1
|
Filardo S, Di Pietro M, Mastromarino P, Porpora MG, Sessa R. A Multi-Strain Oral Probiotic Improves the Balance of the Vaginal Microbiota in Women with Asymptomatic Bacterial Vaginosis: Preliminary Evidence. Nutrients 2024; 16:3469. [PMID: 39458465 PMCID: PMC11510150 DOI: 10.3390/nu16203469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES the vaginal microbiota is known to confer protection in the genital ecosystem, due to the predominance of different Lactobacillus species, playing a crucial role in women's health; alterations in the composition of the microbial communities in the vagina can be associated with the development of bacterial vaginosis (BV). Current therapy for BV involves oral or intravaginal administration of metronidazole or clindamycin, albeit the high recurrence rates suggest a need for alternative therapeutic tools, such as probiotics. Herein, the diversity and composition of vaginal microbiota in women with asymptomatic BV was investigated before and after the oral administration of a multi-strain probiotic formulation. METHODS a prospective observational pilot study with pre-post design was carried out from 1 June 2022, to 31 December 2022, on reproductive-age women with asymptomatic BV, as diagnosed via Nugent score, and matched healthy controls. The probiotic was administered to all study participants as acid-resistant oral capsules (twice daily), and a vaginal swab was collected at baseline and after 2 months of treatment, for the metagenomic analysis of 16s rDNA. RESULTS the diversity and richness of the vaginal microbiota in women with BV were significantly reduced after 2 months of supplementation with the oral probiotic, as evidenced by measures of α-diversity. Interestingly, some bacterial genera typically associated with dysbiosis, such as Megasphaera spp., were significantly decreased; whereas, at the same time, Lactobacillus spp. Doubled. CONCLUSIONS our preliminary results suggest that the multi-strain oral probiotic is a beneficial treatment specifically targeting the dysbiotic vaginal microenvironment.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, 00185 Rome, Italy; (M.D.P.); (R.S.)
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, 00185 Rome, Italy; (M.D.P.); (R.S.)
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, 00185 Rome, Italy; (M.D.P.); (R.S.)
| | - Maria Grazia Porpora
- Department of Maternal and Child Health and Urology, University of Rome “Sapienza”, 00161 Rome, Italy;
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, 00185 Rome, Italy; (M.D.P.); (R.S.)
| |
Collapse
|
2
|
Tang HJ, Chen CC, Lu YC, Huang HL, Chen HJ, Chuang YC, Lai CC, Chao CM. The effect of Lactobacillus with prebiotics on KPC-2-producing Klebsiella pneumoniae. Front Microbiol 2022; 13:1050247. [PMID: 36569071 PMCID: PMC9767986 DOI: 10.3389/fmicb.2022.1050247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives This study investigated the inhibitory effect of Lactobacillus spp. with prebiotics against Klebsiella pneumoniae carbapenemase-2 (KPC-2)-producing Klebsiella pneumoniae using both in vitro experiments and animal models. Methods Thirty-three Lactobacillus spp. strains were confirmed by 16S rDNA sequencing, and four different PFGE genotyped KPC-2-producing K. pneumoniae strains were selected for investigation. In vitro studies, including broth microdilution assays, changes in pH values in lactobacilli cultures with different prebiotics, time-kill tests of Lactobacillus spp. against KPC-2-producing K. pneumoniae and further in vivo Lactobacillus alone or in combination with prebiotics against KPC-2-producing K. pneumoniae in an animal model, were performed. Results The lower pH value of the cell-free supernatant was associated with a lower minimal inhibitory percentage of the Lactobacillus strain against KPC-2-producing K. pneumoniae. Furthermore, lactulose/isomalto-oligosaccharide/inulin and fructo-oligosaccharide can enhance the inhibitory effect of all 107 CFU/ml Lactobacillus strains against KPC001. Three Lactobacillus strains (LYC1154, LYC1322, and LYC1511) that could be persistently detected in the stool were tested for their ability to reduce the amount of KPC001 in the feces individually or in combination. A significantly better effect in reducing the amount of KPC001 was observed for the combination of three different Lactobacillus species than for each of them alone. Furthermore, their inhibitory effect was enhanced after adding lactulose or isomalto-oligosaccharide (both p < 0.05). Conclusion This study demonstrates the inhibitory effect of probiotic Lactobacillus, including LYC1154, LYC1322, and LYC1511, with prebiotics such as lactulose or isomalto-oligosaccharide against the colonization of KPC-2-producing K. pneumoniae.
Collapse
Affiliation(s)
- Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan,Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Chen Lu
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Hui-Ling Huang
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Hung-Jui Chen
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan,*Correspondence: Chien-Ming Chao,
| |
Collapse
|
3
|
Wang Z, Pu W, Liu Q, Zhu M, Chen Q, Xu Y, Zhou C. Association of Gut Microbiota Composition in Pregnant Women Colonized with Group B Streptococcus with Maternal Blood Routine and Neonatal Blood-Gas Analysis. Pathogens 2022; 11:pathogens11111297. [PMID: 36365048 PMCID: PMC9697892 DOI: 10.3390/pathogens11111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Group B Streptococcus (GBS) colonizes the vaginal and rectal mucosa in a substantial proportion of healthy women, and GBS is a risk factor for GBS-associated adverse birth outcomes, such as bacterial infection, in neonates. Whether changes in the gut microbiota of GBS-infected pregnant women are associated with maternal complete blood cell count (CBC) and neonatal blood-gas analysis is unknown. To explore the relationship between the intestinal microecological composition of pregnant women and maternal blood routine and neonatal blood-gas analysis, we collected intestinal microecology samples of 26 pregnant women in clinic. They were divided into a positive group(GBS positive,GBS +) and a negative group (GBS negative, GBS-), with 12 in the positive group and 14 in the negative group. 16S rRNA gene sequencing was used to examine the gut microbiota profile from a fecal sample of pregnant women. CBC was carried out in enrolled pregnant women and umbilical arterial blood-gas analysis (UABGA)was conducted for analysis of intestinal microbiota composition, maternal blood routine and neonatal blood gas. Our results showed significant differences in the total number of organisms and microbial diversity of intestinal microbiota between healthy pregnant women and GBS-positive pregnant women. Particularly, abundances of Lentisphaerae, Chlorobi, Parcubacteria, Chloroflexi, Gemmatimonadetes, Acidobacteria, Fusobacteria and Fibrobacteres were only detected in participants with GBS colonization. Blood-gas analysis revealed that neonates born to mothers with GBS colonization had significantly higher fractions of carboxyhemoglobin (FCOHb) and lower methemoglobin (FMetHb), and abundances of OTU80, OTU122, OTU518 and OTU375 were associated with blood-gas indicators, such as carboxyhemoglobin, methemoglobin, PCO2, PH and ABE. Interestingly, there were significant correlations between OTU levels and inflammatory indexes in pregnant women with GBS infection. Together, this study revealed for the first time that altered gut microbiota compositions are related to the inflammatory state in GBS-positive pregnant women and neonatal blood-gas indicators. GBS colonization may lead to significant changes in the gut microbiome, which might be involved in the pathogenesis of the maternal inflammatory state and neonatal blood gas abnormalities.
Collapse
Affiliation(s)
- Zhixia Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- Department of Gynecology and Obstetrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Wenyuan Pu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- Correspondence: (W.P.); (C.Z.); Tel.: +86-025-8581-1772 (C.Z.)
| | - Qi Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Meifeng Zhu
- Department of Nephrology, Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Changzhou 213000, China
| | - Qinlei Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Yingchun Xu
- Department of Pediatrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Chunxiang Zhou
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- Department of Chinese Medicine, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
- Correspondence: (W.P.); (C.Z.); Tel.: +86-025-8581-1772 (C.Z.)
| |
Collapse
|
4
|
Theis KR, Florova V, Romero R, Borisov AB, Winters AD, Galaz J, Gomez-Lopez N. Sneathia: an emerging pathogen in female reproductive disease and adverse perinatal outcomes. Crit Rev Microbiol 2021; 47:517-542. [PMID: 33823747 DOI: 10.1080/1040841x.2021.1905606] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sneathia is an emerging pathogen implicated in adverse reproductive and perinatal outcomes. Although scarce, recent data suggest that vaginally residing Sneathia becomes pathogenic following its ascension into the upper urogenital tract, amniotic fluid, placenta, and foetal membranes. The role of Sneathia in women's health and disease is generally underappreciated because the cultivation of these bacteria is limited by their complex nutritional requirements, slow growth patterns, and anaerobic nature. For this reason, molecular methods are typically required for the detection and differential diagnosis of Sneathia infections. Here, we review the laboratory methods used for the diagnosis of Sneathia infections, the molecular mechanisms underlying its virulence, and its sensitivity to antibiotics. We further review the evidence of Sneathia's contributions to the pathogenesis of bacterial vaginosis, chorioamnionitis, preterm prelabour rupture of membranes, spontaneous preterm labour, stillbirth, maternal and neonatal sepsis, HIV infection, and cervical cancer. Collectively, growing evidence indicates that Sneathia represents an important yet underappreciated pathogen affecting the development and progression of several adverse clinical conditions diagnosed in pregnant women and their neonates, as well as in non-pregnant women.
Collapse
Affiliation(s)
- Kevin R Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Violetta Florova
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Andrei B Borisov
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrew D Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Srinivasan S, Beamer MA, Fiedler TL, Austin MN, Sizova MV, Strenk SM, Agnew KJ, Gowda GAN, Raftery D, Epstein SS, Fredricks DN, Hillier SL. Megasphaera lornae sp. nov., Megasphaera hutchinsoni sp. nov., and Megasphaera vaginalis sp. nov.: novel bacteria isolated from the female genital tract. Int J Syst Evol Microbiol 2021; 71. [PMID: 33616513 DOI: 10.1099/ijsem.0.004702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Six strictly anaerobic Gram-negative bacteria representing three novel species were isolated from the female reproductive tract. The proposed type strains for each species were designated UPII 199-6T, KA00182T and BV3C16-1T. Phylogenetic analyses based on 16S rRNA gene sequencing indicated that the bacterial isolates were members of the genus Megasphaera. UPII 199-6T and KA00182T had 16S rRNA gene sequence identities of 99.9 % with 16S rRNA clone sequences previously amplified from the human vagina designated as Megasphaera type 1 and Megasphaera type 2, members of the human vaginal microbiota associated with bacterial vaginosis, preterm birth and HIV acquisition. UPII 199-6T exhibited sequence identities ranging from 92.9 to 93.6 % with validly named Megasphaera isolates and KA00182T had 16S rRNA gene sequence identities ranging from 92.6-94.2 %. BV3C16-1T was most closely related to Megasphaera cerevisiae with a 16S rRNA gene sequence identity of 95.4 %. Cells were coccoid or diplococcoid, non-motile and did not form spores. Genital tract isolates metabolized organic acids but were asaccharolytic. The isolates also metabolized amino acids. The DNA G+C content for the genome sequences of UPII 199-6T, KA00182T and BV3C16-1T were 46.4, 38.9 and 49.8 mol%, respectively. Digital DNA-DNA hybridization and average nucleotide identity between the genital tract isolates and other validly named Megasphaera species suggest that each isolate type represents a new species. The major fatty acid methyl esters include the following: C12 : 0, C16 : 0, C16 : 0 dimethyl acetal (DMA) and summed feature 5 (C15 : 0 DMA and/or C14 : 0 3-OH) in UPII 199-6T; C16 : 0 and C16 : 1 cis 9 in KA00182T; C12 : 0; C14 : 0 3-OH; and summed feature 5 in BV3C16-1T. The isolates produced butyrate, isobutyrate, and isovalerate but there were specific differences including production of formate and propionate. Together, these data indicate that UPII 199-6T, KA00182T and BV3C16-1T represent novel species within the genus Megasphaera. We propose the following names: Megasphaera lornae sp. nov. for UPII 199-6T representing the type strain of this species (=DSM 111201T=ATCC TSD-205T), Megasphaera hutchinsoni sp. nov. for KA00182T representing the type strain of this species (=DSM 111202T=ATCC TSD-206T) and Megasphaera vaginalis sp. nov. for BV3C16-1T representing the type strain of this species (=DSM 111203T=ATCC TSD-207T).
Collapse
Affiliation(s)
- Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - May A Beamer
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Tina L Fiedler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Maria V Sizova
- Present address: Evelo Biosciences, 620 Memorial Drive, Cambridge, MA, USA.,Department of Biology, Northeastern University, Boston, MA, USA
| | - Susan M Strenk
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kathy J Agnew
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington Medical Center, Seattle, WA, USA
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center and Mitochondrial and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Daniel Raftery
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Northwest Metabolomics Research Center and Mitochondrial and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Slava S Epstein
- Department of Biology, Northeastern University, Boston, MA, USA
| | - David N Fredricks
- Department of Medicine, University of Washington, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon L Hillier
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA.,Magee-Womens Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Taitt CR, Leski TA, Colston SM, Bernal M, Canal E, Regeimbal J, Rios P, Vora GJ. A comparison of methods for DNA preparation prior to microarray analysis. Anal Biochem 2019; 585:113405. [PMID: 31445900 DOI: 10.1016/j.ab.2019.113405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/30/2023]
Abstract
Microarrays are a valuable tool for analysis of both bacterial and eukaryotic nucleic acids. As many of these applications use non-specific amplification to increase sample concentration prior to analysis, the methods used to fragment and label large amplicons are important to achieve the desired analytical selectivity and specificity. Here, we used eight sequenced ESKAPE pathogens to determine the effect of two methods of whole genome amplicon fragmentation and three methods of subsequent labeling on microarray performance; nick translation was also assessed. End labeling of both initial DNase I-treated and sonication-fragmented amplicons failed to provide detectable material for a significant number of sequence-confirmed genes. However, processing of amplicons by nick translation, or by sequential fragmentation and labeling by Universal Labeling System or Klenow fragment/random primer provided good sensitivity and selectivity, with marginally better results obtained by Klenow fragment labeling. Nick-translation provided 91-100% sensitivity and 100% specificity in the tested strains, requiring half as many manipulations and less than 4h to process samples for hybridization; full sample processing from whole genome amplification to final data analysis could be performed in less than 10h. The method of template denaturation before amplification did affect detection sensitivity/selectivity of nick-labeled amplicons, however.
Collapse
Affiliation(s)
- Chris R Taitt
- Center for BioMolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA.
| | - Tomasz A Leski
- Center for BioMolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Sophie M Colston
- National Research Council Research Associateship Program, Washington, DC, 20001, USA
| | | | | | | | | | - Gary J Vora
- Center for BioMolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
7
|
Mu X, Zhao C, Yang J, Wei X, Zhang J, Liang C, Gai Z, Zhang C, Zhu D, Wang Y, Zhang L. Group B Streptococcus colonization induces Prevotella and Megasphaera abundance-featured vaginal microbiome compositional change in non-pregnant women. PeerJ 2019; 7:e7474. [PMID: 31440433 PMCID: PMC6699484 DOI: 10.7717/peerj.7474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Background Previous studies have indicated that variations in the vaginal microbiome result in symptomatic conditions. Group B Streptococcus (GBS) is a significant neonatal pathogen and maternal vaginal colonization has been recognized as an important risk factor for neonatal disease. Therefore, it is important to discover the relationship between the composition of the vaginal microbiome and GBS colonization. This study explores the potential relationship between the composition of the vaginal microbiome and GBS colonization in non-pregnant Chinese women. Methods A total of 22 GBS-positive, non-pregnant women and 44 matched GBS-negative women were recruited for the current study. The composition of the vaginal microbiome was profiled by sequencing the 16S rRNA genes. The microbiome diversity and variation were then evaluated. Results The vaginal microbiome of the 66 subjects enrolled in the current study were compared and the results showed that GBS-positive women exhibited significant vaginal microbial differences compared with the GBS-negative women based on the analysis of similarities (r = 0.306, p < 0.01). The relative abundance of the bacterial genus Lactobacillus (p < 0.01) was significantly lower in the GBS-positive group, while the abundances of the bacterial genera Prevotella (p < 0.01), Megasphaera (p < 0.01), and Streptococcus (p < 0.01) were significantly higher in the GBS-positive group. Discussion The current study addressed significant variations across the communities of the vaginal microbiome in GBS-positive and GBS-negative women in a Chinese cohort, which paves the way for a larger cohort-based clinical validation study and the development of therapeutic probiotics in the future.
Collapse
Affiliation(s)
- Xiaofeng Mu
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China.,Clinical Laboratory and Core Research Laboratory; Qingdao Human Microbiome Center & Qingdao Institute of Oncology, The Affiliated Central Hospital of Qingdao University, Qingdao, China.,School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Changying Zhao
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Junjie Yang
- College of Life Science, Qilu Normal University, Jinan, China
| | - Xiaofang Wei
- Clinical Laboratory and Core Research Laboratory; Qingdao Human Microbiome Center & Qingdao Institute of Oncology, The Affiliated Central Hospital of Qingdao University, Qingdao, China
| | - Jiaming Zhang
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Zhongtao Gai
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Chunling Zhang
- Clinical Laboratory and Core Research Laboratory; Qingdao Human Microbiome Center & Qingdao Institute of Oncology, The Affiliated Central Hospital of Qingdao University, Qingdao, China
| | - Dequan Zhu
- Microbiological Laboratory; Department of Infection Management; Department of Neurosurgery, Lin Yi People's Hospital, Linyi, China
| | - Ye Wang
- Clinical Laboratory and Core Research Laboratory; Qingdao Human Microbiome Center & Qingdao Institute of Oncology, The Affiliated Central Hospital of Qingdao University, Qingdao, China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| |
Collapse
|
8
|
Sanchez-Garcia EK, Contreras-Paredes A, Martinez-Abundis E, Garcia-Chan D, Lizano M, de la Cruz-Hernandez E. Molecular epidemiology of bacterial vaginosis and its association with genital micro-organisms in asymptomatic women. J Med Microbiol 2019; 68:1373-1382. [PMID: 31329097 DOI: 10.1099/jmm.0.001044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Bacterial vaginosis (BV) is dysbiosis associated with an increased risk of several sexually transmitted infections. It is primarily diagnosed via Gram staining, although molecular analyses have presented higher diagnostic accuracy.Aim. This study aimed to evaluate the molecular epidemiology of BV in asymptomatic women to determine its association with several commensal and pathogenic micro-organisms of the genitalia.Methodology. The prevalence of BV was investigated through semiquantitative assessment of 201 women recruited during their routine gynaecological inspection at an outpatient clinic in Tabasco, Mexico.Results. Women with BV showed an increased prevalence of Chlamydia trachomatis (P=0.021) and Mycoplasma hominis (P=0.001). Of the BV-associated micro-organisms, Gardnerella vaginalis was significantly associated with C. trachomatis (P=0.005) and/or Ureaplasma parvum (P=0.003), whereas Atopobium vaginae and Megasphaera type 1 correlated significantly with Mycoplasma hominis (P=0.001). No significant association was observed between human papillomavirus (HPV) infection and BV, although there was increased prevalence of HPV59, HPV73, HPV52 and HPV58 in women displaying cervical cytological abnormalities.Conclusion. Identification of BV-associated micro-organisms via molecular analysis may help to distinguish recurrent cases from new infections and identify micro-organisms potentially associated with pharmacological resistance.
Collapse
Affiliation(s)
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martinez-Abundis
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Magisterial, Mexico
| | - Dominga Garcia-Chan
- Unidad de Atencion Primaria de la Salud, Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, 86205 Jalpa de Méndez, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erick de la Cruz-Hernandez
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Magisterial, Mexico
| |
Collapse
|
9
|
Abstract
Bacterial vaginosis (BV) is the most common cause of vaginal discharge in reproductive-age women. BV has been associated with poor reproductive outcomes such as preterm delivery, the acquisition of sexually transmitted infections, including HIV, and pelvic inflammatory disease. BV represents the acquisition of a diverse community of anaerobic and facultative bacteria and a reduction in lactobacilli. It can be diagnosed using several tests ranging from clinical indicators, point-of-care tests, and molecular assays. Molecular technologies are objective, are able to detect fastidious bacteria, enable quantitation, and are ideal for self-collected vaginal swabs. This paper reviews the currently available BV diagnostic tests in the United States.
Collapse
|
10
|
Parolin C, Foschi C, Laghi L, Zhu C, Banzola N, Gaspari V, D'Antuono A, Giordani B, Severgnini M, Consolandi C, Salvo M, Cevenini R, Vitali B, Marangoni A. Insights Into Vaginal Bacterial Communities and Metabolic Profiles of Chlamydia trachomatis Infection: Positioning Between Eubiosis and Dysbiosis. Front Microbiol 2018; 9:600. [PMID: 29643849 PMCID: PMC5883401 DOI: 10.3389/fmicb.2018.00600] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/15/2018] [Indexed: 11/26/2022] Open
Abstract
The vaginal microbiota plays a crucial role in maintaining the health and functioning of the female genital tract, preventing the colonization of urogenital pathogens and sexually transmitted infections. In this study, we characterized the vaginal bacterial communities and the metabolome associated to Chlamydia trachomatis infection (CT: 20 women), compared to healthy condition (H: 22 women) and bacterial vaginosis (BV: 19 women). A microarray-based tool (VaginArray), implemented with a real-time PCR for Gardnerella vaginalis, was used to determine the vaginal bacterial composition, whereas the metabolic profiles were assessed by a proton-based nuclear magnetic resonance (1H-NMR) spectroscopy. CT infection was characterized by bacterial and metabolic signatures similar to healthy condition, even though higher amounts of Lactobacillus iners, as well as depletion of some amino acids, biogenic amines, and succinate marked CT infection. Moreover, the frequency of Lactobacillus crispatus was higher in asymptomatic CT-positive patients than in women with CT-correlated symptoms. We also confirmed the marked differences in the microbiome and metabolome between healthy and BV-affected women. In conclusion, we highlighted microbial and metabolic peculiarities of the vaginal ecosystem in the case of CT infection, even though further studies are needed to understand if the observed alterations precede the infection onset or if the pathogen itself perturbs the vaginal environment.
Collapse
Affiliation(s)
- Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Bologna, Italy
| | - Chenglin Zhu
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Bologna, Italy
| | - Nicoletta Banzola
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Valeria Gaspari
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Antonietta D'Antuono
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies - National Research Council, Milan, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies - National Research Council, Milan, Italy
| | - Melissa Salvo
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberto Cevenini
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Parolin C, Giordani B, Ñahui Palomino RA, Biagi E, Severgnini M, Consolandi C, Caredda G, Storelli S, Strohmenger L, Vitali B. Design and validation of a DNA-microarray for phylogenetic analysis of bacterial communities in different oral samples and dental implants. Sci Rep 2017; 7:6280. [PMID: 28740183 PMCID: PMC5524749 DOI: 10.1038/s41598-017-06743-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/16/2017] [Indexed: 12/31/2022] Open
Abstract
The quali-quantitative characterization of the oral microbiota is crucial for an exhaustive knowledge of the oral ecology and the modifications of the microbial composition that occur during periodontal pathologies. In this study, we designed and validated a new phylogenetic DNA-microarray (OralArray) to quickly and reliably characterize the most representative bacterial groups that colonize the oral cavity. The OralArray is based on the Ligation Detection Reaction technology associated to Universal Arrays (LDR-UA), and includes 22 probe sets targeted to bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, Fusobacteria, and Spirochaete. The tool is characterized by high specificity, sensitivity and reproducibility. The OralArray was successfully tested and validated on different oral samples (saliva, lingual plaque, supragingival plaque, and healing cap) collected from 10 healthy subjects. For each specimen, a microbial signature was obtained, and our results established the presence of an oral microbial profile specific for each subject. Moreover, the tool was applied to evaluate the efficacy of a disinfectant treatment on the healing caps before their usage. The OralArray is, thus, suitable to study the microbiota associated with various oral sites and to monitor changes arising from therapeutic treatments.
Collapse
Affiliation(s)
- Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies - National Research Council, Segrate, Milan, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies - National Research Council, Segrate, Milan, Italy
| | - Giada Caredda
- Institute of Biomedical Technologies - National Research Council, Segrate, Milan, Italy
| | - Stefano Storelli
- Dental Clinic, Department of Biomedical, Surgical and Dental Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Laura Strohmenger
- Dental Clinic, Department of Biomedical, Surgical and Dental Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
12
|
Foschi C, Laghi L, Parolin C, Giordani B, Compri M, Cevenini R, Marangoni A, Vitali B. Novel approaches for the taxonomic and metabolic characterization of lactobacilli: Integration of 16S rRNA gene sequencing with MALDI-TOF MS and 1H-NMR. PLoS One 2017; 12:e0172483. [PMID: 28207855 PMCID: PMC5312945 DOI: 10.1371/journal.pone.0172483] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
Lactobacilli represent a wide range of bacterial species with several implications for the human host. They play a crucial role in maintaining the ecological equilibrium of different biological niches and are essential for fermented food production and probiotic formulation. Despite the consensus about the ‘health-promoting’ significance of Lactobacillus genus, its genotypic and phenotypic characterization still poses several difficulties. The aim of this study was to assess the integration of different approaches, genotypic (16S rRNA gene sequencing), proteomic (MALDI-TOF MS) and metabolomic (1H-NMR), for the taxonomic and metabolic characterization of Lactobacillus species. For this purpose we analyzed 40 strains of various origin (intestinal, vaginal, food, probiotics), belonging to different species. The high discriminatory power of MALDI-TOF for species identification was underlined by the excellent agreement with the genotypic analysis. Indeed, MALDI-TOF allowed to correctly identify 39 out of 40 Lactobacillus strains at the species level, with an overall concordance of 97.5%. In the perspective to simplify the MALDI TOF sample preparation, especially for routine practice, we demonstrated the perfect agreement of the colony-picking from agar plates with the protein extraction protocol. 1H-NMR analysis, applied to both culture supernatants and bacterial lysates, identified a panel of metabolites whose variations in concentration were associated with the taxonomy, but also revealed a high intra-species variability that did not allow a species-level identification. Therefore, despite not suitable for mere taxonomic purposes, metabolomics can be useful to correlate particular biological activities with taxonomy and to understand the mechanisms related to the antimicrobial effect shown by some Lactobacillus species.
Collapse
Affiliation(s)
- Claudio Foschi
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Monica Compri
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | | | | | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Nelson DB, Rockwell LC, Prioleau MD, Goetzl L. The role of the bacterial microbiota on reproductive and pregnancy health. Anaerobe 2016; 42:67-73. [PMID: 27612939 DOI: 10.1016/j.anaerobe.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/18/2016] [Accepted: 09/05/2016] [Indexed: 11/17/2022]
Abstract
Recent assessments have examined the composition of bacterial communities influencing reproductive, pregnancy and infant health. The Microbiome Project has made great strides in sequencing the microbiome and identifying the vast communities of microorganisms that inhabit our bodies and much work continues to examine the individual contribution of bacteria on health and disease to inform future therapies. This review explores the current literature outlining the contribution of important bacteria on reproductive health among sexually active men and women, outlines gaps in current research to determine causal and interventional relationships, and suggests future research initiatives. Novel treatments options to reduce adverse outcomes must recognize the heterogeneity of the bacteria within the microbiome and adequately assess long-term benefits in reducing disease burden and re-establishing a healthy Lactobacillus-dominant state. Recognizing other reservoirs outside of the lower genital track and within sexual partners as well as genetic and individual moderators may be most important for long-term cure and reduction of disease. It will be important to develop useful screening tools and comprehensively examine novel therapeutic options to promote the long-term reduction of high-risk bacteria and the re-establishment of healthy bacterial levels to considerably improve outcomes among pregnant women and sexually active men and women.
Collapse
Affiliation(s)
- Deborah B Nelson
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, Temple University, USA.
| | | | | | - Laura Goetzl
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, Temple University, USA
| |
Collapse
|
14
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016. [PMID: 27507964 DOI: 10.3389/fmicb.2016.01144]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy; Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
15
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016. [PMID: 27507964 DOI: 10.3389/fmicb.2016.01144] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy; Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
16
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016; 7:1144. [PMID: 27507964 PMCID: PMC4960240 DOI: 10.3389/fmicb.2016.01144] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
17
|
Lactobacillus crispatus inhibits the infectivity of Chlamydia trachomatis elementary bodies, in vitro study. Sci Rep 2016; 6:29024. [PMID: 27354249 PMCID: PMC4926251 DOI: 10.1038/srep29024] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023] Open
Abstract
Lactobacillus species dominate the vaginal microbiota of healthy reproductive-age women and protect the genitourinary tract from the attack of several infectious agents. Chlamydia trachomatis, a leading cause of sexually transmitted disease worldwide, can induce severe sequelae, i.e. pelvic inflammatory disease, infertility and ectopic pregnancy. In the present study we investigated the interference of Lactobacillus crispatus, L. gasseri and L. vaginalis, known to be dominant species in the vaginal microbiome, with the infection process of C. trachomatis. Lactobacilli exerted a strong inhibitory effect on Chlamydia infectivity mainly through the action of secreted metabolites in a concentration/pH dependent mode. Short contact times were the most effective in the inhibition, suggesting a protective role of lactobacilli in the early steps of Chlamydia infection. The best anti-Chlamydia profile was shown by L. crispatus species. In order to delineate metabolic profiles related to anti-Chlamydia activity, Lactobacillus supernatants were analysed by 1H-NMR. Production of lactate and acidification of the vaginal environment seemed to be crucial for the activity, in addition to the consumption of the carbonate source represented by glucose. The main conclusion of this study is that high concentrations of L. crispatus inhibit infectivity of C. trachomatis in vitro.
Collapse
|