1
|
Iwaisako Y, Fujimuro M. The Terminase Complex of Each Human Herpesvirus. Biol Pharm Bull 2024; 47:912-916. [PMID: 38692868 DOI: 10.1248/bpb.b23-00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The human herpesviruses (HHVs) are classified into the following three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. These HHVs have distinct pathological features, while containing a highly conserved viral replication pathway. Among HHVs, the basic viral particle structure and the sequential processes of viral replication are nearly identical. In particular, the capsid formation mechanism has been proposed to be highly similar among herpesviruses, because the viral capsid-organizing proteins are highly conserved at the structural and functional levels. Herpesviruses form capsids containing the viral genome in the nucleus of infected cells during the lytic phase, and release infectious virus (i.e., virions) to the cell exterior. In the capsid formation process, a single-unit-length viral genome is encapsidated into a preformed capsid. The single-unit-length viral genome is produced by cleavage from a viral genome precursor in which multiple unit-length viral genomes are tandemly linked. This encapsidation and cleavage is carried out by the terminase complex, which is composed of viral proteins. Since the terminase complex-mediated encapsidation and cleavage is a virus-specific mechanism that does not exist in humans, it may be an excellent inhibitory target for anti-viral drugs with high virus specificity. This review provides an overview of the functions of the terminase complexes of HHVs.
Collapse
Affiliation(s)
- Yuki Iwaisako
- Department of Cell Biology, Kyoto Pharmaceutical University
| | | |
Collapse
|
2
|
Iwaisako Y, Watanabe T, Suzuki Y, Nakano T, Fujimuro M. Kaposi's Sarcoma-Associated Herpesvirus ORF67.5 Functions as a Component of the Terminase Complex. J Virol 2023; 97:e0047523. [PMID: 37272800 PMCID: PMC10308961 DOI: 10.1128/jvi.00475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA (dsDNA) gammaherpesvirus with a poorly characterized lytic replication cycle. However, the lytic replication cycle of the alpha- and betaherpesviruses are well characterized. During lytic infection of alpha- and betaherpesviruses, the viral genome is replicated as a precursor form, which contains tandem genomes linked via terminal repeats (TRs). One genomic unit of the precursor form is packaged into a capsid and is cleaved at the TR by the terminase complex. While the alpha- and betaherpesvirus terminases are well characterized, the KSHV terminase remains poorly understood. KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5 are presumed to be components of the terminase complex based on their homology to other terminase proteins. We previously reported that ORF7-deficient KSHV formed numerous immature soccer ball-like capsids and failed to cleave the TRs. ORF7 interacted with ORF29 and ORF67.5; however, ORF29 and ORF67.5 did not interact with each other. While these results suggested that ORF7 is important for KSHV terminase function and capsid formation, the function of ORF67.5 was completely unknown. Therefore, to analyze the function of ORF67.5, we constructed ORF67.5-deficient BAC16. ORF67.5-deficient KSHV failed to produce infectious virus and cleave the TRs, and numerous soccer ball-like capsids were observed in ORF67.5-deficient KSHV-harboring cells. Furthermore, ORF67.5 promoted the interaction between ORF7 and ORF29, and ORF29 increased the interaction between ORF67.5 and ORF7. Thus, our data indicated that ORF67.5 functions as a component of the KSHV terminase complex by contributing to TR cleavage, terminase complex formation, capsid formation, and virus production. IMPORTANCE Although the formation and function of the alpha- and betaherpesvirus terminase complexes are well understood, the Kaposi's sarcoma-associated herpesvirus (KSHV) terminase complex is still largely uncharacterized. This complex presumably contains KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5. We were the first to report the presence of soccer ball-like capsids in ORF7-deficient KSHV-harboring lytic-induced cells. Here, we demonstrated that ORF67.5-deficient KSHV also formed soccer ball-like capsids in lytic-induced cells. Moreover, ORF67.5 was required for terminal repeat (TR) cleavage, infectious virus production, and enhancement of the interaction between ORF7 and ORF29. ORF67.5 has several highly conserved regions among its human herpesviral homologs. These regions were necessary for virus production and for the interaction of ORF67.5 with ORF7, which was supported by the artificial intelligence (AI)-predicted structure model. Importantly, our results provide the first evidence showing that ORF67.5 is essential for terminase complex formation and TR cleavage.
Collapse
Affiliation(s)
- Yuki Iwaisako
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tadashi Watanabe
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
3
|
McCollum CO, Didychuk AL, Liu D, Murray-Nerger LA, Cristea IM, Glaunsinger BA. The viral packaging motor potentiates Kaposi's sarcoma-associated herpesvirus gene expression late in infection. PLoS Pathog 2023; 19:e1011163. [PMID: 37068108 PMCID: PMC10138851 DOI: 10.1371/journal.ppat.1011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
β- and γ-herpesviruses transcribe their late genes in a manner distinct from host transcription. This process is directed by a complex of viral transcriptional activator proteins that hijack cellular RNA polymerase II and an unknown set of additional factors. We employed proximity labeling coupled with mass spectrometry, followed by CRISPR and siRNA screening to identify proteins functionally associated with the Kaposi's sarcoma-associated herpesvirus (KSHV) late gene transcriptional complex. These data revealed that the catalytic subunit of the viral DNA packaging motor, ORF29, is both dynamically associated with the viral transcriptional activator complex and potentiates gene expression late in infection. Through genetic mutation and deletion of ORF29, we establish that its catalytic activity potentiates viral transcription and is required for robust accumulation of essential late proteins during infection. Thus, we propose an expanded role for ORF29 that encompasses its established function in viral packaging and its newly discovered contributions to viral transcription and late gene expression in KSHV.
Collapse
Affiliation(s)
- Chloe O. McCollum
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Allison L. Didychuk
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Dawei Liu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Laura A. Murray-Nerger
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
4
|
The Contribution of Kaposi's Sarcoma-Associated Herpesvirus ORF7 and Its Zinc-Finger Motif to Viral Genome Cleavage and Capsid Formation. J Virol 2022; 96:e0068422. [PMID: 36073924 PMCID: PMC9517700 DOI: 10.1128/jvi.00684-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic infection, lytic-related proteins are synthesized, viral genomes are replicated as a tandemly repeated form, and subsequently, capsids are assembled. The herpesvirus terminase complex is proposed to package an appropriate genome unit into an immature capsid, by cleavage of terminal repeats (TRs) flanking tandemly linked viral genomes. Although the mechanism of capsid formation in alpha- and betaherpesviruses are well-studied, in KSHV, it remains largely unknown. It has been proposed that KSHV ORF7 is a terminase subunit, and ORF7 harbors a zinc-finger motif, which is conserved among other herpesviral terminases. However, the biological significance of ORF7 is unknown. We previously reported that KSHV ORF17 is essential for the cleavage of inner scaffold proteins in capsid maturation, and ORF17 knockout (KO) induced capsid formation arrest between the procapsid and B-capsid stages. However, it remains unknown if ORF7-mediated viral DNA cleavage occurs before or after ORF17-mediated scaffold collapse. We analyzed the role of ORF7 during capsid formation using ORF7-KO-, ORF7&17-double-KO (DKO)-, and ORF7-zinc-finger motif mutant-KSHVs. We found that ORF7 acted after ORF17 in the capsid formation process, and ORF7-KO-KSHV produced incomplete capsids harboring nonspherical internal structures, which resembled soccer balls. This soccer ball-like capsid was formed after ORF17-mediated B-capsid formation. Moreover, ORF7-KO- and zinc-finger motif KO-KSHV failed to appropriately cleave the TR on replicated genome and had a defect in virion production. Interestingly, ORF17 function was also necessary for TR cleavage. Thus, our data revealed ORF7 contributes to terminase-mediated viral genome cleavage and capsid formation. IMPORTANCE In herpesviral capsid formation, the viral terminase complex cleaves the TR sites on newly synthesized tandemly repeating genomes and inserts an appropriate genomic unit into an immature capsid. Herpes simplex virus 1 (HSV-1) UL28 is a subunit of the terminase complex that cleaves the replicated viral genome. However, the physiological importance of the UL28 homolog, KSHV ORF7, remains poorly understood. Here, using several ORF7-deficient KSHVs, we found that ORF7 acted after ORF17-mediated scaffold collapse in the capsid maturation process. Moreover, ORF7 and its zinc-finger motif were essential for both cleavage of TR sites on the KSHV genome and virus production. ORF7-deficient KSHVs produced incomplete capsids that resembled a soccer ball. To our knowledge, this is the first report showing ORF7-KO-induced soccer ball-like capsids production and ORF7 function in the KSHV capsid assembly process. Our findings provide insights into the role of ORF7 in KSHV capsid formation.
Collapse
|
5
|
Naimo E, Zischke J, Schulz TF. Recent Advances in Developing Treatments of Kaposi's Sarcoma Herpesvirus-Related Diseases. Viruses 2021; 13:1797. [PMID: 34578378 PMCID: PMC8473310 DOI: 10.3390/v13091797] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022] Open
Abstract
Kaposi-sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8) is the causative agent of several malignancies, including Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). Active KSHV replication has also been associated with a pathological condition called KSHV inflammatory cytokine syndrome (KICS), and KSHV may play a role in rare cases of post-transplant polyclonal lymphoproliferative disorders. Several commonly used herpesviral DNA polymerase inhibitors are active against KSHV in tissue culture. Unfortunately, they are not always efficacious against KSHV-induced diseases. To improve the outcome for the patients, new therapeutics need to be developed, including treatment strategies that target either viral proteins or cellular pathways involved in tumor growth and/or supporting the viral life cycle. In this review, we summarize the most commonly established treatments against KSHV-related diseases and review recent developments and promising new compounds that are currently under investigation or on the way to clinical use.
Collapse
Affiliation(s)
- Eleonora Naimo
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
| | - Jasmin Zischke
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
- Cluster of Excellence 2155 RESIST, Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
6
|
Hirano A, Nagatoishi S, Wada M, Tsumoto K, Maluf KN, Arakawa T. Technical Capabilities and Limitations of Optical Spectroscopy and Calorimetry Using Water-Miscible Solvents: The Case of Dimethyl Sulfoxide, Acetonitrile, and 1,4-Dioxane. J Pharm Sci 2019; 109:524-531. [PMID: 31682831 DOI: 10.1016/j.xphs.2019.10.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023]
Abstract
In drug development, water-miscible solvents are commonly used to dissolve drug substances. Typical routine procedures in drug development include dilution of the stock drug solution into an aqueous solution containing target macromolecules for drug binding assays. However, water-miscible solvents impose some technical limitations on the assays on account of their light absorption and heat capacity. Here, we examined the effects of the dilution of 3 water-miscible solvents, that is, dimethyl sulfoxide, acetonitrile, and 1,4-dioxane, on the baseline stability and signal/noise ratio in circular dichroism spectroscopy, isothermal titration calorimetry, and differential scanning calorimetry. Dimethyl sulfoxide and 1,4-dioxane affect the signal/noise ratio of circular dichroism spectra at typically used concentrations due to their light absorbance. The water-miscible solvents generate interfering signals in the isothermal titration calorimetry due to their mixing heat. They show negative or positive slope in the differential scanning calorimetry. Such interfering effects of the solvents are reduced by appropriate dilution according to the analytical techniques. Because the water-miscible solvents have solubilization capacity for alkyl chain moieties and aromatic moieties of chemicals, drug substances containing these moieties can be dissolved into the solvents and then subjected to the analyses to examine their interactions with target proteins after appropriate dilution of the drug solutions.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Momoyo Wada
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Karl N Maluf
- Alliance Protein Laboratories, Division of KBI Biopharma, San Diego, California 92121
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, Division of KBI Biopharma, San Diego, California 92121
| |
Collapse
|
7
|
Agyemang NB, Kukla CR, Edwards TC, Li Q, Langen MK, Schaal A, Franson AD, Casals AG, Donald KA, Yu AJ, Donlin MJ, Morrison LA, Tavis JE, Murelli RP. Divergent synthesis of a thiolate-based α-hydroxytropolone library with a dynamic bioactivity profile. RSC Adv 2019; 9:34227-34234. [PMID: 33042521 PMCID: PMC7543996 DOI: 10.1039/c9ra06383h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we describe a rapid and divergent synthetic route toward structurally novel αHTs functionalized with either one or two thioether or sulfonyl appendages. Evaluation of this library against hepatitis B and herpes simplex virus, as well as the pathogenic fungus Cryptococcus neoformans, and a human hepatoblastoma (HepDES19) revealed complementary biological profiles and new lead compounds with sub-micromolar activity against each pathogen.
Collapse
Affiliation(s)
- Nana B Agyemang
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States
| | - Cassandra R Kukla
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Tiffany C Edwards
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Qilan Li
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Madison K Langen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Alexandra Schaal
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Abaigeal D Franson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Andreu Gazquez Casals
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Katherine A Donald
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Maureen J Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States.,Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, 63110, United States
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States
| |
Collapse
|
8
|
Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X. Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality. ACS NANO 2019; 13:6207-6223. [PMID: 31067030 PMCID: PMC6595433 DOI: 10.1021/acsnano.8b08849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanomotors in nanotechnology are as important as engines in daily life. Many ATPases are nanoscale biomotors classified into three categories based on the motion mechanisms in transporting substrates: linear, rotating, and the recently discovered revolving motion. Most biomotors adopt a multisubunit ring-shaped structure that hydrolyzes ATP to generate force. How these biomotors control the motion direction and regulate the sequential action of their multiple subunits is intriguing. Many ATPases are hexameric with each monomer containing a conserved arginine finger. This review focuses on recent findings on how the arginine finger controls motion direction and coordinates adjacent subunit interactions in both revolving and rotating biomotors. Mechanisms of intersubunit interactions and sequential movements of individual subunits are evidenced by the asymmetrical appearance of one dimer and four monomers in high-resolution structural complexes. The arginine finger is situated at the interface of two subunits and extends into the ATP binding pocket of the downstream subunit. An arginine finger mutation results in deficiency in ATP binding/hydrolysis, substrate binding, and transport, highlighting the importance of the arginine finger in regulating energy transduction and motor function. Additionally, the roles of channel chirality and channel size are discussed as related to controlling one-way trafficking and differentiating the revolving and rotating mechanisms. Finally, the review concludes by discussing the conformational changes and entropy conversion triggered by ATP binding/hydrolysis, offering a view different from the traditional concept of ATP-mediated mechanochemical energy coupling. The elucidation of the motion mechanism and direction control in ATPases could facilitate nanomotor fabrication in nanotechnology.
Collapse
Affiliation(s)
- Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
- E-mail:
| | - Dana Driver
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhengyi Zhao
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhen Zheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Chun Chan
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Xiaolin Cheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
9
|
Berkowitz AJ, Franson AD, Gazquez Cassals A, Donald KA, Yu AJ, Garimallaprabhakaran AK, Morrison LA, Murelli RP. Importance of lipophilicity for potent anti-herpes simplex virus-1 activity of α-hydroxytropolones. MEDCHEMCOMM 2019; 10:1173-1176. [PMID: 31391890 DOI: 10.1039/c9md00225a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022]
Abstract
We previously reported that troponoid compounds profoundly inhibit replication of herpes simplex virus (HSV)-1 and HSV-2 in cell culture, including acyclovir-resistant mutants. Synthesis of 26 alpha-hydroxylated tropolones (αHTs) led to a preliminary structure-activity relationship highlighting the potency of bi-phenyl side chains. Here, we explore the structure-activity relationship in more detail, with a focus on various biaryl and other lipophilic molecules. Along with our prior structure-function analysis, we present a refined structure-activity relationship that reveals the importance of the lipophilicity and nature of the side chain for potent anti-HSV-1 activity in cells. We expect this new information will help guide future optimization of αHTs as HSV antivirals.
Collapse
Affiliation(s)
- Alex J Berkowitz
- Department of Chemistry , Brooklyn College , The City University of New York , Brooklyn , NY , USA . .,Ph.D. Program in Chemistry , The Graduate Center , The City University of New York , New York , NY , USA
| | - Abaigeal D Franson
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Andreu Gazquez Cassals
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Katherine A Donald
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | | | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA . .,Department of Internal Medicine , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Ryan P Murelli
- Department of Chemistry , Brooklyn College , The City University of New York , Brooklyn , NY , USA . .,Ph.D. Program in Chemistry , The Graduate Center , The City University of New York , New York , NY , USA
| |
Collapse
|