1
|
Hyun S, Choi Y, Jo D, Choo S, Park TW, Park SJ, Kim S, Lee S, Park S, Jin SM, Cheon DH, Yoo W, Arya R, Chong YP, Kim KK, Kim YS, Lee Y, Yu J. Proline Hinged Amphipathic α-Helical Peptide Sensitizes Gram-Negative Bacteria to Various Gram-Positive Antibiotics. J Med Chem 2020; 63:14937-14950. [DOI: 10.1021/acs.jmedchem.0c01506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Soonsil Hyun
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Yoonhwa Choi
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Doyeon Jo
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Seolah Choo
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Tae Woo Park
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Su-Jin Park
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seoyeon Kim
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Seonju Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sohyun Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sun Mi Jin
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Wanki Yoo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Rekha Arya
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Yong Pil Chong
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Yang Soo Kim
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jaehoon Yu
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Hajiahmadi F, Alikhani MY, Shariatifar H, Arabestani MR, Ahmadvand D. The bactericidal effect of liposomal vancomycin as a topical combating system against Methicillin-resistant Staphylococcus aureus skin wound infection in mice. Med J Islam Repub Iran 2019; 33:153. [PMID: 32280659 PMCID: PMC7137850 DOI: 10.34171/mjiri.33.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 01/21/2023] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common causes of skin infections and treatment is difficult due to its resistance to the most of antibiotics. Although vancomycin is often considered as an antibacterial agent of choice for the treatment of MRSA, its use is limited because of the high side effects. One solution is using liposomal formulation for local drug delivery. The aim of this study was to determine in vitro and in vivo efficacies of liposomal vancomycin as topical use. Methods: To prepare liposomal vancomycin, the ammonium sulfate gradient using remote loading and freeze-thaw methods was applied. Then, synthesized nanoliposomes were evaluated in terms of particle size, morphology, stability, and encapsulation efficiency. Minimum inhibitory concentration (MIC) of synthesized nanoliposome against MRSA was detected. The cytotoxicity of synthesized nanoliposome was evaluated using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Finally, the topical antibacterial activity of each formulation was tested against MRSA-infected skin wound model in mice.
Results: High encapsulation efficiency was achieved for all synthesized nanoliposomes. The results of in vitro and in vivo showed that liposomal vancomycin was more effective than free vancomycin. Also, synthesized nanoliposome showed no cytotoxicity on human epidermoid cell line.
Conclusion: The results showed that synthesized nanoliposome could be applied as a great topical antimicrobial construct for treatment of MRSA skin infections.
Collapse
Affiliation(s)
- Fahimeh Hajiahmadi
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Hanifeh Shariatifar
- Young Researches and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran.,Brucellosis Research Center, Faculty of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Davoud Ahmadvand
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yi L, Lü X. New Strategy on Antimicrobial-resistance: Inhibitors of DNA Replication Enzymes. Curr Med Chem 2019; 26:1761-1787. [PMID: 29110590 DOI: 10.2174/0929867324666171106160326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/31/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antimicrobial resistance is found in all microorganisms and has become one of the biggest threats to global health. New antimicrobials with different action mechanisms are effective weapons to fight against antibiotic-resistance. OBJECTIVE This review aims to find potential drugs which can be further developed into clinic practice and provide clues for developing more effective antimicrobials. METHODS DNA replication universally exists in all living organisms and is a complicated process in which multiple enzymes are involved in. Enzymes in bacterial DNA replication of initiation and elongation phases bring abundant targets for antimicrobial development as they are conserved and indispensable. In this review, enzyme inhibitors of DNA helicase, DNA primase, topoisomerases, DNA polymerase and DNA ligase were discussed. Special attentions were paid to structures, activities and action modes of these enzyme inhibitors. RESULTS Among these enzymes, type II topoisomerase is the most validated target with abundant inhibitors. For type II topoisomerase inhibitors (excluding quinolones), NBTIs and benzimidazole urea derivatives are the most promising inhibitors because of their good antimicrobial activity and physicochemical properties. Simultaneously, DNA gyrase targeted drugs are particularly attractive in the treatment of tuberculosis as DNA gyrase is the sole type II topoisomerase in Mycobacterium tuberculosis. Relatively, exploitation of antimicrobial inhibitors of the other DNA replication enzymes are primeval, in which inhibitors of topo III are even blank so far. CONCLUSION This review demonstrates that inhibitors of DNA replication enzymes are abundant, diverse and promising, many of which can be developed into antimicrobials to deal with antibioticresistance.
Collapse
Affiliation(s)
- Lanhua Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
4
|
Payne DJ, Miller LF, Findlay D, Anderson J, Marks L. Time for a change: addressing R&D and commercialization challenges for antibacterials. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140086. [PMID: 25918443 DOI: 10.1098/rstb.2014.0086] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The antibacterial therapeutic area has been described as the perfect storm. Resistance is increasing to the point that our hospitals encounter patients infected with untreatable pathogens, the overall industry pipeline is described as dry and most multinational pharmaceutical companies have withdrawn from the area. Major contributing factors to the declining antibacterial industry pipeline include scientific challenges, clinical/regulatory hurdles and low return on investment. This paper examines these challenges and proposes approaches to address them. There is a need for a broader scientific agenda to explore new approaches to discover and develop antibacterial agents. Additionally, ideas of how industry and academia could be better integrated will be presented. While promising progress in the regulatory environment has been made, more streamlined regulatory paths are still required and the solutions will lie in global harmonization and clearly defined guidance. Creating the right incentives for antibacterial research and development is critical and a new commercial model for antibacterial agents will be proposed. One key solution to help resolve both the problem of antimicrobial resistance (AMR) and lack of new drug development are rapid, cost-effective, accurate point of care diagnostics that will transform antibacterial prescribing and enable more cost-effective and efficient antibacterial clinical trials. The challenges of AMR are too great for any one group to resolve and success will require leadership and partnerships among academia, industry and governments globally.
Collapse
Affiliation(s)
- David J Payne
- Infectious Diseases Therapeutic Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Linda Federici Miller
- Infectious Diseases Therapeutic Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - David Findlay
- Immuno-inflammation and Infectious Diseases Franchise, GlaxoSmithKline, 980 Great West Road, Brentford, Middlesex TW8 9GS, UK
| | - James Anderson
- Government Affairs, Public Policy and Patient Advocacy, Communications and Government Affairs, GlaxoSmithKline, 980 Great West Road, Brentford, Middlesex TW8 9GS, UK
| | - Lynn Marks
- Projects, Clinical Platforms and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA
| |
Collapse
|
5
|
Fernandes P. The global challenge of new classes of antibacterial agents: an industry perspective. Curr Opin Pharmacol 2015; 24:7-11. [PMID: 26119487 DOI: 10.1016/j.coph.2015.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 01/21/2023]
Abstract
With rising antibiotic resistance and the fear of returning to the pre-penicillin era, incentives are being provided for developing novel antibiotics. The hurdles faced by antibiotic developers include the difficulty in discovering novel chemicals that have selectivity and the increased regulatory scrutiny for safety and efficacy. Furthermore, the demonstration of superiority is essential in order to rationalize pricing and to assure a return on investment. Suggestions are provided to overcome each of these hurdles in order to prevent the antibiotic pipeline from running dry.
Collapse
Affiliation(s)
- Prabhavathi Fernandes
- Cempra, Inc., Building Two, 6320 Quadrangle Drive, Suite 360, Chapel Hill, NC 27517, USA.
| |
Collapse
|