1
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
2
|
Beauchemin KS, Rees JR, Supattapone S. Alternating anti-prion regimens reduce combination drug resistance but do not further extend survival in scrapie-infected mice. J Gen Virol 2021; 102:001705. [PMID: 34904943 PMCID: PMC8744272 DOI: 10.1099/jgv.0.001705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative diseases in humans and other mammals caused by templated misfolding of the endogenous prion protein (PrP). Although there is currently no vaccine or therapy against prion disease, several classes of small-molecule compounds have been shown to increase disease-free incubation time in prion-infected mice. An apparent obstacle to effective anti-prion therapy is the emergence of drug-resistant strains during static therapy with either single compounds or multi-drug combination regimens. Here, we treated scrapie-infected mice with dynamic regimens that alternate between different classes of anti-prion drugs. The results show that alternating regimens containing various combinations of Anle138b, IND24 and IND116135 reduce the incidence of combination drug resistance, but do not significantly increase long-term disease-free survival compared to monotherapy. Furthermore, the alternating regimens induced regional vacuolation profiles resembling those generated by a single component of the alternating regimen, suggesting the emergence of strain dominance.
Collapse
Affiliation(s)
- Kathryn S. Beauchemin
- Departments of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Judy R. Rees
- Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Surachai Supattapone
- Departments of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA,*Correspondence: Surachai Supattapone,
| |
Collapse
|
3
|
Alpha-Synuclein PET Tracer Development-An Overview about Current Efforts. Pharmaceuticals (Basel) 2021; 14:ph14090847. [PMID: 34577548 PMCID: PMC8466155 DOI: 10.3390/ph14090847] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson’s disease (PD) are manifested by inclusion bodies of alpha-synuclein (α-syn) also called α-synucleinopathies. Detection of these inclusions is thus far only possible by histological examination of postmortem brain tissue. The possibility of non-invasively detecting α-syn will therefore provide valuable insights into the disease progression of α-synucleinopathies. In particular, α-syn imaging can quantify changes in monomeric, oligomeric, and fibrillic α-syn over time and improve early diagnosis of various α-synucleinopathies or monitor treatment progress. Positron emission tomography (PET) is a non-invasive in vivo imaging technique that can quantify target expression and drug occupancies when a suitable tracer exists. As such, novel α-syn PET tracers are highly sought after. The development of an α-syn PET tracer faces several challenges. For example, the low abundance of α-syn within the brain necessitates the development of a high-affinity ligand. Moreover, α-syn depositions are, in contrast to amyloid proteins, predominantly localized intracellularly, limiting their accessibility. Furthermore, another challenge is the ligand selectivity over structurally similar amyloids such as amyloid-beta or tau, which are often co-localized with α-syn pathology. The lack of a defined crystal structure of α-syn has also hindered rational drug and tracer design efforts. Our objective for this review is to provide a comprehensive overview of current efforts in the development of selective α-syn PET tracers.
Collapse
|
4
|
Hyeon JW, Noh R, Choi J, Lee SM, Lee YS, An SSA, No KT, Lee J. BMD42-2910, a Novel Benzoxazole Derivative, Shows a Potent Anti-prion Activity and Prolongs the Mean Survival in an Animal Model of Prion Disease. Exp Neurobiol 2020; 29:93-105. [PMID: 32122111 PMCID: PMC7075655 DOI: 10.5607/en.2020.29.1.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Prion diseases are a group of neurodegenerative and fatal central nervous system disorders. The pathogenic mechanism involves the conversion of cellular prion protein (PrPC) to an altered scrapie isoform (PrPSc), which accumulates in amyloid deposits in the brain. However, no therapeutic drugs have demonstrated efficacy in clinical trials. We previously reported that BMD42-29, a synthetic compound discovered in silico, is a novel anti-prion compound that inhibits the conversion of PrPC to protease K (PK)-resistant PrPSc fragments (PrPres). In the present study, 14 derivatives of BMD42-29 were obtained from BMD42-29 by modifying in the side chain by in silico feedback, with the aim to determine whether they improve anti-prion activity. These derivatives were assessed in a PrPSc-infected cell model and some derivatives were further tested using real time-quaking induced conversion (RT-QuIC). Among them, BMD42-2910 showed high anti-prion activity at low concentrations in vitro and also no toxic effects in a mouse model. Interestingly, abundant PrPres was reduced in brains of mice infected with prion strain when treated with BMD42-2910, and the mice survived longer than control mice and even that treated with BMD42-29. Finally, high binding affinity was predicted in the virtual binding sites (Asn159, Gln 160, Lys194, and Glu196) when PrPC was combined with BMD-42-2910. Our findings showed that BMD42-2910 sufficiently reduces PrPres generation in vitro and in vivo and may be a promising novel anti-prion compound.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28160, Korea
| | - Ran Noh
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28160, Korea
| | - Jiwon Choi
- Bioinformatics and Molecular Design Research Center, Yonsei University, Seoul 03722, Korea
| | - Sol Moe Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28160, Korea
| | - Yeong Seon Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28160, Korea
| | - Seong Soo A An
- Gachon Bio Nano Research Institute, Gachon University, Seongnam 13120, Korea
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center, Yonsei University, Seoul 03722, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jeongmin Lee
- Division of Research Planning, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28160, Korea
| |
Collapse
|
5
|
Abstract
Recent advances in understanding of the molecular biology of prion diseases and improved clinical diagnostic techniques might allow researchers to think about therapeutic trials in Creutzfeldt-Jakob disease (CJD) patients. Some attempts have been made in the past and various compounds have been tested in single case reports and patient series. Controlled trials are rare. However, in the past few years, it has been demonstrated that clinical trials are feasible. The clinicians might face several specific problems when evaluating the efficacy of the drug in CJD, such as rareness of the disease, lack of appropriate preclinical tests and heterogeneous clinical presentation in humans. These problems have to be carefully addressed in future.
Collapse
Affiliation(s)
- Saima Zafar
- Clinical Dementia Center and German Center for Neurodegenerative Diseases, Department of Neurology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany; Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aneeqa Noor
- Clinical Dementia Center and German Center for Neurodegenerative Diseases, Department of Neurology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Clinical Dementia Center and German Center for Neurodegenerative Diseases, Department of Neurology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Shan Z, Yamasaki T, Suzuki A, Hasebe R, Horiuchi M. Establishment of a simple cell-based ELISA for the direct detection of abnormal isoform of prion protein from prion-infected cells without cell lysis and proteinase K treatment. Prion 2017; 10:305-18. [PMID: 27565564 DOI: 10.1080/19336896.2016.1189053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Prion-infected cells have been used for analyzing the effect of compounds on the formation of abnormal isoform of prion protein (PrP(Sc)). PrP(Sc) is usually detected using anti-prion protein (PrP) antibodies after the removal of the cellular isoform of prion protein (PrP(C)) by proteinase K (PK) treatment. However, it is expected that the PK-sensitive PrP(Sc) (PrP(Sc)-sen), which possesses higher infectivity and conversion activity than the PK-resistant PrP(Sc) (PrP(Sc)-res), is also digested through PK treatment. To overcome this problem, we established a novel cell-based ELISA in which PrP(Sc) can be directly detected from cells persistently infected with prions using anti-PrP monoclonal antibody (mAb) 132 that recognizes epitope consisting of mouse PrP amino acids 119-127. The novel cell-based ELISA could distinguish prion-infected cells from prion-uninfected cells without cell lysis and PK treatment. MAb 132 could detect both PrP(Sc)-sen and PrP(Sc)-res even if all PrP(Sc) molecules were not detected. The analytical dynamic range for PrP(Sc) detection was approximately 1 log. The coefficient of variation and signal-to-background ratio were 7%-11% and 2.5-3.3, respectively, demonstrating the reproducibility of this assay. The addition of a cytotoxicity assay immediately before PrP(Sc) detection did not affect the following PrP(Sc) detection. Thus, all the procedures including cell culture, cytotoxicity assay, and PrP(Sc) detection were completed in the same plate. The simplicity and non-requirement for cell lysis or PK treatment are advantages for the high throughput screening of anti-prion compounds.
Collapse
Affiliation(s)
- Zhifu Shan
- a Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo , Japan
| | - Takeshi Yamasaki
- a Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo , Japan
| | - Akio Suzuki
- a Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo , Japan
| | - Rie Hasebe
- a Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo , Japan
| | - Motohiro Horiuchi
- a Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo , Japan
| |
Collapse
|
7
|
Exploring Anti-Prion Glyco-Based and Aromatic Scaffolds: A Chemical Strategy for the Quality of Life. Molecules 2017; 22:molecules22060864. [PMID: 28538692 PMCID: PMC6152669 DOI: 10.3390/molecules22060864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by protein misfolding and aggregation, affecting the brain progressively and consequently the quality of life. Alzheimer’s is also a protein misfolding disease, causing dementia in over 40 million people worldwide. There are no therapeutics able to cure these diseases. Cellular prion protein is a high-affinity binding partner of amyloid β (Aβ) oligomers, the most toxic species in Alzheimer’s pathology. These findings motivate the development of new chemicals for a better understanding of the events involved. Disease control is far from being reached by the presently known therapeutics. In this review we describe the synthesis and mode of action of molecular entities with intervention in prion diseases’ biological processes and, if known, their role in Alzheimer’s. A diversity of structures is covered, based on glycans, steroids and terpenes, heterocycles, polyphenols, most of them embodying aromatics and a structural complexity. These molecules may be regarded as chemical tools to foster the understanding of the complex mechanisms involved, and to encourage the scientific community towards further developments for the cure of these devastating diseases.
Collapse
|
8
|
Deeg AA, Reiner AM, Schmidt F, Schueder F, Ryazanov S, Ruf VC, Giller K, Becker S, Leonov A, Griesinger C, Giese A, Zinth W. Anle138b and related compounds are aggregation specific fluorescence markers and reveal high affinity binding to α-synuclein aggregates. Biochim Biophys Acta Gen Subj 2015; 1850:1884-90. [PMID: 26028294 DOI: 10.1016/j.bbagen.2015.05.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/26/2015] [Accepted: 05/27/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Special diphenyl-pyrazole compounds and in particular anle138b were found to reduce the progression of prion and Parkinson's disease in animal models. The therapeutic impact of these compounds was attributed to the modulation of α-synuclein and prion-protein aggregation related to these diseases. METHODS Photophysical and photochemical properties of the diphenyl-pyrazole compounds anle138b, anle186b and sery313b and their interaction with monomeric and aggregated α-synuclein were studied by fluorescence techniques. RESULTS The fluorescence emission of diphenyl-pyrazole is strongly increased upon incubation with α-synuclein fibrils, while no change in fluorescence emission is found when brought in contact with monomeric α-synuclein. This points to a distinct interaction between diphenyl-pyrazole and the fibrillar structure with a high binding affinity (Kd=190±120nM) for anle138b. Several α-synuclein proteins form a hydrophobic binding pocket for the diphenyl-pyrazole compound. A UV-induced dehalogenation reaction was observed for anle138b which is modulated by the hydrophobic environment of the fibrils. CONCLUSION Fluorescence of the investigated diphenyl-pyrazole compounds strongly increases upon binding to fibrillar α-synuclein structures. Binding at high affinity occurs to hydrophobic pockets in the fibrils. GENERAL SIGNIFICANCE The observed particular fluorescence properties of the diphenyl-pyrazole molecules open new possibilities for the investigation of the mode of action of these compounds in neurodegenerative diseases. The high binding affinity to aggregates and the strong increase in fluorescence upon binding make the compounds promising fluorescence markers for the analysis of aggregation-dependent epitopes.
Collapse
Affiliation(s)
- Andreas A Deeg
- BioMolekulare Optik and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Anne M Reiner
- BioMolekulare Optik and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Felix Schmidt
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Florian Schueder
- BioMolekulare Optik and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Sergey Ryazanov
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Viktoria C Ruf
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Karin Giller
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrei Leonov
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Armin Giese
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Wolfgang Zinth
- BioMolekulare Optik and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany.
| |
Collapse
|
9
|
Leidel F, Eiden M, Geissen M, Hirschberger T, Tavan P, Giese A, Kretzschmar HA, Schätzl H, Groschup MH. Piperazine derivatives inhibit PrP/PrP(res) propagation in vitro and in vivo. Biochem Biophys Res Commun 2014; 445:23-9. [PMID: 24502948 DOI: 10.1016/j.bbrc.2014.01.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders, which are not curable and no effective treatment exists so far. The major neuropathological change in diseased brains is the conversion of the normal cellular form of the prion protein PrPc(C) into a disease-associated isoform PrP(Sc). PrP(Sc) accumulates into multimeres and fibrillar aggregates, which leads to the formation of amyloid plaques. Increasing evidence indicates a fundamental role of PrP(Sc) species and its aggregation in the pathogenesis of prion diseases, which initiates the pathological cascade and leads to neurodegeneration accompanied by spongiform changes. In search of compounds that have the potential to interfere with PrP(Sc) formation and propagation, we used a cell based assay for the screening of potential aggregation inhibitors. The assay deals with a permanently prion infected cell line that was adapted for a high-throughput screening of a compound library composed of 10,000 compounds (DIVERset 2, ChemBridge). We could detect six different classes of highly potent inhibitors of PrP(Sc) propagation in vitro and identified piperazine derivatives as a new inhibitory lead structure, which increased incubation time of scrapie infected mice.
Collapse
Affiliation(s)
- Fabienne Leidel
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Markus Geissen
- Department of Vascular Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Thomas Hirschberger
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians Universität, München, Germany
| | - Paul Tavan
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians Universität, München, Germany
| | - Armin Giese
- Institut für Neuropathologie, Ludwig-Maximilians Universität, München, Germany
| | - Hans A Kretzschmar
- Institut für Neuropathologie, Ludwig-Maximilians Universität, München, Germany
| | - Hermann Schätzl
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
10
|
Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, Prix C, Pan-Montojo F, Bertsch U, Mitteregger-Kretzschmar G, Geissen M, Eiden M, Leidel F, Hirschberger T, Deeg AA, Krauth JJ, Zinth W, Tavan P, Pilger J, Zweckstetter M, Frank T, Bähr M, Weishaupt JH, Uhr M, Urlaub H, Teichmann U, Samwer M, Bötzel K, Groschup M, Kretzschmar H, Griesinger C, Giese A. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson's disease. Acta Neuropathol 2013; 125:795-813. [PMID: 23604588 PMCID: PMC3661926 DOI: 10.1007/s00401-013-1114-9] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 01/10/2023]
Abstract
In neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and prion diseases, deposits of aggregated disease-specific proteins are found. Oligomeric aggregates are presumed to be the key neurotoxic agent. Here we describe the novel oligomer modulator anle138b [3-(1,3-benzodioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole], an aggregation inhibitor we developed based on a systematic high-throughput screening campaign combined with medicinal chemistry optimization. In vitro, anle138b blocked the formation of pathological aggregates of prion protein (PrPSc) and of α-synuclein (α-syn), which is deposited in PD and other synucleinopathies such as dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Notably, anle138b strongly inhibited all prion strains tested including BSE-derived and human prions. Anle138b showed structure-dependent binding to pathological aggregates and strongly inhibited formation of pathological oligomers in vitro and in vivo both for prion protein and α-synuclein. Both in mouse models of prion disease and in three different PD mouse models, anle138b strongly inhibited oligomer accumulation, neuronal degeneration, and disease progression in vivo. Anle138b had no detectable toxicity at therapeutic doses and an excellent oral bioavailability and blood–brain-barrier penetration. Our findings indicate that oligomer modulators provide a new approach for disease-modifying therapy in these diseases, for which only symptomatic treatment is available so far. Moreover, our findings suggest that pathological oligomers in neurodegenerative diseases share structural features, although the main protein component is disease-specific, indicating that compounds such as anle138b that modulate oligomer formation by targeting structure-dependent epitopes can have a broad spectrum of activity in the treatment of different protein aggregation diseases.
Collapse
Affiliation(s)
- Jens Wagner
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Sergey Ryazanov
- NMR based structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Andrei Leonov
- NMR based structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Johannes Levin
- Neurologische Klinik, Klinikum der Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 Munich, Germany
| | - Song Shi
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Felix Schmidt
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
- Neurologische Klinik, Klinikum der Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 Munich, Germany
| | - Catharina Prix
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | | | - Uwe Bertsch
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
- Present Address: Institut für Immunologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Gerda Mitteregger-Kretzschmar
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Markus Geissen
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Germany
- Present Address: Department of Vascular Medicine, UKE, Hamburg, Germany
| | - Martin Eiden
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Germany
| | - Fabienne Leidel
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Germany
| | | | - Andreas A. Deeg
- BioMolekulare Optik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Julian J. Krauth
- BioMolekulare Optik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Wolfgang Zinth
- BioMolekulare Optik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Paul Tavan
- BioMolekulare Optik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jens Pilger
- NMR based structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Markus Zweckstetter
- NMR based structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tobias Frank
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Neurologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Mathias Bähr
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Neurologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Jochen H. Weishaupt
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Neurologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Manfred Uhr
- Labor für Pharmakokinetik, Max-Planck-Institut für Psychiatrie, Munich, Germany
| | - Henning Urlaub
- Bioanalytische Massenspektrometrie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- Bioanalytics, Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Ulrike Teichmann
- Tierhaltung, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Matthias Samwer
- Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Kai Bötzel
- Neurologische Klinik, Klinikum der Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 Munich, Germany
| | - Martin Groschup
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Germany
| | - Hans Kretzschmar
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Christian Griesinger
- NMR based structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Armin Giese
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| |
Collapse
|
11
|
Hsu CC, Lien JC, Chang CW, Chang CH, Kuo SC, Huang TF. Yuwen02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NFkB and MAPK activation. Biochem Pharmacol 2012; 85:385-95. [PMID: 23142712 DOI: 10.1016/j.bcp.2012.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/22/2022]
Abstract
Phagocytes release inflammatory mediators to defense harmful stimuli upon bacterial invasion, however, excessive inflammatory reaction leads to tissue damage and manifestation of pathological states. Therefore, targeting on uncontrolled inflammation seems feasible to control numerous inflammation-associated diseases. Under the drug screening process of synthetic diphenylpyrazole derivatives, we discovered compound yuwen02f1 possesses anti-inflammatory effects in decreasing the release of pro-inflammatory cytokines including TNFα and IL-6, nitric oxide, reactive oxygen species (ROS) as well as inhibiting migration of LPS-stimulated phagocytes. In addition, we observed that the molecular mechanism of yuwen02f1-mediated anti-inflammation is associated with decreasing phosphorylation of MAPK molecules including ERK1/2, JNK and p38, and attenuating translocation of p47(phox) and p67(phox) to the cell membrane. Yuwen02f1 also reverses IκBα degradation and attenuates the expression of NFκB-related downstream inducible enzymes like iNOS and COX-2. Furthermore, we found that yuwen02f1 attenuates some pathological syndromes of LPS-induced sepsis and adjuvant-induced arthritis in mice, as evidenced by decreasing the cytokine production, reversing thrombocytopenic syndrome, protecting the mice from tissue injury in septic mice, and attenuating paw edema in arthritic mice as well. These results suggest that yuwen02f1 is a potential anti-inflammatory agent for alleviating syndromes of acute and chronic inflammatory diseases as evidenced by attenuating the generation of cytokines and down-regulating the expression of iNOS and COX-2 through the blockade of ROS generation and NADPH oxidase, NFκB and MAPK activation pathways in LPS-stimulated phagocytes.
Collapse
Affiliation(s)
- Chun-Chieh Hsu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Eiden M, Leidel F, Strohmeier B, Fast C, Groschup MH. A Medicinal Herb Scutellaria lateriflora Inhibits PrP Replication in vitro and Delays the Onset of Prion Disease in Mice. Front Psychiatry 2012; 3:9. [PMID: 22363300 PMCID: PMC3281244 DOI: 10.3389/fpsyt.2012.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/02/2012] [Indexed: 12/11/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSE) are characterized by the misfolding of the host encoded prion protein (PrP(C)) into a pathogenic isoform (PrP(Sc)) which leads to the accumulation of β-sheet-rich fibrils and subsequent loss of neurons and synaptic functions. Although many compounds have been identified which inhibit accumulation or dissolve fibrils and aggregates in vitro there is no therapeutic treatment to stop these progressive neurodegenerative diseases. Here we describe the effects of the traditional medicinal herb Scutellaria lateriflora (S. lateriflora) and its natural compounds, the flavonoids baicalein and baicalin, on the development of prion disease using in vitro and in vivo models. S. lateriflora extract as well as both constituents reduced the PrP(res) accumulation in scrapie-infected cell cultures and cell-free conversion assays and lead to the destabilization of pre-existing PrP(Sc) fibrils. Moreover, tea prepared from S. lateriflora, prolonged significantly the incubation time of scrapie-infected mice upon oral treatment. Therefore S. lateriflora extracts as well as the individual compounds can be considered as promising candidates for the development of new therapeutic drugs against TSEs and other neurodegenerative diseases like Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Greifswald, Germany
| | | | | | | | | |
Collapse
|