1
|
Delbeau M, Froom R, Landick R, Darst SA, Campbell EA. The yin and yang of the universal transcription factor NusG. Curr Opin Microbiol 2024; 81:102540. [PMID: 39226817 PMCID: PMC11421859 DOI: 10.1016/j.mib.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
RNA polymerase (RNAP), the central enzyme of transcription, intermittently pauses during the elongation stage of RNA synthesis. Pausing provides an opportunity for regulatory events such as nascent RNA folding or the recruitment of transregulators. NusG (Spt5 in eukaryotes and archaea) regulates RNAP pausing and is the only transcription factor conserved across all cellular life. NusG is a multifunctional protein: its N-terminal domain (NGN) binds to RNAP, and its C-terminal KOW domain in bacteria interacts with transcription regulators such as ribosomes and termination factors. In Escherichia coli, NusG acts as an antipausing factor. However, recent studies have revealed that NusG has distinct transcriptional regulatory roles specific to bacterial clades with clinical implications. Here, we focus on NusG's dual roles in the regulation of pausing.
Collapse
Affiliation(s)
- Madeleine Delbeau
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Ruby Froom
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
2
|
Eckartt KA, Delbeau M, Munsamy-Govender V, DeJesus MA, Azadian ZA, Reddy AK, Chandanani J, Poulton NC, Quiñones-Garcia S, Bosch B, Landick R, Campbell EA, Rock JM. Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis. Nature 2024; 628:186-194. [PMID: 38509362 PMCID: PMC10990936 DOI: 10.1038/s41586-024-07206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors1-8. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy9,10. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria11,12. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA13. We find this pro-pausing NusG-RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG-RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.
Collapse
Affiliation(s)
- Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Madeleine Delbeau
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Zachary A Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Abhijna K Reddy
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Joshua Chandanani
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
3
|
Ju X, Li S, Froom R, Wang L, Lilic M, Delbeau M, Campbell EA, Rock JM, Liu S. Incomplete transcripts dominate the Mycobacterium tuberculosis transcriptome. Nature 2024; 627:424-430. [PMID: 38418874 PMCID: PMC10937400 DOI: 10.1038/s41586-024-07105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis (TB), an infectious disease that is responsible for major health and economic costs worldwide1. Mtb encounters diverse environments during its life cycle and responds to these changes largely by reprogramming its transcriptional output2. However, the mechanisms of Mtb transcription and how they are regulated remain poorly understood. Here we use a sequencing method that simultaneously determines both termini of individual RNA molecules in bacterial cells3 to profile the Mtb transcriptome at high resolution. Unexpectedly, we find that most Mtb transcripts are incomplete, with their 5' ends aligned at transcription start sites and 3' ends located 200-500 nucleotides downstream. We show that these short RNAs are mainly associated with paused RNA polymerases (RNAPs) rather than being products of premature termination. We further show that the high propensity of Mtb RNAP to pause early in transcription relies on the binding of the σ-factor. Finally, we show that a translating ribosome promotes transcription elongation, revealing a potential role for transcription-translation coupling in controlling Mtb gene expression. In sum, our findings depict a mycobacterial transcriptome that prominently features incomplete transcripts resulting from RNAP pausing. We propose that the pausing phase constitutes an important transcriptional checkpoint in Mtb that allows the bacterium to adapt to environmental changes and could be exploited for TB therapeutics.
Collapse
Affiliation(s)
- Xiangwu Ju
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Ruby Froom
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Madeleine Delbeau
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Brunner VM, Fowler PW. Compensatory mutations are associated with increased in vitro growth in resistant clinical samples of Mycobacterium tuberculosis. Microb Genom 2024; 10:001187. [PMID: 38315172 PMCID: PMC10926696 DOI: 10.1099/mgen.0.001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Mutations in Mycobacterium tuberculosis associated with resistance to antibiotics often come with a fitness cost for the bacteria. Resistance to the first-line drug rifampicin leads to lower competitive fitness of M. tuberculosis populations when compared to susceptible populations. This fitness cost, introduced by resistance mutations in the RNA polymerase, can be alleviated by compensatory mutations (CMs) in other regions of the affected protein. CMs are of particular interest clinically since they could lock in resistance mutations, encouraging the spread of resistant strains worldwide. Here, we report the statistical inference of a comprehensive set of CMs in the RNA polymerase of M. tuberculosis, using over 70 000 M. tuberculosis genomes that were collated as part of the CRyPTIC project. The unprecedented size of this data set gave the statistical tests more power to investigate the association of putative CMs with resistance-conferring mutations. Overall, we propose 51 high-confidence CMs by means of statistical association testing and suggest hypotheses for how they exert their compensatory mechanism by mapping them onto the protein structure. In addition, we were able to show an association of CMs with higher in vitro growth densities, and hence presumably with higher fitness, in resistant samples in the more virulent M. tuberculosis lineage 2. Our results suggest the association of CM presence with significantly higher in vitro growth than for wild-type samples, although this association is confounded with lineage and sub-lineage affiliation. Our findings emphasize the integral role of CMs and lineage affiliation in resistance spread and increases the urgency of antibiotic stewardship, which implies accurate, cheap and widely accessible diagnostics for M. tuberculosis infections to not only improve patient outcomes but also prevent the spread of resistant strains.
Collapse
Affiliation(s)
| | - Philip W. Fowler
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford, UK
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Conkle-Gutierrez D, Ramirez-Busby SM, Gorman BM, Elghraoui A, Hoffner S, Elmaraachli W, Valafar F. Novel and reported compensatory mutations in rpoABC genes found in drug resistant tuberculosis outbreaks. Front Microbiol 2024; 14:1265390. [PMID: 38260909 PMCID: PMC10800992 DOI: 10.3389/fmicb.2023.1265390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background Rifampicin (RIF) is a key first-line drug used to treat tuberculosis, a primarily pulmonary disease caused by Mycobacterium tuberculosis. RIF resistance is caused by mutations in rpoB, at the cost of slower growth and reduced transcription efficiency. Antibiotic resistance to RIF is prevalent despite this fitness cost. Compensatory mutations in rpoABC genes have been shown to alleviate the fitness cost of rpoB:S450L, explaining how RIF resistant strains harbor this mutation can spread so rapidly. Unfortunately, the full set of RIF compensatory mutations is still unknown, particularly those compensating for rarer RIF resistance mutations. Objectives We performed an association study on a globally representative set of 4,309 whole genome sequenced clinical M. tuberculosis isolates to identify novel putative compensatory mutations, determine the prevalence of known and previously reported putative compensatory mutations, and determine which RIF resistance markers associate with these compensatory mutations. Results and conclusions Of the 1,079 RIF resistant isolates, 638 carried previously reported putative and high-probability compensatory mutations. Our strict criteria identified 46 additional mutations in rpoABC for which no strong prior evidence of their compensatory role exists. Of these, 35 have previously been reported. As such, our independent corroboration adds to the mounting evidence that these 35 also carry a compensatory role. The remaining 11 are novel putative compensatory markers, reported here for the first time. Six of these 11 novel putative compensatory mutations had two or more mutation events. Most compensatory mutations appear to be specifically compensating for the fitness loss due to rpoB:S450L. However, an outbreak of 22 closely related isolates each carried three rpoB mutations, the rare RIFR markers D435G and L452P and the putative compensatory mutation I1106T. This suggests compensation may require specific combinations of rpoABC mutations. Here, we report only mutations that met our very strict criteria. It is highly likely that many additional rpoABC mutations compensate for rare resistance-causing mutations and therefore did not carry the statistical power to be reported here. These findings aid in the identification of RIF resistant M. tuberculosis strains with restored fitness, which pose a greater risk of causing resistant outbreaks.
Collapse
Affiliation(s)
- Derek Conkle-Gutierrez
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Sarah M. Ramirez-Busby
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Bria M. Gorman
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Afif Elghraoui
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Sven Hoffner
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | - Wael Elmaraachli
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, San Diego, CA, United States
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| |
Collapse
|
6
|
Hang NTL, Hijikata M, Maeda S, Thuong PH, Huan HV, Hoang NP, Tam DB, Anh PT, Huyen NT, Cuong VC, Kobayashi N, Wakabayashi K, Miyabayashi A, Seto S, Keicho N. Host-pathogen relationship in retreated tuberculosis with major rifampicin resistance-conferring mutations. Front Microbiol 2023; 14:1187390. [PMID: 37469437 PMCID: PMC10352910 DOI: 10.3389/fmicb.2023.1187390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction It is assumed that host defense systems eliminating the pathogen and regulating tissue damage make a strong impact on the outcome of tuberculosis (TB) disease and that these processes are affected by rifampicin (RIF) resistance-conferring mutations of Mycobacterium tuberculosis (Mtb). However, the host responses to the pathogen harboring different mutations have not been studied comprehensively in clinical settings. We analyzed clinico-epidemiological factors and blood transcriptomic signatures associated with major rpoB mutations conferring RIF resistance in a cohort study. Methods Demographic data were collected from 295 active pulmonary TB patients with treatment history in Hanoi, Vietnam. When recruited, drug resistance-conferring mutations and lineage-specific variations were identified using whole-genome sequencing of clinical Mtb isolates. Before starting retreatment, total RNA was extracted from the whole blood of HIV-negative patients infected with Mtb that carried either the rpoB H445Y or rpoB S450L mutation, and the total RNA was subjected to RNA sequencing after age-gender matching. The individual RNA expression levels in the blood sample set were also measured using real-time RT-PCR. Logistic and linear regression models were used to assess possible associations. Results In our cohort, rpoB S450L and rpoB H445Y were major RIF resistance-conferring mutations [32/87 (36.8%) and 15/87 (17.2%), respectively]. H445Y was enriched in the ancient Beijing genotype and was associated with nonsynonymous mutations of Rv1830 that has been reported to regulate antibiotic resilience. H445Y was also more frequently observed in genetically clustered strains and in samples from patients who had received more than one TB treatment episode. According to the RNA sequencing, gene sets involved in the interferon-γ and-α pathways were downregulated in H445Y compared with S450L. The qRT-PCR analysis also confirmed the low expression levels of interferon-inducible genes, including BATF2 and SERPING1, in the H445Y group, particularly in patients with extensive lesions on chest X-ray. Discussion Our study results showed that rpoB mutations as well as Mtb sublineage with additional genetic variants may have significant effects on host response. These findings strengthen the rationale for investigation of host-pathogen interactions to develop countermeasures against epidemics of drug-resistant TB.
Collapse
Affiliation(s)
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shinji Maeda
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | | | | | | | - Do Bang Tam
- Department of Biochemistry, Hematology and Blood Transfusion, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Pham Thu Anh
- Tuberculosis Network Management Office, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Nguyen Thu Huyen
- NCGM-BMH Medical Collaboration Center, Hanoi, Vietnam
- Department of Health Policy and Economics, Hanoi University of Public Health, Hanoi, Vietnam
| | | | | | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, JATA, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Loiseau C, Windels EM, Gygli SM, Jugheli L, Maghradze N, Brites D, Ross A, Goig G, Reinhard M, Borrell S, Trauner A, Dötsch A, Aspindzelashvili R, Denes R, Reither K, Beisel C, Tukvadze N, Avaliani Z, Stadler T, Gagneux S. The relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspot. Nat Commun 2023; 14:1988. [PMID: 37031225 PMCID: PMC10082831 DOI: 10.1038/s41467-023-37719-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is among the most frequent causes of death due to antimicrobial resistance. Although only 3% of global TB cases are MDR, geographical hotspots with up to 40% of MDR-TB have been observed in countries of the former Soviet Union. While the quality of TB control and patient-related factors are known contributors to such hotspots, the role of the pathogen remains unclear. Here we show that in the country of Georgia, a known hotspot of MDR-TB, MDR Mycobacterium tuberculosis strains of lineage 4 (L4) transmit less than their drug-susceptible counterparts, whereas most MDR strains of L2 suffer no such defect. Our findings further indicate that the high transmission fitness of these L2 strains results from epistatic interactions between the rifampicin resistance-conferring mutation RpoB S450L, compensatory mutations in the RNA polymerase, and other pre-existing genetic features of L2/Beijing clones that circulate in Georgia. We conclude that the transmission fitness of MDR M. tuberculosis strains is heterogeneous, but can be as high as drug-susceptible forms, and that such highly drug-resistant and transmissible strains contribute to the emergence and maintenance of hotspots of MDR-TB. As these strains successfully overcome the metabolic burden of drug resistance, and given the ongoing rollout of new treatment regimens against MDR-TB, proper surveillance should be implemented to prevent these strains from acquiring resistance to the additional drugs.
Collapse
Affiliation(s)
- Chloé Loiseau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Etthel M Windels
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sebastian M Gygli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Levan Jugheli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Nino Maghradze
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Galo Goig
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Dötsch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Rebecca Denes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Nestani Tukvadze
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants. Int J Mol Sci 2023; 24:ijms24043313. [PMID: 36834726 PMCID: PMC9965755 DOI: 10.3390/ijms24043313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Emerging Mycobacterium tuberculosis (Mtb) resistant strains have continued to limit the efficacies of existing antitubercular therapies. More specifically, mutations in the RNA replicative machinery of Mtb, RNA polymerase (RNAP), have been widely linked to rifampicin (RIF) resistance, which has led to therapeutic failures in many clinical cases. Moreover, elusive details on the underlying mechanisms of RIF-resistance caused by Mtb-RNAP mutations have hampered the development of new and efficient drugs that are able to overcome this challenge. Therefore, in this study we attempt to resolve the molecular and structural events associated with RIF-resistance in nine clinically reported missense Mtb RNAP mutations. Our study, for the first time, investigated the multi-subunit Mtb RNAP complex and findings revealed that the mutations commonly disrupted structural-dynamical attributes that may be essential for the protein's catalytic functions, particularly at the βfork loop 2, β'zinc-binding domain, the β' trigger loop and β'jaw, which in line with previous experimental reports, are essential for RNAP processivity. Complementarily, the mutations considerably perturbed the RIF-BP, which led to alterations in the active orientation of RIF needed to obstruct RNA extension. Consequentially, essential interactions with RIF were lost due to the mutation-induced repositioning with corresponding reductions in the binding affinity of the drug observed in majority of the mutants. We believe these findings will significantly aid future efforts in the discovery of new treatment options with the potential to overcome antitubercular resistance.
Collapse
|
9
|
Rivera-Velez A, Huber L, Sinha S, Cohen ND. Fitness cost conferred by the novel erm(51) and rpoB mutation on environmental multidrug resistant-Rhodococcus equi. Vet Microbiol 2022; 273:109531. [PMID: 35944389 DOI: 10.1016/j.vetmic.2022.109531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Rhodococcus equi is a common cause of severe pneumonia in foals. Emergence of macrolide-resistant R. equi isolated from foals and their environment has been reported in the United States. A novel erm(51) gene was recently identified in R. equi in soil from horse farms in Kentucky. Our objective was to determine the effect of the erm(51) gene and associated rpoB mutation on the fitness of multidrug resistant-R. equi (MDR-R. equierm(51)+, rpoB+) under different nutrient conditions. Bacterial growth curves were generated for 3 MDR-R. equierm(51)+, rpoB+ isolates and 3 wild-type (WTN) R. equi isolates recovered from environmental samples of farms in central Kentucky. Growth was measured over 30.5 h in brain-heart infusion broth (BHI), minimal medium (MM), and minimal medium without iron (MM-I). All isolates had significantly (P < 0.05) higher growth in BHI compared to either MM or MM-I. MDR-R. equierm(51)+, rpoB+ exhibited significantly lower growth compared to WTN isolates in BHI (nutrient-rich condition), but not in either MM or MM-I (nutrient-restricted conditions). This study indicates that under nutrient-rich conditions fitness of MDR-R. equierm(51)+, rpoB+ is reduced relative to susceptible isolates; however, under nutrient-restricted conditions MDR-R. equierm(51)+, rpoB+ isolates grow similarly to susceptible isolates. These findings indicate that MDR-R. equierm(51)+, rpoB+ might be outcompeted by susceptible isolates in nature when practices to reduce antimicrobial pressure, such as reducing antimicrobial use in foals, are implemented. But it also raises the concern that these resistant genotypes might persist in the environment of horse-breeding farms in the face of selective pressures such as antimicrobials or nutrient restriction.
Collapse
Affiliation(s)
- Andres Rivera-Velez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Laura Huber
- Pathobiology Department, College of Veterinary Medicine, Auburn University, 1130 wire Rd, Auburn, AL 36832, USA.
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA.
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Kurepina N, Chudaev M, Kreiswirth BN, Nikiforov V, Mustaev A. Mutations compensating for the fitness cost of rifampicin resistance in Escherichia coli exert pleiotropic effect on RNA polymerase catalysis. Nucleic Acids Res 2022; 50:5739-5756. [PMID: 35639764 PMCID: PMC9177976 DOI: 10.1093/nar/gkac406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The spread of drug-resistant bacteria represents one of the most significant medical problems of our time. Bacterial fitness loss associated with drug resistance can be counteracted by acquisition of secondary mutations, thereby enhancing the virulence of such bacteria. Antibiotic rifampicin (Rif) targets cellular RNA polymerase (RNAP). It is potent broad spectrum drug used for treatment of bacterial infections. We have investigated the compensatory mechanism of the secondary mutations alleviating Rif resistance (Rifr) on biochemical, structural and fitness indices. We find that substitutions in RNAP genes compensating for the growth defect caused by βQ513P and βT563P Rifr mutations significantly enhanced bacterial relative growth rate. By assaying RNAP purified from these strains, we show that compensatory mutations directly stimulated basal transcriptional machinery (2-9-fold) significantly improving promoter clearance step of the transcription pathway as well as elongation rate. Molecular modeling suggests that compensatory mutations affect transcript retention, substrate loading, and nucleotidyl transfer catalysis. Strikingly, one of the identified compensatory substitutions represents mutation conferring rifampicin resistance on its own. This finding reveals an evolutionary process that creates more virulent species by simultaneously improving the fitness and augmenting bacterial drug resistance.
Collapse
Affiliation(s)
- Natalia Kurepina
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Maxim Chudaev
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Vadim Nikiforov
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Arkady Mustaev
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| |
Collapse
|
11
|
Environmental dependence of competitive fitness in rifampin-resistant
rpoB
mutants of
Bacillus subtilis. Appl Environ Microbiol 2022; 88:e0242221. [DOI: 10.1128/aem.02422-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase (RNAP) is a highly conserved macromolecular machine that contributes to the flow of genetic information from genotype to phenotype. In
Bacillus subtilis
, mutations in the
rpoB
gene encoding the β-subunit of RNAP have been shown to alter a number of global phenotypes including growth, utilization of unusual nutrient sources, sporulation, germination, and production of secondary metabolites. In addition, the spectrum of mutations in
rpoB
leading to rifampin resistance (Rif
R
) can change dramatically depending upon the environment to which
B. subtilis
cells or spores are exposed. Rif
R
rpoB
mutations have historically been associated with slower growth and reduced fitness; however, these assessments of fitness were conducted on limited collections of mutants in rich laboratory media that poorly reflect natural environments typically inhabited by
B. subtilis
. Using a novel, deep-sequencing approach in addition to traditional measurements of growth rate, lag time, and pairwise competitions, we demonstrated the competitive advantage of specific
rpoB
alleles differs depending on the growth environment in which they are determined.
IMPORTANCE
Microbial resistance to antibiotics is a growing threat to public health across the world. Historically, resistance to antibiotics has been associated with reduced fitness. A growing body of evidence indicates that resistance to rifampin, a frontline antibiotic used to treat mycobacterial and biofilm-associated infections, may increase fitness given an appropriate environment even in the absence of the selective antibiotic. Here we experimentally confirm this phenomenon by directly comparing the fitness of multiple rifampin-resistant mutants of
Bacillus subtilis
in rich LB medium and an asparagine minimal medium. Our research demonstrates that the fitness cost of rifampin resistance can vary greatly depending upon the environment. This has important implications for understanding how microbes develop antimicrobial resistance in the absence of antibiotic selection.
Collapse
|
12
|
Rodríguez-Beltrán É, López GD, Anzola JM, Rodríguez-Castillo JG, Carazzone C, Murcia MI. Heterogeneous fitness landscape cues, pknG low expression, and phthiocerol dimycocerosate low production of Mycobacterium tuberculosis ATCC25618 rpoB S450L in enriched broth. Tuberculosis (Edinb) 2021; 132:102156. [PMID: 34891037 DOI: 10.1016/j.tube.2021.102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Multidrug-resistant tuberculosis (isoniazid/rifampin[RIF]-resistant TB) ravages developing countries. Fitness is critical in clinical outcomes. Previous studies on RIF-resistant TB (RR-TB) showed competitive fitness gains and losses, with rpoB-S450L as the most isolated/fit mutation. This study measured virulence/resistance genes, phthiocerol dimycocerosate (PDIM) levels and their relationship with rpoB S450L ATCC25618 RR-TB strain fitness. After obtaining 10 different RR-TB GenoType MTBDRplus 2.0-genotyped isolates (with nontyped, S441, H445 and S450 positions), only one S450L isolate (R9, rpoB-S450L ATCC 25618, RR 1 μg/mL) was observed, with H445Y being the most common. A competitive fitness in vitro assay with wild-type (wt) ATCC 25618: R9 1:1 in 50 mL Middlebrook 7H9/OADC was performed, and generation time (G) in vitro and relative fitness were obtained. mRNA and PDIM were extracted on log and stationary phases. Fitness decreased in rpoB S450L and H445Y strains, with heterogeneous fitness cues in three biological replicas of rpoB-S450L: one high and two low fitness replicas. S450L strain had significant pknG increase. Compared with S450L, wt-rpoB showed increased polyketide synthase ppsA expression and high PDIM peak measured by HPLC-MS in log phase compared to S450L. This contrasts with previously increased PDIM in other RR-TB isolates.
Collapse
Affiliation(s)
- Édgar Rodríguez-Beltrán
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Juan Manuel Anzola
- Corpogen, CR 4 20-41, Bogotá, D.C, 110311, Colombia; Universidad Central, CR 5 21-38, Bogotá, D.C, 110311, Colombia
| | - Juan Germán Rodríguez-Castillo
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Martha I Murcia
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia.
| |
Collapse
|
13
|
Xu J, Yang J, Jiang Y, Wu M, Yang S, Yang L. A novel global transcriptional perturbation target identified by forward genetics reprograms Vibrio natriegens for improving recombinant protein production. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1124-1133. [PMID: 34169308 DOI: 10.1093/abbs/gmab089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
Vibrio natriegens is known to be the fastest-growing free-living bacterium with the potential to be a novel protein expression system other than Escherichia coli. Seven sampled genes of interest (GOIs) encoding biocatalyst enzymes, including Ochrobactrum anthropi-derived ω-transaminase (OATA), were strongly expressed in E. coli but weakly in V. natriegens using the pET expression system. In this study, we fused the C-terminal of OATA with green fluorescent protein (GFP) and obtained V. natriegens mutants that could increase both protein yield and enzyme activity of OATA as well as the other three GOIs by ultraviolet mutagenesis, fluorescence-activated cell sorting (FACS), and OATA colorimetric assay. Furthermore, next-generation sequencing and strain reconstruction revealed that the Y457 variants in the conserved site of endogenous RNA polymerase (RNAP) β' subunit rpoC are responsible for the increase in recombinant protein yield. We speculated that the mutation of rpoC Y457 may reprogram V. natriegens's innate gene transcription, thereby increasing the copy number of pET plasmids and soluble protein yield of certain GOIs. The increase in GOI expression may partly be attributed to the increase in copy number. In conclusion, GOI-GFP fusion combined with FACS is a powerful tool of forward genetics that can be used to obtain a superior expression chassis. If more high-expression-related targets are found for more GOIs, it would make the construction of next-generation protein expression chassis more time-saving.
Collapse
Affiliation(s)
- Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
- Shanghai Taoyusheng Biotechnology Co. Ltd, Shanghai 201201, China
| | - Mianbin Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| | - Sheng Yang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| |
Collapse
|
14
|
Expression Dysregulation as a Mediator of Fitness Costs in Antibiotic Resistance. Antimicrob Agents Chemother 2021; 65:e0050421. [PMID: 34228548 PMCID: PMC8370218 DOI: 10.1128/aac.00504-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a threat to global health and the economy. Rifampicin-resistant Mycobacterium tuberculosis accounts for a third of the global AMR burden. Gaining the upper hand on AMR requires a deeper understanding of the physiology of resistance. AMR often results in a fitness cost in the absence of drug. Identifying the molecular mechanisms underpinning this cost could help strengthen future treatment regimens. Here, we used a collection of M. tuberculosis strains that provide an evolutionary and phylogenetic snapshot of rifampicin resistance and subjected them to genome-wide transcriptomic and proteomic profiling to identify key perturbations of normal physiology. We found that the clinically most common rifampicin resistance-conferring mutation, RpoB Ser450Leu, imparts considerable gene expression changes, many of which are mitigated by the compensatory mutation in RpoC Leu516Pro. However, our data also provide evidence for pervasive epistasis—the same resistance mutation imposed a different fitness cost and functionally distinct changes to gene expression in genetically unrelated clinical strains. Finally, we report a likely posttranscriptional modulation of gene expression that is shared in most of the tested strains carrying RpoB Ser450Leu, resulting in an increased abundance of proteins involved in central carbon metabolism. These changes contribute to a more general trend in which the disruption of the composition of the proteome correlates with the fitness cost of the RpoB Ser450Leu mutation in different strains.
Collapse
|
15
|
Gygli SM, Loiseau C, Jugheli L, Adamia N, Trauner A, Reinhard M, Ross A, Borrell S, Aspindzelashvili R, Maghradze N, Reither K, Beisel C, Tukvadze N, Avaliani Z, Gagneux S. Prisons as ecological drivers of fitness-compensated multidrug-resistant Mycobacterium tuberculosis. Nat Med 2021; 27:1171-1177. [PMID: 34031604 PMCID: PMC9400913 DOI: 10.1038/s41591-021-01358-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/19/2021] [Indexed: 02/04/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) accounts for one third of the annual deaths due to antimicrobial resistance1. Drug resistance-conferring mutations frequently cause fitness costs in bacteria2-5. Experimental work indicates that these drug resistance-related fitness costs might be mitigated by compensatory mutations6-10. However, the clinical relevance of compensatory evolution remains poorly understood. Here we show that, in the country of Georgia, during a 6-year nationwide study, 63% of MDR-TB was due to patient-to-patient transmission. Compensatory mutations and patient incarceration were independently associated with transmission. Furthermore, compensatory mutations were overrepresented among isolates from incarcerated individuals that also frequently spilled over into the non-incarcerated population. As a result, up to 31% of MDR-TB in Georgia was directly or indirectly linked to prisons. We conclude that prisons fuel the epidemic of MDR-TB in Georgia by acting as ecological drivers of fitness-compensated strains with high transmission potential.
Collapse
Affiliation(s)
- Sebastian M. Gygli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,These authors contributed equally: Sebastian M. Gygli, Chloé Loiseau
| | - Chloé Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,These authors contributed equally: Sebastian M. Gygli, Chloé Loiseau
| | - Levan Jugheli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Natia Adamia
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Nino Maghradze
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Nestani Tukvadze
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Correspondence and requests for materials should be addressed to S.G.
| |
Collapse
|
16
|
Alame Emane AK, Guo X, Takiff HE, Liu S. Highly transmitted M. tuberculosis strains are more likely to evolve MDR/XDR and cause outbreaks, but what makes them highly transmitted? Tuberculosis (Edinb) 2021; 129:102092. [PMID: 34102584 DOI: 10.1016/j.tube.2021.102092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
Multi-Drug-Resistant strains of Mycobacterium tuberculosis (MDR-TB) are a serious obstacle to global TB eradication. While most MDR-TB strains are infrequently transmitted, a few cause large transmission clusters that contribute substantially to local MDR-TB burdens. Here we examine whether the known mutations in these strains can explain their success. Drug resistance mutations differ in fitness costs and strains can also acquire compensatory mutations (CM) to restore fitness, but some highly transmitted MDR strains have no CM. The acquisition of resistance mutations that maintain high transmissibility seems to occur by chance and are more likely in strains that are intrinsically highly transmitted and cause many cases. Modern Beijing lineage strains have caused several large outbreaks, but MDR outbreaks are also caused by ancient Beijing and lineage 4 strains, suggesting the lineage is less important than the characteristics of the individual strain. The development of fluoroquinolone resistance appears to represent another level of selection, in which strains must surmount unknown fitness costs of gyrA mutations. The genetic determinants of high transmission are poorly defined but may involve genes encoding proteins involved in molybdenum acquisition and the Esx systems. In addition, strains eliciting lower cytokine responses and producing more caseating granulomas may have advantages for transmission. Successful MDR/XDR strains generally evolve from highly transmitted drug sensitive parent strains due to selection pressures from deficiencies in local TB control programs. Until TB incidence is considerably reduced, there will likely be highly transmitted strains that develop resistance to any new antibiotic.
Collapse
Affiliation(s)
- Amel Kevin Alame Emane
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| | - Xujun Guo
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| | - Howard E Takiff
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China; Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, 28 Rue du Dr Roux, Paris, 75015, France; Laboratorio de Genética Molecular, CMBC, IVIC, Km. 11 Carr. Panamericana, Caracas, Venezuela.
| | - Shengyuan Liu
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
17
|
Alame Emane AK, Guo X, Takiff HE, Liu S. Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2021; 129:102091. [PMID: 34090078 DOI: 10.1016/j.tube.2021.102091] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/26/2023]
Abstract
For tuberculosis to be eradicated, the transmission of Multi-Drug-Resistant and eXtensively Drug Resistant strains of Mycobacterium tuberculosis (MDR and XDR-TB) must be considerably reduced. Drug resistant strains were initially thought to have reduced fitness, and the majority of resistant strains may actually have compromised fitness because they are found in only one or a few patients. In contrast, some MDR/XDR-TB strains are highly transmitted and cause large outbreaks. Most antibiotics target essential bacterial functions and the mutations that confer resistance to anti-TB drugs can incur fitness costs manifested as slower growth and reduced viability. The fitness costs vary with different resistance mutations and the bacilli can also accumulate secondary mutations that compensate for the compromised functions and partially or fully restore lost fitness. The compensatory mutations (CM) are different for each antibiotic, as they mitigate the deleterious effects of the specific functions compromised by the resistance mutations. CM are generally more common in strains with resistance mutations incurring the greatest fitness costs, but for RIF resistance, CM are most frequent in strains with the mutation carrying the least fitness cost, Ser450Leu. Here, we review what is known about fitness costs, CM and mechanisms of resistance to the drugs that define a strain as MDR or XDR-TB. The relative fitness costs of the resistance mutations and the mitigating effects of CM largely explain why certain mutations are frequently found in highly transmitted clusters while others are less frequently, rarely or never found in clinical isolates. The CM illustrate how drug resistance affects bacteria and how bacteria evolve to overcome the effects of the antibiotics, and thus a paradigm for how mycobacteria can evolve in response to stress.
Collapse
Affiliation(s)
- Amel Kevin Alame Emane
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China
| | - Xujun Guo
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China
| | - Howard E Takiff
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China; Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, 28 Rue du Dr Roux, Paris, 75015, France; CMBC, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.
| | - Shengyuan Liu
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
18
|
Xu G, Liu H, Jia X, Wang X, Xu P. Mechanisms and detection methods of Mycobacterium tuberculosis rifampicin resistance: The phenomenon of drug resistance is complex. Tuberculosis (Edinb) 2021; 128:102083. [PMID: 33975262 DOI: 10.1016/j.tube.2021.102083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/30/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease that poses a serious threat to human health. Rifampin (RIF) is an important first-line anti-TB drug, and rifampin resistance (RIF-R) is a key factor in formulating treatment regimen and evaluating the prognosis of TB. Compared with other drugs resistance, the RIF-R mechanism of Mycobacterium tuberculosis (M. tuberculosis) is one of the clearest, which is mainly caused by RIF resistance-related mutations in the rpoB gene. This provides a convenient condition for developing rapid detection methods, and also an ideal object for studying the general drug resistance mechanisms of M. tuberculosis. This review focuses on the mechanisms that influence the RIF resistance of M. tuberculosis and related detection methods. Besides the mutations in rpoB, M. tuberculosis can decrease the amount of drugs entering the cells, enhance the drugs efflux, and be heterogeneous RIF susceptibility to resist drug pressure. Based on the results of current researches, many genes participate in influencing the susceptibility to RIF, which indicates the phenomenon of M. tuberculosis drug resistance is very complex.
Collapse
Affiliation(s)
- Ge Xu
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China
| | - Hangchi Liu
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China
| | - Xudong Jia
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China
| | - Xiaomin Wang
- Department of Microbiology, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China.
| | - Peng Xu
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
19
|
The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. mBio 2021; 12:mBio.00123-21. [PMID: 33785614 PMCID: PMC8092207 DOI: 10.1128/mbio.00123-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chaperones aid in protein folding and maintenance of protein integrity. In doing so, they have the unique ability to directly stabilize resistance-conferring amino acid substitutions in drug targets and to counter the stress imparted by these substitutions, thus supporting heritable antimicrobial resistance (AMR). We asked whether chaperones support AMR in Mycobacterium smegmatis, a saprophytic model of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). We show that DnaK associates with many drug targets and that DnaK associates more with AMR-conferring mutant RNA polymerase (RNAP) than with wild-type RNAP. In addition, frequency-of-resistance (FOR) and fitness studies reveal that the DnaK system of chaperones supports AMR in antimicrobial targets in mycobacteria, including RNAP and the ribosome. These findings highlight chaperones as potential targets for drugs to overcome AMR in mycobacteria, including M. tuberculosis, as well as in other pathogens.IMPORTANCE AMR is a global problem, especially for TB. Here, we show that mycobacterial chaperones support AMR in M. smegmatis, a nonpathogenic model of M. tuberculosis, the causative agent of TB. In particular, the mycobacterial DnaK system of chaperones supports AMR in the antimicrobial targets RNA polymerase and the ribosome. This is the first report showing a role for protein chaperones in mediating AMR in mycobacteria. Given the widespread role of protein chaperones in enabling genomic diversity, we anticipate that our findings can be extended to other microbes.
Collapse
|
20
|
Stefan MA, Velazquez GM, Garcia GA. High-throughput screening to discover inhibitors of the CarD·RNA polymerase protein-protein interaction in Mycobacterium tuberculosis. Sci Rep 2020; 10:21309. [PMID: 33277558 PMCID: PMC7718890 DOI: 10.1038/s41598-020-78269-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant Mycobacterium tuberculosis (MDR-TB) accounts for 3.7% of new cases of TB annually worldwide and is a major threat to global public health. Due to the prevalence of the MDR-TB and extensively drug resistant tuberculosis (XDR-TB) cases, there is an urgent need for new drugs with novel mechanisms of action. CarD, a global transcription regulator in MTB, binds RNAP and activates transcription by stabilizing the transcription initiation open-promoter complex (RPo). CarD is required for MTB viability and it has highly conserved homologues in many eubacteria. A fluorescence polarization (FP) assay which monitors the association of MTB RNAP, native rRNA promoter DNA and CarD has been developed. Overall, our objective is to identify and characterize small molecule inhibitors which block the CarD/RNAP interaction and to understand the mechanisms by which CarD interacts with the molecules. We expect that the development of a new and improved anti-TB compound with a novel mechanism of action will relieve the burden of resistance. This CarD FP assay is amenable to HTS and is an enabling tool for future novel therapeutic discovery.
Collapse
Affiliation(s)
- Maxwell A Stefan
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Glory M Velazquez
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - George A Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Wytock TP, Zhang M, Jinich A, Fiebig A, Crosson S, Motter AE. Extreme Antagonism Arising from Gene-Environment Interactions. Biophys J 2020; 119:2074-2086. [PMID: 33068537 DOI: 10.1016/j.bpj.2020.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 01/06/2023] Open
Abstract
Antagonistic interactions in biological systems, which occur when one perturbation blunts the effect of another, are typically interpreted as evidence that the two perturbations impact the same cellular pathway or function. Yet, this interpretation ignores extreme antagonistic interactions wherein an otherwise deleterious perturbation compensates for the function lost because of a prior perturbation. Here, we report on gene-environment interactions involving genetic mutations that are deleterious in a permissive environment but beneficial in a specific environment that restricts growth. These extreme antagonistic interactions constitute gene-environment analogs of synthetic rescues previously observed for gene-gene interactions. Our approach uses two independent adaptive evolution steps to address the lack of experimental methods to systematically identify such extreme interactions. We apply the approach to Escherichia coli by successively adapting it to defined glucose media without and with the antibiotic rifampicin. The approach identified multiple mutations that are beneficial in the presence of rifampicin and deleterious in its absence. The analysis of transcription shows that the antagonistic adaptive mutations repress a stringent response-like transcriptional program, whereas nonantagonistic mutations have an opposite transcriptional profile. Our approach represents a step toward the systematic characterization of extreme antagonistic gene-drug interactions, which can be used to identify targets to select against antibiotic resistance.
Collapse
Affiliation(s)
- Thomas P Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois
| | - Manjing Zhang
- The Committee on Microbiology, University of Chicago, Chicago, Illinois
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Department of Medicine, Weill-Cornell Medical College, New York, New York
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Adilson E Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois; Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois.
| |
Collapse
|
22
|
Connelly RP, Verduzco C, Farnell S, Yishay T, Gerasimova YV. Toward a Rational Approach to Design Split G-Quadruplex Probes. ACS Chem Biol 2019; 14:2701-2712. [PMID: 31599573 DOI: 10.1021/acschembio.9b00634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hybridization probes have become an indispensable tool for nucleic acid analysis. Systematic efforts in probe optimization resulted in their improved binding affinity, turn-on ratios, and ability to discriminate single nucleotide substitutions (SNSs). The use of split (or multicomponent) probes is a promising strategy to improve probe selectivity and enable an analysis of folded analytes. Here, we developed criteria for the rational design of a split G-quadruplex (G4) peroxidase-like deoxyribozyme (sPDz) probe that provides a visual output signal. The sPDz probe consists of two DNA strands that hybridize to the abutting positions of a DNA/RNA target and form a G4 structure catalyzing, in the presence of a hemin cofactor, H2O2-mediated oxidation of organic compounds into their colored oxidation products. We have demonstrated that probe design becomes complicated in the case of target sequences containing clusters (two or more) of cytosine residues and developed strategies to overcome the challenges to achieving high signal-to-noise and excellent SNS discrimination. Specifically, to improve selectivity, a conformational constraint that stabilizes the probe's dissociated state is beneficial. If the signal intensity is compromised, introduction of flexible non-nucleotide linkers between the G4-forming and target-recognizing elements of the probe helps to decrease the steric hindrance for G4 PDz formation observed as a signal increase. Varying the modes of G4 core splitting is another instrument for the optimal sPDz design. The suggested algorithm was successfully utilized for the design of the sPDz probe interrogating a fragment of the Influenza A virus genome (subtype H1N1), which can be of practical use for flu diagnostics and surveillance.
Collapse
Affiliation(s)
- Ryan P. Connelly
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Charles Verduzco
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Serena Farnell
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Tamar Yishay
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Yulia V. Gerasimova
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| |
Collapse
|
23
|
Pre-detection history of extensively drug-resistant tuberculosis in KwaZulu-Natal, South Africa. Proc Natl Acad Sci U S A 2019; 116:23284-23291. [PMID: 31659018 PMCID: PMC6859317 DOI: 10.1073/pnas.1906636116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial-resistant (AMR) infections pose a major threat to global public health. Similar to other AMR pathogens, both historical and ongoing drug-resistant tuberculosis (TB) epidemics are characterized by transmission of a limited number of predominant Mycobacterium tuberculosis (Mtb) strains. Understanding how these predominant strains achieve sustained transmission, particularly during the critical period before they are detected via clinical or public health surveillance, can inform strategies for prevention and containment. In this study, we employ whole-genome sequence (WGS) data from TB clinical isolates collected in KwaZulu-Natal, South Africa to examine the pre-detection history of a successful strain of extensively drug-resistant (XDR) TB known as LAM4/KZN, first identified in a widely reported cluster of cases in 2005. We identify marked expansion of this strain concurrent with the onset of the generalized HIV epidemic 12 y prior to 2005, localize its geographic origin to a location in northeastern KwaZulu-Natal ∼400 km away from the site of the 2005 outbreak, and use protein structural modeling to propose a mechanism for how strain-specific rpoB mutations offset fitness costs associated with rifampin resistance in LAM4/KZN. Our findings highlight the importance of HIV coinfection, high preexisting rates of drug-resistant TB, human migration, and pathoadaptive evolution in the emergence and dispersal of this critical public health threat. We propose that integrating whole-genome sequencing into routine public health surveillance can enable the early detection and local containment of AMR pathogens before they achieve widespread dispersal.
Collapse
|
24
|
Xu Z, Zhou A, Wu J, Zhou A, Li J, Zhang S, Wu W, Karakousis PC, Yao YF. Transcriptional Approach for Decoding the Mechanism of rpoC Compensatory Mutations for the Fitness Cost in Rifampicin-Resistant Mycobacterium tuberculosis. Front Microbiol 2018; 9:2895. [PMID: 30555440 PMCID: PMC6283890 DOI: 10.3389/fmicb.2018.02895] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
Multidrug-resistant tuberculosis (TB), defined as TB resistant to the two first-line drugs, isoniazid and rifampin, is a serious challenge to global TB eradication efforts. Although mutations in rpoA or rpoC have been proposed to compensate for this fitness cost due to rpoB mutation in rifampicin-resistant Mycobacterium tuberculosis mutants, whether the compensatory effect exists and the underlying mechanisms of compensation remain unclear. Here, we used RNA sequencing to investigate the global transcriptional profiles of 6 rifampin-resistant clinical isolates with either single mutation in rpoB or dual mutations in rpoB/rpoC, as well as 3 rifampin-susceptible clinical isolates, trying to prove the potential compensatory effect of rpoC by transcriptomic alteration. In rifampin-free conditions, rpoC mutation was associated with M. tuberculosis upregulation of ribosomal protein-coding genes, dysregulation of growth-related essential genes and balancing the expression of arginine and glutamate synthesis-associated genes. Upon rifampin exposure of M. tuberculosis isolates, rpoC mutations were associated with the upregulation of the oxidative phosphorylation machinery, which was inhibited in the rpoB single mutants, as well as stabilization of the expression of rifampin-regulated essential genes and balancing the expression of genes involved in metabolism of sulfur-containing amino acids. Taken together, our data suggest that rpoC mutation may compensate for the fitness defect of rifampicin-resistant M. tuberculosis by altering gene expression in response to rifampin exposure.
Collapse
Affiliation(s)
- Zhihong Xu
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiawei Wu
- Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiwu Zhou
- Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shulin Zhang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Petros C Karakousis
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|