruginosa bacteremia, alteration in DNA gyrase A genes and overexpression of proteins involved in efflux systems, namely the expression of KPC-2-type carbapenemase, NDM-1, and VIM-2-type MBL, contribute to the high resistance of P. aeruginosa to a wide variety of antibiotics. Because of complicated mechanisms of drug resistance, P. aeruginosa causes high morbidity and mortality in bacteremic LT patients. Consequently, early detection and treatment with adequate early targeted coverage for P. aeruginosa BSI are of paramount importance in the early posttransplantation period to obtain a better prognosis for LT patients.
Collapse
Affiliation(s)
- Taohua Liu
- Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Yuezhong Zhang
- Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Qiquan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, China,
| |
Collapse
|