1
|
Wale YM, Roberts JA, Sime FB. Dynamic In Vitro PK/PD Infection Models for the Development and Optimisation of Antimicrobial Regimens: A Narrative Review. Antibiotics (Basel) 2024; 13:1201. [PMID: 39766591 PMCID: PMC11672834 DOI: 10.3390/antibiotics13121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The antimicrobial concentration-time profile in humans affects antimicrobial activity, and as such, it is critical for preclinical infection models to simulate human-like dynamic concentration-time profiles for maximal translatability. This review discusses the setup, principle, and application of various dynamic in vitro PK/PD infection models commonly used in the development and optimisation of antimicrobial treatment regimens. It covers the commonly used dynamic in vitro infection models, including the one-compartment model, hollow fibre infection model, biofilm model, bladder infection model, and aspergillus infection model. It summarises the mathematical methods for the simulation of the pharmacokinetic profile of single or multiple antimicrobials when using the serial or parallel configurations of in vitro systems. Dynamic in vitro models offer reliable pharmacokinetic/pharmacodynamic data to help define the initial dosing regimens of new antimicrobials that can be developed further in clinical trials. They can also help in the optimisation of dosing regimens for existing antimicrobials, especially in the presence of emerging antimicrobial resistance. In conclusion, dynamic in vitro infection models replicate the interactions that occur between microorganisms and dynamic antimicrobial exposures in the human body to generate data highly predictive of the clinical efficacy. They are particularly useful for the development new treatment strategies against antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Yalew M. Wale
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Jason A. Roberts
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia
- Division of Anesthesia Critical Care and Emergency and Pain Medicine, Nimes University Hospital, University of Montpellier, UR UM 103, 34090 Nimes, France
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, QLD 4006, Australia
| | - Fekade B. Sime
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| |
Collapse
|
2
|
Wale YM, Roberts JA, Wolie ZT, Sime FB. Is there evidence on the optimal duration of aminoglycoside therapy in β-lactam/aminoglycoside combination regimens used for the treatment of gram-negative bacterial infections? A systematic review. Int J Antimicrob Agents 2024; 64:107297. [PMID: 39111709 DOI: 10.1016/j.ijantimicag.2024.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND The optimal duration of therapy of aminoglycosides in combination regimens is expected to be different from that of monotherapy regimens, and shorter durations could help minimize toxicity without compromising efficacy. The aim of this review was to assess the evidence for the optimal duration of aminoglycosides in β-lactam/aminoglycoside combinations used for the treatment of Gram-negative bacterial infections. MATERIALS AND METHODS PubMed, Cochrane, Embase, Scopus, Web of Science, and CINHAL databases were searched. Covidence software was used for article screening and management. Studies were included if they clearly reported the duration of therapy of aminoglycosides in β-lactam/aminoglycoside combinations used against Gram-negative bacteria. The protocol is registered with PROSPERO (CRD42023392709). RESULTS A total of 45 β-lactam/aminoglycoside combination courses from 32 articles were evaluated. The duration of therapy of aminoglycosides in combinations regimens ranged from 1 to 14 days, varying with the type of infection treated. In half (51.1%; (23/45) of the combinations, aminoglycosides were administered for a duration ranging from 6 to 9 days. In 26.7% (12/45) of the combinations, the duration of aminoglycoside therapy was ≤ 5 days. In the remaining 22.2% (10/45) of these combinations, the aminoglycosides were administered for a duration of ≥ 10 days. Aminoglycosides were administered for a longer duration of 7-14 days in 12 (75%) of the 16 combination courses that induced toxicity. CONCLUSIONS Long duration of aminoglycoside use is associated with increased risk of toxicity. However, there is a lack of evidence on defining an optimal duration of aminoglycoside therapy in β-lactam/aminoglycoside combination regimens that ensures clinical efficacy outcomes whilst minimizing toxicity outcomes.
Collapse
Affiliation(s)
- Yalew M Wale
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jason A Roberts
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France; Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
| | - Zenaw T Wolie
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Fekade B Sime
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Dulyayangkul P, Beavis T, Lee WWY, Ardagh R, Edwards F, Hamilton F, Head I, Heesom KJ, Mounsey O, Murarik M, Pinweha P, Reding C, Satapoomin N, Shaw JM, Takebayashi Y, Tooke CL, Spencer J, Williams PB, Avison MB. Harvesting and amplifying gene cassettes confers cross-resistance to critically important antibiotics. PLoS Pathog 2024; 20:e1012235. [PMID: 38843111 PMCID: PMC11156391 DOI: 10.1371/journal.ppat.1012235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Amikacin and piperacillin/tazobactam are frequent antibiotic choices to treat bloodstream infection, which is commonly fatal and most often caused by bacteria from the family Enterobacterales. Here we show that two gene cassettes located side-by-side in and ancestral integron similar to In37 have been "harvested" by insertion sequence IS26 as a transposon that is widely disseminated among the Enterobacterales. This transposon encodes the enzymes AAC(6')-Ib-cr and OXA-1, reported, respectively, as amikacin and piperacillin/tazobactam resistance mechanisms. However, by studying bloodstream infection isolates from 769 patients from three hospitals serving a population of 1.2 million people in South West England, we show that increased enzyme production due to mutation in an IS26/In37-derived hybrid promoter or, more commonly, increased transposon copy number is required to simultaneously remove these two key therapeutic options; in many cases leaving only the last-resort antibiotic, meropenem. These findings may help improve the accuracy of predicting piperacillin/tazobactam treatment failure, allowing stratification of patients to receive meropenem or piperacillin/tazobactam, which may improve outcome and slow the emergence of meropenem resistance.
Collapse
Affiliation(s)
- Punyawee Dulyayangkul
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Thomas Beavis
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Winnie W. Y. Lee
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robbie Ardagh
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Frances Edwards
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- North Bristol NHS Trust, Bristol, United Kingdom
| | | | - Ian Head
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Somerset NHS Foundation Trust, Taunton, United Kingdom
| | - Kate J. Heesom
- Bristol University Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Oliver Mounsey
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Marek Murarik
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Peechanika Pinweha
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Carlos Reding
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Naphat Satapoomin
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - John M. Shaw
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Catherine L. Tooke
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - James Spencer
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Philip B. Williams
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Matthew B. Avison
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Han KH, Oh MS, Ahn J, Lee J, Kim YW, Yoon YM, Kim YJ, Kang HS, Kang KS, Greenbaum LA, Choi JH. Piperacillin-Tazobactam versus Cefotaxime as Empiric Treatment for Febrile Urinary Tract Infection in Hospitalized Children. Infect Chemother 2024; 56:266-275. [PMID: 38960740 PMCID: PMC11224032 DOI: 10.3947/ic.2024.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/15/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND According to international pediatric urinary tract infection (UTI) guidelines, selecting ampicillin/sulbactam or amoxicillin/clavulanate is recommended as the first-line treatment for pediatric UTI. In Korea, elevated resistance to ampicillin and ampicillin/sulbactam has resulted in the widespread use of third-generation cephalosporins for treating pediatric UTIs. This study aims to compare the efficacy of piperacillin-tazobactam (TZP) and cefotaxime (CTX) as first-line treatments in hospitalized children with UTIs. MATERIALS AND METHODS The study, conducted at Jeju National University Hospital, retrospectively analyzed medical records of children hospitalized for febrile UTIs between 2014 and 2017. UTI diagnosis included unexplained fever, abnormal urinalysis, and the presence of significant uropathogens. Treatment responses, recurrence, and antimicrobial susceptibility were assessed. RESULTS Out of 323 patients, 220 met the inclusion criteria. Demographics and clinical characteristics were similar between TZP and CTX groups. For children aged ≥3 months, no significant differences were found in treatment responses and recurrence. Extended-spectrum beta-lactamase (ESBL)-positive strains were associated with recurrence in those <3 months. CONCLUSION In Korea, escalating resistance to empirical antibiotics has led to the adoption of broad-spectrum empirical treatment. TZP emerged as a viable alternative to CTX for hospitalized children aged ≥3 months with UTIs. Consideration of ESBL-positive strains and individualized approaches for those <3 months are crucial.
Collapse
Affiliation(s)
- Kyoung Hee Han
- Department of Pediatrics, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Korea
| | - Min-Su Oh
- Department of Pediatrics, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Korea
| | - Jungmin Ahn
- Department of Pediatrics, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Korea
| | - Juyeon Lee
- Department of Pediatrics, Jeju National University Hospital, Jeju, Korea
| | - Youn Woo Kim
- Department of Pediatrics, Jeju National University Hospital, Jeju, Korea
| | - Young Mi Yoon
- Department of Pediatrics, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Korea
| | - Yoon-Joo Kim
- Department of Pediatrics, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Korea
| | - Hyun Sik Kang
- Department of Pediatrics, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Korea
| | - Ki-Soo Kang
- Department of Pediatrics, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Korea
| | - Larry A Greenbaum
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Jae Hong Choi
- Department of Pediatrics, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Korea.
| |
Collapse
|
5
|
Kalın G, Alp E, Chouaikhi A, Roger C. Antimicrobial Multidrug Resistance: Clinical Implications for Infection Management in Critically Ill Patients. Microorganisms 2023; 11:2575. [PMID: 37894233 PMCID: PMC10609422 DOI: 10.3390/microorganisms11102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing incidence of antimicrobial resistance (AMR) worldwide represents a serious threat in the management of sepsis. Due to resistance to the most common antimicrobials prescribed, multidrug-resistant (MDR) pathogens have been associated with delays in adequate antimicrobial therapy leading to significant increases in mortality, along with prolonged hospital length of stay (LOS) and increases in healthcare costs. In response to MDR infections and the delay of microbiological results, broad-spectrum antibiotics are frequently used in empirical antimicrobial therapy. This can contribute to the overuse and misuse of antibiotics, further promoting the development of resistance. Multiple measures have been suggested to combat AMR. This review will focus on describing the epidemiology and trends concerning MDR pathogens. Additionally, it will explore the crucial aspects of identifying patients susceptible to MDR infections and optimizing antimicrobial drug dosing, which are both pivotal considerations in the fight against AMR. Expert commentary: The increasing AMR in ICUs worldwide makes the empirical antibiotic therapy challenging in septic patients. An AMR surveillance program together with improvements in MDR identification based on patient risk stratification and molecular rapid diagnostic tools may further help tailoring antimicrobial therapies and avoid unnecessary broad-spectrum antibiotics. Continuous infusions of antibiotics, therapeutic drug monitoring (TDM)-based dosing regimens and combination therapy may contribute to optimizing antimicrobial therapy and limiting the emergence of resistance.
Collapse
Affiliation(s)
- Gamze Kalın
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Emine Alp
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara 06760, Türkiye;
| | - Arthur Chouaikhi
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes-Caremeau University Hospital, Place du Professeur Robert Debré, CEDEX 9, 30029 Nîmes, France;
| | - Claire Roger
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes-Caremeau University Hospital, Place du Professeur Robert Debré, CEDEX 9, 30029 Nîmes, France;
- UR UM 103 IMAGINE, Faculty of Medicine, Montpellier University, Chemin du Carreau de Lanes, 30029 Nîmes, France
| |
Collapse
|
6
|
Ramirez DM, Ramirez D, Dhiman S, Arora R, Lozeau C, Arthur G, Zhanel G, Schweizer F. Guanidinylated Amphiphilic Tobramycin Derivatives Synergize with β-Lactam/β-Lactamase Inhibitor Combinations against Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:1754-1768. [PMID: 37603592 DOI: 10.1021/acsinfecdis.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) was designated as a critical priority pathogen by the World Health Organization for which new therapeutic solutions are required. With the rapid dissemination of β-lactamases in P. aeruginosa, β-lactam (BL) antibiotics are used in conjunction with β-lactamase inhibitors (BLI). The effectiveness of the BL/BLI combination could be further enhanced with the inclusion of an outer membrane (OM) permeabilizer, such as aminoglycosides and aminoglycoside-based adjuvants. Thus, the development of seven tobramycin derivatives reported herein focused on improving OM permeabilizing capabilities and reducing associated toxicity. The structure-activity relationship studies emphasized the effects of the nature of the cationic group; the number of polar head groups and positive charges; and flexibility, length, and steric bulk of the hydrophobic moiety. The optimized guanidinylated tobramycin-biphenyl derivative was noncytotoxic and demonstrated the ability to potentiate ceftazidime and aztreonam monotherapy and in dual combinations with avibactam against multidrug-resistant (MDR) and β-lactamase harboring isolates of P. aeruginosa. The triple combination of ceftazidime/avibactam plus guanidinylated tobramycin-biphenyl resulted in rapid bactericidal activity within 4-8 h of treatment, demonstrating the potential application of these guanidinylated amphiphilic tobramycin derivatives in augmenting BL/BLI combinations.
Collapse
Affiliation(s)
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Rajat Arora
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Christian Lozeau
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MBR3E 0W2, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MBR3E 0J9, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MBR3E 0J9, Canada
| |
Collapse
|
7
|
Sumi CD, Roberts JA, Sime FB. Pharmacodynamic evaluation of intermittent versus extended and continuous infusions of piperacillin/tazobactam in a hollow-fibre infection model against Klebsiella pneumoniae-authors' response. J Antimicrob Chemother 2023; 78:854-857. [PMID: 36718049 DOI: 10.1093/jac/dkad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Chandra Datta Sumi
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Fekade B Sime
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|