1
|
Zhang ZJ, Wu C, Moreira R, Dorantes D, Pappas T, Sundararajan A, Lin H, Pamer EG, van der Donk WA. Activity of Gut-Derived Nisin-like Lantibiotics against Human Gut Pathogens and Commensals. ACS Chem Biol 2024; 19:357-369. [PMID: 38293740 PMCID: PMC10877564 DOI: 10.1021/acschembio.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Recent advances in sequencing techniques unveiled the vast potential of ribosomally synthesized and post-translationally modified peptides (RiPPs) encoded in microbiomes. Class I lantibiotics such as nisin A, widely used as a food preservative, have been investigated for their efficacy in killing pathogens. However, the impact of nisin and nisin-like class I lantibiotics on commensal bacteria residing in the human gut remains unclear. Here, we report six gut-derived class I lantibiotics that are close homologues of nisin, four of which are novel. We applied an improved lantibiotic expression platform to produce and purify these lantibiotics for antimicrobial assays. We determined their minimal inhibitory concentration (MIC) against both Gram-positive human pathogens and gut commensals and profiled the lantibiotic resistance genes in these pathogens and commensals. Structure-activity relationship (SAR) studies with analogs revealed key regions and residues that impact their antimicrobial properties. Our characterization and SAR studies of nisin-like lantibiotics against both pathogens and human gut commensals could shed light on the future development of lantibiotic-based therapeutics and food preservatives.
Collapse
Affiliation(s)
- Zhenrun J. Zhang
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department
of Microbiology, University of Chicago, Chicago, Illinois 60637, United States
| | - Chunyu Wu
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Ryan Moreira
- Department
of Chemistry, The Howard Hughes Medical
Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Darian Dorantes
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Téa Pappas
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Anitha Sundararajan
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Huaiying Lin
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Eric G. Pamer
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
- Departments
of Medicine and Pathology, University of
Chicago, Chicago, Illinois 60637, United States
| | - Wilfred A. van der Donk
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, The Howard Hughes Medical
Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Bombelli A, Araya-Cloutier C, Boeren S, Vincken JP, Abee T, den Besten HMW. Effects of the antimicrobial glabridin on membrane integrity and stress response activation in Listeria monocytogenes. Food Res Int 2024; 175:113687. [PMID: 38128979 DOI: 10.1016/j.foodres.2023.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Glabridin is a prenylated isoflavan which can be extracted from liquorice roots and has shown antimicrobial activity against foodborne pathogens and spoilage microorganisms. However, its application may be hindered due to limited information about its mode of action. In this study, we aimed to investigate the mode of action of glabridin using a combined phenotypic and proteomic approach on Listeria monocytogenes. Fluorescence and transmission electron microscopy of cells exposed to glabridin showed membrane permeabilization upon treatment with lethal concentrations of glabridin. Comparative proteomics analysis of control cells and cells exposed to sub-lethal concentrations of glabridin showed upregulation of proteins related to the two-component systems LiaSR and VirRS, confirming cell envelope damage during glabridin treatment. Additional upregulation of SigmaB regulon members signified activation of the general stress response in L. monocytogenes during this treatment. In line with the observed upregulation of cell envelope and general stress response proteins, sub-lethal treatment of glabridin induced (cross)protection against lethal heat and low pH stress and against antimicrobials such as nisin and glabridin itself. Overall, this study sheds light on the mode of action of glabridin and activation of the main stress responses to this antimicrobial isoflavan and highlights possible implications of its use as a naturally derived antimicrobial compound.
Collapse
Affiliation(s)
- Alberto Bombelli
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands; Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Goff JL, Lui LM, Nielsen TN, Poole FL, Smith HJ, Walker KF, Hazen TC, Fields MW, Arkin AP, Adams MWW. Mixed waste contamination selects for a mobile genetic element population enriched in multiple heavy metal resistance genes. ISME COMMUNICATIONS 2024; 4:ycae064. [PMID: 38800128 PMCID: PMC11128244 DOI: 10.1093/ismeco/ycae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/11/2024] [Indexed: 05/29/2024]
Abstract
Mobile genetic elements (MGEs) like plasmids, viruses, and transposable elements can provide fitness benefits to their hosts for survival in the presence of environmental stressors. Heavy metal resistance genes (HMRGs) are frequently observed on MGEs, suggesting that MGEs may be an important driver of adaptive evolution in environments contaminated with heavy metals. Here, we report the meta-mobilome of the heavy metal-contaminated regions of the Oak Ridge Reservation subsurface. This meta-mobilome was compared with one derived from samples collected from unimpacted regions of the Oak Ridge Reservation subsurface. We assembled 1615 unique circularized DNA elements that we propose to be MGEs. The circular elements from the highly contaminated subsurface were enriched in HMRG clusters relative to those from the nearby unimpacted regions. Additionally, we found that these HMRGs were associated with Gamma and Betaproteobacteria hosts in the contaminated subsurface and potentially facilitate the persistence and dominance of these taxa in this region. Finally, the HMRGs were associated with conjugative elements, suggesting their potential for future lateral transfer. We demonstrate how our understanding of MGE ecology, evolution, and function can be enhanced through the genomic context provided by completed MGE assemblies.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Kathleen F Walker
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37916, United States
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37916, United States
- Genome Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
4
|
Pang X, Wu Y, Liu X, Wu Y, Shu Q, Niu J, Chen Q, Zhang X. The Lipoteichoic Acid-Related Proteins YqgS and LafA Contribute to the Resistance of Listeria monocytogenes to Nisin. Microbiol Spectr 2022; 10:e0209521. [PMID: 35196823 PMCID: PMC8865564 DOI: 10.1128/spectrum.02095-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a major pathogen contributing to foodborne outbreaks with high mortality. Nisin, a natural antimicrobial, has been widely used as a food preservative. However, the mechanisms of L. monocytogenes involved in nisin resistance have not yet to be fully defined. A mariner transposon library was constructed in L. monocytogenes, leading to the identification of 99 genes associated with the innate resistance to nisin via Transposon sequencing (Tn-seq) analysis. To validate the accuracy of the Tn-seq results, we constructed five mutants (ΔyqgS, ΔlafA, ΔvirR, ΔgtcA, and Δlmo1464) in L. monocytogenes. The results revealed that yqgS and lafA, the lipoteichoic acid-related genes, were essential for resistance to nisin, while the gtcA and lmo1464 mutants showed substantially enhanced nisin resistance. Densely wrinkled, collapsed surface and membrane breakdown were shown on ΔyqgS and ΔlafA mutants under nisin treatment. Deletion of yqgS and lafA altered the surface charge, and decreased the resistance to general stress conditions and cell envelope-acting antimicrobials. Furthermore, YqgS and LafA are required for biofilm formation and cell invasion of L. monocytogenes. Collectively, these results reveal novel mechanisms of nisin resistance in L. monocytogenes and may provide unique targets for the development of food-grade inhibitors for nisin-resistant foodborne pathogens. IMPORTANCE Listeria monocytogenes is an opportunistic Gram-positive pathogen responsible for listeriosis, and is widely present in a variety of foods including ready-to-eat foods, meat, and dairy products. Nisin is the only licensed lantibiotic by the FDA for use as a food-grade inhibitor in over 50 countries. A prior study suggests that L. monocytogenes are more resistant than other Gram-positive pathogens in nisin-mediated bactericidal effects. However, the mechanisms of L. monocytogenes involved in nisin resistance have not yet to be fully defined. Here, we used a mariner transposon library to identify nisin-resistance-related genes on a genome-wide scale via transposon sequencing. We found, for the first time, that YqgS and LafA (Lipoteichoic acid-related proteins) are required for resistance to nisin. Subsequently, we investigated the roles of YqgS and LafA in L. monocytogenes stress resistance, antimicrobial resistance, biofilm formation, and virulence in mammalian cells.
Collapse
Affiliation(s)
- Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Qin Shu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jianrui Niu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- College of Agriculture and Forestry, Linyi University, Linyi, China
| |
Collapse
|
5
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
6
|
Muchaamba F, Wambui J, Stephan R, Tasara T. Cold Shock Proteins Promote Nisin Tolerance in Listeria monocytogenes Through Modulation of Cell Envelope Modification Responses. Front Microbiol 2022; 12:811939. [PMID: 35003042 PMCID: PMC8740179 DOI: 10.3389/fmicb.2021.811939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes continues to be a food safety challenge owing to its stress tolerance and virulence traits. Several listeriosis outbreaks have been linked to the consumption of contaminated ready-to-eat food products. Numerous interventions, including nisin application, are presently employed to mitigate against L. monocytogenes risk in food products. In response, L. monocytogenes deploys several defense mechanisms, reducing nisin efficacy, that are not yet fully understood. Cold shock proteins (Csps) are small, highly conserved nucleic acid-binding proteins involved in several gene regulatory processes to mediate various stress responses in bacteria. L. monocytogenes possesses three csp gene paralogs; cspA, cspB, and cspD. Using a panel of single, double, and triple csp gene deletion mutants, the role of Csps in L. monocytogenes nisin tolerance was examined, demonstrating their importance in nisin stress responses of this bacterium. Without csp genes, a L. monocytogenes ΔcspABD mutant displayed severely compromised growth under nisin stress. Characterizing single (ΔcspA, ΔcspB, and ΔcspD) and double (ΔcspBD, ΔcspAD, and ΔcspAB) csp gene deletion mutants revealed a hierarchy (cspD > cspB > cspA) of importance in csp gene contributions toward the L. monocytogenes nisin tolerance phenotype. Individual eliminations of either cspA or cspB improved the nisin stress tolerance phenotype, suggesting that their expression has a curbing effect on the expression of nisin resistance functions through CspD. Gene expression analysis revealed that Csp deficiency altered the expression of DltA, MprF, and penicillin-binding protein-encoding genes. Furthermore, the ΔcspABD mutation induced an overall more electronegative cell surface, enhancing sensitivity to nisin and other cationic antimicrobials as well as the quaternary ammonium compound disinfectant benzalkonium chloride. These observations demonstrate that the molecular functions of Csps regulate systems important for enabling the constitution and maintenance of an optimal composed cell envelope that protects against cell-envelope-targeting stressors, including nisin. Overall, our data show an important contribution of Csps for L. monocytogenes stress protection in food environments where antimicrobial peptides are used. Such knowledge can be harnessed in the development of better L. monocytogenes control strategies. Furthermore, the potential that Csps have in inducing cross-protection must be considered when combining hurdle techniques or using them in a series.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| |
Collapse
|
7
|
Her HL, Lin PT, Wu YW. PangenomeNet: a pan-genome-based network reveals functional modules on antimicrobial resistome for Escherichia coli strains. BMC Bioinformatics 2021; 22:548. [PMID: 34758735 PMCID: PMC8579557 DOI: 10.1186/s12859-021-04459-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Discerning genes crucial to antimicrobial resistance (AMR) mechanisms is becoming more and more important to accurately and swiftly identify AMR pathogenic strains. Pangenome-wide association studies (e.g. Scoary) identified numerous putative AMR genes. However, only a tiny proportion of the putative resistance genes are annotated by AMR databases or Gene Ontology. In addition, many putative resistance genes are of unknown function (termed hypothetical proteins). An annotation tool is crucially needed in order to reveal the functional organization of the resistome and expand our knowledge of the AMR gene repertoire. RESULTS We developed an approach (PangenomeNet) for building co-functional networks from pan-genomes to infer functions for hypothetical genes. Using Escherichia coli as an example, we demonstrated that it is possible to build co-functional network from its pan-genome using co-inheritance, domain-sharing, and protein-protein-interaction information. The investigation of the network revealed that it fits the characteristics of biological networks and can be used for functional inferences. The subgraph consisting of putative meropenem resistance genes consists of clusters of stress response genes and resistance gene acquisition pathways. Resistome subgraphs also demonstrate drug-specific AMR genes such as beta-lactamase, as well as functional roles shared among multiple classes of drugs, mostly in the stress-related pathways. CONCLUSIONS By demonstrating the idea of pan-genome-based co-functional network on the E. coli species, we showed that the network can infer functional roles of the genes, including those without functional annotations, and provides holistic views on the putative antimicrobial resistomes. We hope that the pan-genome network idea can help formulate hypothesis for targeted experimental works.
Collapse
Affiliation(s)
- Hsuan-Lin Her
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Po-Ting Lin
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, No.43, Keelung Rd., Sec.4, Da'an Dist., Taipei City, 10609, Taiwan.
- Center for Cyber-Physical System Innovation, National Taiwan University of Science and Technology, Taipei, 10609, Taiwan.
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250, Wuxing St., Sinyi District, Taipei, 11031, Taiwan.
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
8
|
Wiktorczyk-Kapischke N, Skowron K, Grudlewska-Buda K, Wałecka-Zacharska E, Korkus J, Gospodarek-Komkowska E. Adaptive Response of Listeria monocytogenes to the Stress Factors in the Food Processing Environment. Front Microbiol 2021; 12:710085. [PMID: 34489900 PMCID: PMC8417233 DOI: 10.3389/fmicb.2021.710085] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Listeria monocytogenes are Gram-positive, facultatively anaerobic, non-spore-forming bacteria that easily adapt to changing environmental conditions. The ability to grow at a wide range of temperatures, pH, and salinity determines the presence of the pathogen in water, sewage, soil, decaying vegetation, and animal feed. L. monocytogenes is an etiological factor of listeriosis, especially dangerous for the elderly, pregnant women, and newborns. The major source of L. monocytogenes for humans is food, including fresh and smoked products. Its high prevalence in food is associated with bacterial adaptation to the food processing environment (FPE). Since the number of listeriosis cases has been progressively increasing an efficient eradication of the pathogen from the FPE is crucial. Understanding the mechanisms of bacterial adaptation to environmental stress will significantly contribute to developing novel, effective methods of controlling L. monocytogenes in the food industry.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jakub Korkus
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
9
|
Nowak J, Visnovsky SB, Pitman AR, Cruz CD, Palmer J, Fletcher GC, Flint S. Biofilm Formation by Listeria monocytogenes 15G01, a Persistent Isolate from a Seafood-Processing Plant, Is Influenced by Inactivation of Multiple Genes Belonging to Different Functional Groups. Appl Environ Microbiol 2021; 87:e02349-20. [PMID: 33741610 PMCID: PMC8117777 DOI: 10.1128/aem.02349-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen that results in a high rate of mortality in sensitive and immunocompromised people. Contamination of food with L. monocytogenes is thought to occur during food processing, most often as a result of the pathogen producing a biofilm that persists in the environment and acting as the source for subsequent dispersal of cells onto food. A survey of seafood-processing plants in New Zealand identified the persistent strain 15G01, which has a high capacity to form biofilms. In this study, a transposon library of L. monocytogenes 15G01 was screened for mutants with altered biofilm formation, assessed by a crystal violet assay, to identify genes involved in biofilm formation. This screen identified 36 transposants that showed a significant change in biofilm formation compared to the wild type. The insertion sites were in 27 genes, 20 of which led to decreased biofilm formation and seven to an increase. Two insertions were in intergenic regions. Annotation of the genes suggested that they are involved in diverse cellular processes, including stress response, autolysis, transporter systems, and cell wall/membrane synthesis. Analysis of the biofilms produced by the transposants using scanning electron microscopy and fluorescence microscopy showed notable differences in the structure of the biofilms compared to the wild type. In particular, inactivation of uvrB and mltD produced coccoid-shaped cells and elongated cells in long chains, respectively, and the mgtB mutant produced a unique biofilm with a sandwich structure which was reversed to the wild-type level upon magnesium addition. The mltD transposant was successfully complemented with the wild-type gene, whereas the phenotypes were not or only partially restored for the remaining mutants.IMPORTANCE The major source of contamination of food with Listeria monocytogenes is thought to be due to biofilm formation and/or persistence in food-processing plants. By establishing as a biofilm, L. monocytogenes cells become harder to eradicate due to their increased resistance to environmental threats. Understanding the genes involved in biofilm formation and their influence on biofilm structure will help identify new ways to eliminate harmful biofilms in food processing environments. To date, multiple genes have been identified as being involved in biofilm formation by L. monocytogenes; however, the exact mechanism remains unclear. This study identified four genes associated with biofilm formation by a persistent strain. Extensive microscopic analysis illustrated the effect of the disruption of mgtB, clsA, uvrB, and mltD and the influence of magnesium on the biofilm structure. The results strongly suggest an involvement in biofilm formation for the four genes and provide a basis for further studies to analyze gene regulation to assess the specific role of these biofilm-associated genes.
Collapse
Affiliation(s)
- Jessika Nowak
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Sandra B Visnovsky
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Andrew R Pitman
- The Foundation for Arable Research, Christchurch, New Zealand
| | - Cristina D Cruz
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jon Palmer
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Steve Flint
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
van Gijtenbeek LA, Eckhardt TH, Herrera-Domínguez L, Brockmann E, Jensen K, Geppel A, Nielsen KF, Vindeloev J, Neves AR, Oregaard G. Gene-Trait Matching and Prevalence of Nisin Tolerance Systems in Lactococus lactis. Front Bioeng Biotechnol 2021; 9:622835. [PMID: 33748081 PMCID: PMC7965974 DOI: 10.3389/fbioe.2021.622835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis cheese starter cultures typically contain a mix of many strains and may include variants that produce and/or tolerate the antimicrobial bacteriocin nisin. Nisin is well-established as an effective agent against several undesirable Gram-positive bacteria in cheese and various other foods. In the current study, we have examined the effect of nisin on 710 individual L. lactis strains during milk fermentations. Changes in milk acidification profiles with and without nisin exposure, ranging from unaltered acidification to loss of acidification, could be largely explained by the type(s) and variants of nisin immunity and nisin degradation genes present, but surprisingly, also by genotypic lineage (L. lactis ssp. cremoris vs. ssp. lactis). Importantly, we identify that nisin degradation by NSR is frequent among L. lactis and therefore likely the main mechanism by which dairy-associated L. lactis strains tolerate nisin. Insights from this study on the strain-specific effect of nisin tolerance and degradation during milk acidification is expected to aid in the design of nisin-compatible cheese starter cultures.
Collapse
|
11
|
Lynch D, Hill C, Field D, Begley M. Inhibition of Listeria monocytogenes by the Staphylococcus capitis - derived bacteriocin capidermicin. Food Microbiol 2020; 94:103661. [PMID: 33279086 DOI: 10.1016/j.fm.2020.103661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Natural methods to control food pathogens are required and bacteriocins have received much interest in this regard. The aim of this study was to investigate the ability of the novel bacteriocin capidermicin to inhibit Listeria monocytogenes. Agar-based deferred antagonism assays were carried out with the capidermicin producer against 17 L. monocytogenes strains and large zones of inhibition were observed for 12 strains. Minimal inhibitory concentration assays performed with purified capidermicin peptide revealed MIC values between 680 nM and 11 μM. Biofilm assays were performed with five L. monocytogenes strains. Addition of capidermicin prevented biofilm formation by one strain and could remove pre-established biofilms of all five strains. Broth based growth experiments demonstrated that addition of capidermicin resulted in an extended lag phase of both L. monocytogenes strains tested. Kill-curve experiments showed that capidermicin was able to potentiate the anti-Listeria effects of the lantibiotic nisin. This enhanced killing by the combination of both peptides was also observed in model food systems (cottage cheese and chocolate milk). In summary, we show that capidermicin can inhibit L. monocytogenes and warrants further investigation as a potential natural agent for the control of this pathogen.
Collapse
Affiliation(s)
- David Lynch
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - Máire Begley
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
12
|
Wambui J, Eshwar AK, Aalto-Araneda M, Pöntinen A, Stevens MJA, Njage PMK, Tasara T. The Analysis of Field Strains Isolated From Food, Animal and Clinical Sources Uncovers Natural Mutations in Listeria monocytogenes Nisin Resistance Genes. Front Microbiol 2020; 11:549531. [PMID: 33123101 PMCID: PMC7574537 DOI: 10.3389/fmicb.2020.549531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbUG77S and PBPB3V240F amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariella Aalto-Araneda
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Patrick M K Njage
- Research Group for Genomic Epidemiology, Division for Global Surveillance, National Food Institute, Technical University of Denmark, Kengens Lyngby, Denmark
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:E639. [PMID: 32349409 PMCID: PMC7285073 DOI: 10.3390/microorganisms8050639] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alexis Simons
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Institut Micalis, équipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay—INRAE—AgroParisTech, 92296 Châtenay-Malabry, France
| | - Kamel Alhanout
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform, Faculté de Pharmacie, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
14
|
Szendy M, Kalkhof S, Bittrich S, Kaiser F, Leberecht C, Labudde D, Noll M. Structural change in GadD2 of Listeria monocytogenes field isolates supports nisin resistance. Int J Food Microbiol 2019; 305:108240. [PMID: 31202151 DOI: 10.1016/j.ijfoodmicro.2019.108240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/15/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
The lantibiotic nisin is used as a food additive to effectively inactivate a broad spectrum of Gram-positive bacteria such as Listeria monocytogenes. In total, 282 L. monocytogenes field isolates from German ready-to-eat food products, food-processing environments and patient samples and 39 Listeria reference strains were evaluated for their susceptibility to nisin. The MIC90 value was <1500 IU ml-1. Whole genome sequences (WGS) of four nisin susceptible (NS; growth <200 IU ml-1) and two nisin resistant L. monocytogenes field isolates (NR; growth >1500 IU ml-1) of serotype IIa were analyzed for DNA sequence variants (DSVs) in genes putatively associated with NR and its regulation. WGS of NR differed from NS in the gadD2 gene encoding for the glutamate decarboxylase system (GAD). Moreover, homology modeling predicted a protein structure of GadD2 in NR that promoted a less pH dependent GAD activity and may therefore be beneficial for nisin resistance. Likewise NR had a significant faster growth rate compared to NS in presence of nisin at pH 7. In conclusion, results contributed to ongoing debate that a genetic shift in GAD supports NR state.
Collapse
Affiliation(s)
- Maik Szendy
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, D-96450 Coburg, Germany
| | - Stefan Kalkhof
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, D-96450 Coburg, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Protein Biomarker Unit, Perlickstr. 1, D-04103 Leipzig, Germany
| | - Sebastian Bittrich
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany; Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, D-01307 Dresden, Germany
| | - Florian Kaiser
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany; Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, D-01307 Dresden, Germany
| | - Christoph Leberecht
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany; Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, D-01307 Dresden, Germany
| | - Dirk Labudde
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany
| | - Matthias Noll
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, D-96450 Coburg, Germany.
| |
Collapse
|
15
|
Yu T, Jiang X, Zhang Y, Ji S, Gao W, Shi L. Effect of Benzalkonium Chloride Adaptation on Sensitivity to Antimicrobial Agents and Tolerance to Environmental Stresses in Listeria monocytogenes. Front Microbiol 2018; 9:2906. [PMID: 30546352 PMCID: PMC6279922 DOI: 10.3389/fmicb.2018.02906] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023] Open
Abstract
Listeria monocytogenes is an important food-borne pathogen that can persist in food processing environments and thus contaminate food products. Benzalkonium chloride (BC) is a common disinfectant widely used in food industry. Selective pressure associated with exposure to BC may result in adaptation to this agent in L. monocytogenes. In this study, the effect of BC adaptation on susceptibility to antimicrobial agents and tolerance to environmental stresses, as well as the role of efflux pumps in BC adaptation were investigated in Listeria monocytogenes. Exposure of L. monocytogenes to progressively increasing concentrations of BC led to adaptation not only to BC but also to several other antimicrobial agents with different modes of action, including cefotaxime, cephalothin, ciprofloxacin, and ethidium bromide (EtBr), indicating that the disinfectant BC has the ability to select for antibiotic resistance. Reserpine, an efflux pump inhibitor, reduced minimum inhibitory concentrations (MICs) of cephalosporins, ciprofloxacin, and EtBr in BC adapted strains, indicating that efflux pumps are involved in cross-adaptation to these antimicrobial agents. Our results showed that expression levels of the efflux pump MdrL in the BC adapted strains increased significantly relative to the corresponding wild-type strains (P < 0.05), with the highest increase in one BC adapted strain named HL06BCA. Moreover, the knockout mutant HL06BCAΔmdrL showed impaired growth compared to that of HL06BCA when exposed to 2 μg/ml of BC. It suggests that efflux pump MdrL is associated with BC adaptation in L. monocytogenes. However, we did not find mdrL to be associated with cross-adaptation to cephalosporins, ciprofloxacin, and EtBr in HL06BCA. Additionally, increased sensitivity to acid, alkali, osmotic, ethanol, and oxidative stresses was observed in most strains after repeated exposure to BC. These results suggest rotation of different disinfectant is helpful to maintain high effectiveness of BC toward L. monocytogenes and ethanol and hydrogen peroxide are at least the appropriate candidates.
Collapse
Affiliation(s)
- Tao Yu
- Department of Life Science and Technology, Xinxiang University, Xinxiang, China
| | - Xiaobing Jiang
- Department of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yige Zhang
- Department of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shengdong Ji
- Department of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wujun Gao
- Department of Life Sciences, Henan Normal University, Xinxiang, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Bucur FI, Grigore-Gurgu L, Crauwels P, Riedel CU, Nicolau AI. Resistance of Listeria monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments. Front Microbiol 2018; 9:2700. [PMID: 30555426 PMCID: PMC6282059 DOI: 10.3389/fmicb.2018.02700] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a human food-borne facultative intracellular pathogen that is resistant to a wide range of stress conditions. As a consequence, L. monocytogenes is extremely difficult to control along the entire food chain from production to storage and consumption. Frequent and recent outbreaks of L. monocytogenes infections illustrate that current measures of decontamination and preservation are suboptimal to control L. monocytogenes in food. In order to develop efficient measures to prevent contamination during processing and control growth during storage of food it is crucial to understand the mechanisms utilized by L. monocytogenes to tolerate the stress conditions in food matrices and food processing environments. Food-related stress conditions encountered by L. monocytogenes along the food chain are acidity, oxidative and osmotic stress, low or high temperatures, presence of bacteriocins and other preserving additives, and stresses as a consequence of applying alternative decontamination and preservation technologies such high hydrostatic pressure, pulsed and continuous UV light, pulsed electric fields (PEF). This review is aimed at providing a summary of the current knowledge on the response of L. monocytogenes toward these stresses and the mechanisms of stress resistance employed by this important food-borne bacterium. Circumstances when L. monocytogenes cells become more sensitive or more resistant are mentioned and existence of a cross-resistance when multiple stresses are present is pointed out.
Collapse
Affiliation(s)
- Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | | | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| |
Collapse
|
17
|
Castellano P, Peña N, Ibarreche MP, Carduza F, Soteras T, Vignolo G. Antilisterial efficacy of Lactobacillus bacteriocins and organic acids on frankfurters. Impact on sensory characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:689-697. [PMID: 29391633 PMCID: PMC5785394 DOI: 10.1007/s13197-017-2979-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
Dipping solutions containing bacteriocins produced by Lactobacillus curvatus CRL705 and Lactobacillus sakei CRL1862 (Bact705/1862), nisin and organic acids (lactic acid, LA; acetic acid, AA) were tested alone or in combination against Listeria monocytogenes inoculated by immersion on vacuum-packaged frankfurters stored at 10 °C during 36 days. LA/AA solution (2.5% v/v each) reduced pathogen population by 1.50 log10 CFU/ml during storage. Semi-purified Bact705/1862 prevented L. monocytogenes growth, while nisin was not able to avoid its regrowth after 20 days. The combined addition of Bact705/1862 + LA/AA was the most effective approach for pathogen reduction below detection level from day 6 to final storage. Frankfurters treated with Bact705/1862 + LA/AA compared to fresh-purchased samples did not show significant differences in flavor, juiciness, color intensity and overall preference at 22 days-storage at 5 °C. Meat processors should not only validate the antimicrobial efficacy of combined treatments but also their sensory impact on the product, which is directly related to consumer acceptability.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Natalia Peña
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC Tucumán, Argentina
| | | | - Fernando Carduza
- Instituto de Tecnología de Alimentos, CIA, INTA, CC 77, B1708WAB Morón, Buenos Aires Argentina
| | - Trinidad Soteras
- Instituto de Tecnología de Alimentos, CIA, INTA, CC 77, B1708WAB Morón, Buenos Aires Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC Tucumán, Argentina
| |
Collapse
|
18
|
Vivant AL, Desneux J, Pourcher AM, Piveteau P. Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Lagoon and Soil Matrices Associated with a Piggery Environment: Comparison of Expression Profiles. Front Microbiol 2017; 8:1811. [PMID: 29018416 PMCID: PMC5623016 DOI: 10.3389/fmicb.2017.01811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding how Listeria monocytogenes, the causative agent of listeriosis, adapts to the environment is crucial. Adaptation to new matrices requires regulation of gene expression. To determine how the pathogen adapts to lagoon effluent and soil, two matrices where L. monocytogenes has been isolated, we compared the transcriptomes of L. monocytogenes CIP 110868 20 min and 24 h after its transfer to effluent and soil extract. Results showed major variations in the transcriptome of L. monocytogenes in the lagoon effluent but only minor modifications in the soil. In both the lagoon effluent and in the soil, genes involved in mobility and chemotaxis and in the transport of carbohydrates were the most frequently represented in the set of genes with higher transcript levels, and genes with phage-related functions were the most represented in the set of genes with lower transcript levels. A modification of the cell envelop was only found in the lagoon environment. Finally, the differential analysis included a large proportion of regulators, regulons, and ncRNAs.
Collapse
Affiliation(s)
- Anne-Laure Vivant
- UR OPAALE, IRSTEA, Rennes, France
- Université Bretagne Loire, Rennes, France
| | - Jeremy Desneux
- UR OPAALE, IRSTEA, Rennes, France
- Université Bretagne Loire, Rennes, France
| | | | - Pascal Piveteau
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
19
|
Wu S, Yu PL, Flint S. Persister cell formation of Listeria monocytogenes in response to natural antimicrobial agent nisin. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Abstract
Bacteriophage vB_Eco_slurp01 was isolated from porcine feces using Escherichia coli MG1655 as a host. With a genome size of 348 kb, vB_Eco_slurp01 is one of the largest bacteriophages isolated to date.
Collapse
|
21
|
Listeria monocytogenes – An examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiol 2016. [DOI: 10.1016/j.fm.2014.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Comparison of the Potency of the Lipid II Targeting Antimicrobials Nisin, Lacticin 3147 and Vancomycin Against Gram-Positive Bacteria. Probiotics Antimicrob Proteins 2016; 4:108-15. [PMID: 26781852 DOI: 10.1007/s12602-012-9095-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
While nisin (lantibiotic), lacticin 3147 (lantibiotic) and vancomycin (glycopeptides) are among the best studied lipid II-binding antimicrobials, their relative activities have never been compared. Nisin and lacticin 3147 have been employed/investigated primarily as food preservatives, although they do have potential in terms of veterinary and clinical applications. Vancomycin is used exclusively in clinical therapy. We reveal a higher potency for lacticin 3147 (MIC 0.95-3.8 μg/ml) and vancomycin (MIC 0.78-1.56 μg/ml) relative to that of nisin (MIC 6.28-25.14 μg/ml) against the food-borne pathogen Listeria monocytogenes. A comparison of the activity of the three antimicrobials against nisin resistance mutants of L. monocytogenes also reveals that their susceptibility to vancomycin and lacticin 3147 changed only slightly or not at all. A further assessment of relative activity against a selection of Bacillus cereus, Enterococcus and Staphylococcus aureus targets revealed that vancomycin MICs consistently ranged between 0.78 and 1.56 μg/ml against all but one strain. Lacticin 3147 was found to be more effective than nisin against B. cereus (lacticin 3147 MIC 1.9-3.8 μg/ml; nisin MIC 4.1-16.7 μg/ml) and E. faecium and E. faecalis targets (lacticin 3147 MIC from 1.9 to 3.8 μg/ml; nisin MIC ≥8.3 μg/ml). The greater effectiveness of lacticin 3147 is even more impressive when expressed as molar values. However, in agreement with the previous reports, nisin was the more effective of the two lantibiotics against S. aureus strains. This study highlights that in many instances the antimicrobial activity of these leading lantibiotics are comparable with that of vancomycin and emphasizes their particular value with respect to use in situations including foods and veterinary medicine, where the use of vancomycin is not permitted.
Collapse
|
23
|
Krawczyk-Balska A, Markiewicz Z. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol 2015; 120:251-65. [PMID: 26509460 DOI: 10.1111/jam.12989] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022]
Abstract
Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures.
Collapse
Affiliation(s)
- A Krawczyk-Balska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Z Markiewicz
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Huang E, Yousef AE. Biosynthesis of paenibacillin, a lantibiotic with N-terminal acetylation, by Paenibacillus polymyxa. Microbiol Res 2015; 181:15-21. [DOI: 10.1016/j.micres.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/01/2022]
|
25
|
Kang J, Wiedmann M, Boor KJ, Bergholz TM. VirR-Mediated Resistance of Listeria monocytogenes against Food Antimicrobials and Cross-Protection Induced by Exposure to Organic Acid Salts. Appl Environ Microbiol 2015; 81:4553-62. [PMID: 25911485 PMCID: PMC4475887 DOI: 10.1128/aem.00648-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Formulations of ready-to-eat (RTE) foods with antimicrobial compounds constitute an important safety measure against foodborne pathogens such as Listeria monocytogenes. While the efficacy of many commercially available antimicrobial compounds has been demonstrated in a variety of foods, the current understanding of the resistance mechanisms employed by L. monocytogenes to counteract these stresses is limited. In this study, we screened in-frame deletion mutants of two-component system response regulators associated with the cell envelope stress response for increased sensitivity to commercially available antimicrobial compounds (nisin, lauric arginate, ε-polylysine, and chitosan). A virR deletion mutant showed increased sensitivity to all antimicrobials and significantly greater loss of membrane integrity when exposed to nisin, lauric arginate, or ε-polylysine (P < 0.05). The VirR-regulated operon, dltABCD, was shown to be the key contributor to resistance against these antimicrobial compounds, whereas another VirR-regulated gene, mprF, displayed an antimicrobial-specific contribution to resistance. An experiment with a β-glucuronidase (GUS) reporter fusion with the dlt promoter indicated that nisin does not specifically induce VirR-dependent upregulation of dltABCD. Lastly, prior exposure of L. monocytogenes parent strain H7858 and the ΔvirR mutant to 2% potassium lactate enhanced subsequent resistance against nisin and ε-polylysine (P < 0.05). These data demonstrate that VirRS-mediated regulation of dltABCD is the major resistance mechanism used by L. monocytogenes against cell envelope-damaging food antimicrobials. Further, the potential for cross-protection induced by other food-related stresses (e.g., organic acids) needs to be considered when applying these novel food antimicrobials as a hurdle strategy for RTE foods.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Teresa M Bergholz
- Department of Food Science, Cornell University, Ithaca, New York, USA Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
26
|
Santos LSD, Antunes CA, Santos CSD, Pereira JAA, Sabbadini PS, Luna MDGD, Azevedo V, Hirata Júnior R, Burkovski A, Asad LMBDO, Mattos-Guaraldi AL. Corynebacterium diphtheriae putative tellurite-resistance protein (CDCE8392_0813) contributes to the intracellular survival in human epithelial cells and lethality of Caenorhabditis elegans. Mem Inst Oswaldo Cruz 2015; 110:662-8. [PMID: 26107188 PMCID: PMC4569831 DOI: 10.1590/0074-02760140479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/15/2015] [Indexed: 11/29/2022] Open
Abstract
Corynebacterium diphtheriae, the aetiologic agent of diphtheria,
also represents a global medical challenge because of the existence of invasive
strains as causative agents of systemic infections. Although tellurite
(TeO32-) is toxic to most microorganisms, TeO32--resistant
bacteria, including C. diphtheriae, exist in
nature. The presence of TeO32--resistance (TeR)
determinants in pathogenic bacteria might provide selective advantages in the natural
environment. In the present study, we investigated the role of the putative
TeR determinant (CDCE8392_813gene) in the virulence
attributes of diphtheria bacilli. The disruption of CDCE8392_0813 gene expression in
the LDCIC-L1 mutant increased susceptibility to TeO32- and reactive oxygen
species (hydrogen peroxide), but not to other antimicrobial agents. The LDCIC-L1
mutant also showed a decrease in both the lethality of Caenorhabditis elegans
and the survival inside of human epithelial cells compared to wild-type
strain. Conversely, the haemagglutinating activity and adherence to and formation of
biofilms on different abiotic surfaces were not regulated through the CDCE8392_0813
gene. In conclusion, the CDCE8392_813 gene contributes to the TeR and
pathogenic potential of C. diphtheriae.
Collapse
Affiliation(s)
- Louisy Sanches Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Camila Azevedo Antunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Cintia Silva Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - José Augusto Adler Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Priscila Soares Sabbadini
- Laboratório de Doenças Bacterianas, Centro de Ciências da Saúde, Centro Universitário do Maranhão, São Luís, MA, BR
| | - Maria das Graças de Luna
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Raphael Hirata Júnior
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Andreas Burkovski
- Lehrstuhl fuer Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, DE
| | - Lídia Maria Buarque de Oliveira Asad
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Ana Luíza Mattos-Guaraldi
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| |
Collapse
|
27
|
Complete Genome Sequence of Listeria monocytogenes Strain DPC6895, a Serotype 1/2b Isolate from Bovine Raw Milk. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00629-15. [PMID: 26067969 PMCID: PMC4463533 DOI: 10.1128/genomea.00629-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen and is the causative agent of listeriosis among humans and animals. The draft genome sequence of L. monocytogenes DPC6895, a serotype 1/2b strain isolated from the raw milk of a cow with subclinical bovine mastitis, is reported.
Collapse
|
28
|
Abstract
The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry.
Collapse
Affiliation(s)
- Lorraine A Draper
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
29
|
Bastos MDCDF, Coelho MLV, Santos OCDS. Resistance to bacteriocins produced by Gram-positive bacteria. MICROBIOLOGY-SGM 2014; 161:683-700. [PMID: 25406453 DOI: 10.1099/mic.0.082289-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed.
Collapse
Affiliation(s)
- Maria do Carmo de Freire Bastos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, sala I-1-59, Rio de Janeiro
| | - Marcus Lívio Varella Coelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, sala I-1-59, Rio de Janeiro Instituto Nacional da Propriedade Industrial, INPI, Rio de Janeiro, Brazil
| | - Olinda Cabral da Silva Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, sala I-1-59, Rio de Janeiro
| |
Collapse
|
30
|
Krawczyk-Balska A, Korsak D, Popowska M. The surface protein Lmo1941 with LysM domain influences cell wall structure and susceptibility of Listeria monocytogenes to cephalosporins. FEMS Microbiol Lett 2014; 357:175-83. [PMID: 24974853 DOI: 10.1111/1574-6968.12518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/04/2014] [Accepted: 06/20/2014] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium causing rare but dangerous cases of disease in humans and animals. The β-lactams penicillin G and ampicillin are the antibiotics of choice in the treatment of listeriosis. Recently, lmo1941, encoding a surface protein of L. monocytogenes with unknown function, was identified as a gene transcriptionally upregulated under penicillin G pressure. In this study, the effect of lmo1941 knockout on the susceptibility of L. monocytogenes to β-lactams was examined. Deletion mutant in lmo1941 was constructed and subjected to studies, which revealed that the deletion of lmo1941 had no effect on susceptibility and tolerance to penicillin G and ampicillin but resulted, however, in increased susceptibility of L. monocytogenes to several cephalosporins. Subsequently, the potential effect of lmo1941 mutation on the cell wall of L. monocytogenes was investigated. The analysis revealed quantitative changes in the muropeptide profile of peptidoglycan and a decrease in density of the high-density zone of cell wall of the mutant strain. Both these changes were observed in cells taken from the stationary phase. These results indicate that the surface protein Lmo1941 affects peptidoglycan composition and cell wall structure of L. monocytogenes in the stationary phase of growth.
Collapse
Affiliation(s)
- Agata Krawczyk-Balska
- Faculty of Biology, Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
31
|
Rychli K, Müller A, Zaiser A, Schoder D, Allerberger F, Wagner M, Schmitz-Esser S. Genome sequencing of Listeria monocytogenes "Quargel" listeriosis outbreak strains reveals two different strains with distinct in vitro virulence potential. PLoS One 2014; 9:e89964. [PMID: 24587155 PMCID: PMC3935953 DOI: 10.1371/journal.pone.0089964] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/25/2014] [Indexed: 12/18/2022] Open
Abstract
A large listeriosis outbreak occurred in Austria, Germany and the Czech Republic in 2009 and 2010. The outbreak was traced back to a traditional Austrian curd cheese called “Quargel” which was contaminated with two distinct serovar 1/2a Listeria monocytogenes strains (QOC1 and QOC2). In this study we sequenced and analysed the genomes of both outbreak strains in order to investigate the extent of genetic diversity between the two strains belonging to MLST sequence types 398 (QOC2) and 403 (QOC1). Both genomes are highly similar, but also display distinct properties: The QOC1 genome is approximately 74 kbp larger than the QOC2 genome. In addition, the strains harbour 93 (QOC1) and 45 (QOC2) genes encoding strain-specific proteins. A 21 kbp region showing highest similarity to plasmid pLMIV encoding three putative internalins is integrated in the QOC1 genome. In contrast to QOC1, strain QOC2 harbours a vip homologue, which encodes a LPXTG surface protein involved in cell invasion. In accordance, in vitro virulence assays revealed distinct differences in invasion efficiency and intracellular proliferation within different cell types. The higher virulence potential of QOC1 in non-phagocytic cells may be explained by the presence of additional internalins in the pLMIV-like region, whereas the higher invasion capability of QOC2 into phagocytic cells may be due to the presence of a vip homologue. In addition, both strains show differences in stress-related gene content. Strain QOC1 encodes a so-called stress survival islet 1, whereas strain QOC2 harbours a homologue of the uncharacterized LMOf2365_0481 gene. Consistently, QOC1 shows higher resistance to acidic, alkaline and gastric stress. In conclusion, our results show that strain QOC1 and QOC2 are distinct and did not recently evolve from a common ancestor.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anneliese Müller
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Zaiser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dagmar Schoder
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Molecularbiological Food Analytics, University of Veterinary Medicine, Vienna, Austria
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
32
|
Novel role for the yceGH tellurite resistance genes in the pathogenesis of Bacillus anthracis. Infect Immun 2013; 82:1132-40. [PMID: 24366250 DOI: 10.1128/iai.01614-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, relies on multiple virulence factors to subvert the host immune defense. Using Caenorhabditis elegans as an infection model, we screened approximately 5,000 transposon mutants of B. anthracis Sterne for decreased virulence. One of the attenuated mutants resulted in loss of expression of yceG and yceH, the last two genes in a six-gene cluster of tellurite resistance genes. We generated an analogous insertional mutant to confirm the phenotype and characterize the role of yceGH in resistance to host defenses. Loss of yceGH rendered the mutants more sensitive to tellurite toxicity as well as to host defenses such as reactive oxygen species and the cathelicidin family of antimicrobial peptides. Additionally, we see decreased survival in mammalian models of infection, including human whole blood and in mice. We identify a novel role for the yceGH genes in B. anthracis Sterne virulence and suggest that C. elegans is a useful infection model to study anthrax pathogenesis.
Collapse
|
33
|
Reichert B, Dornbusch AJ, Arguello J, Stanley SE, Lang KM, Lostroh CP, Daugherty MA. Acinetobacter baylyi long-term stationary-phase protein StiP is a protease required for normal cell morphology and resistance to tellurite. Can J Microbiol 2013; 59:726-36. [PMID: 24206355 DOI: 10.1139/cjm-2013-0517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the Acinetobacter baylyi gene ACIAD1960, known from previous work to be expressed during long-term stationary phase. The protein encoded by this gene had been annotated as a Conserved Hypothetical Protein, surrounded by putative tellurite resistance ("Ter") proteins. Sequence analysis suggested that the protein belongs to the DUF1796 putative papain-like protease family. Here, we show that the purified protein, subsequently named StiP, has cysteine protease activity. Deletion of stiP causes hypersensitivity to tellurite, altered population dynamics during long-term batch culture, and most strikingly, dramatic alteration of normal cell morphology. StiP and associated Ter proteins (the StiP-Ter cluster) are therefore important for regulating cell morphology, likely in response to oxidative damage or depletion of intracellular thiol pools, triggered artificially by tellurite exposure. Our finding has broad significance because while tellurite is an extremely rare compound in nature, oxidative damage, the need to maintain a particular balance of intracellular thiols, and the need to regulate cell morphology are ubiquitous.
Collapse
Affiliation(s)
- Blake Reichert
- a Department of Chemistry and Biochemistry, Colorado College, 14 East Cache La Poudre Avenue, Colorado Springs, CO 80903, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Kingston AW, Liao X, Helmann JD. Contributions of the σ(W) , σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol 2013; 90:502-18. [PMID: 23980836 PMCID: PMC4067139 DOI: 10.1111/mmi.12380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2013] [Indexed: 11/28/2022]
Abstract
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σ(M) , σ(W) and σ(X) all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge-region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σ(M) to nisin resistance is expression of ltaSa, encoding a stress-activated lipoteichoic acid synthase, and σ(X) functions primarily by activation of the dlt operon controlling d-alanylation of teichoic acids. Together, σ(M) and σ(X) regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σ(W) is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σ(W) contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.
Collapse
Affiliation(s)
| | - Xiaojie Liao
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
35
|
Bergholz TM, Tang S, Wiedmann M, Boor KJ. Nisin resistance of Listeria monocytogenes is increased by exposure to salt stress and is mediated via LiaR. Appl Environ Microbiol 2013; 79:5682-8. [PMID: 23851083 PMCID: PMC3754191 DOI: 10.1128/aem.01797-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/07/2013] [Indexed: 11/20/2022] Open
Abstract
Growth of Listeria monocytogenes on refrigerated, ready-to-eat food is a significant food safety concern. Natural antimicrobials, such as nisin, can be used to control this pathogen on food, but little is known about how other food-related stresses may impact how the pathogen responds to these compounds. Prior work demonstrated that exposure of L. monocytogenes to salt stress at 7°C led to increased expression of genes involved in nisin resistance, including the response regulator liaR. We hypothesized that exposure to salt stress would increase subsequent resistance to nisin and that LiaR would contribute to increased nisin resistance. Isogenic deletion mutations in liaR were constructed in 7 strains of L. monocytogenes, and strains were exposed to 6% NaCl in brain heart infusion broth and then tested for resistance to nisin (2 mg/ml Nisaplin) at 7°C. For the wild-type strains, exposure to salt significantly increased subsequent nisin resistance (P < 0.0001) over innate levels of resistance. Compared to the salt-induced nisin resistance of wild-type strains, ΔliaR strains were significantly more sensitive to nisin (P < 0.001), indicating that induction of LiaFSR led to cross-protection of L. monocytogenes against subsequent inactivation by nisin. Transcript levels of LiaR-regulated genes were induced by salt stress, and lmo1746 and telA were found to contribute to LiaR-mediated salt-induced nisin resistance. These data suggest that environmental stresses similar to those on foods can influence the resistance of L. monocytogenes to antimicrobials such as nisin, and potential cross-protective effects should be considered when selecting and applying control measures for this pathogen on ready-to-eat foods.
Collapse
Affiliation(s)
- Teresa M Bergholz
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA.
| | | | | | | |
Collapse
|
36
|
Anantharaman V, Iyer LM, Aravind L. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. MOLECULAR BIOSYSTEMS 2013; 8:3142-65. [PMID: 23044854 DOI: 10.1039/c2mb25239b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mode of action of the bacterial ter cluster and TelA genes, implicated in natural resistance to tellurite and other xenobiotic toxic compounds, pore-forming colicins and several bacteriophages, has remained enigmatic for almost two decades. Using comparative genomics, sequence-profile searches and structural analysis we present evidence that the ter gene products and their functional partners constitute previously underappreciated, chemical stress response and anti-viral defense systems of bacteria. Based on contextual information from conserved gene neighborhoods and domain architectures, we show that the ter gene products and TelA lie at the center of membrane-linked metal recognition complexes with regulatory ramifications encompassing phosphorylation-dependent signal transduction, RNA-dependent regulation, biosynthesis of nucleoside-like metabolites and DNA processing. Our analysis suggests that the multiple metal-binding and non-binding TerD paralogs and TerC are likely to constitute a membrane-associated complex, which might also include TerB and TerY, and feature several, distinct metal-binding sites. Versions of the TerB domain might also bind small molecule ligands and link the TerD paralog-TerC complex to biosynthetic modules comprising phosphoribosyltransferases (PRTases), ATP grasp amidoligases, TIM-barrel carbon-carbon lyases, and HAD phosphoesterases, which are predicted to synthesize novel nucleoside-like molecules. One of the PRTases is also likely to interact with RNA by means of its Pelota/Ribosomal protein L7AE-like domain. The von Willebrand factor A domain protein, TerY, is predicted to be part of a distinct phosphorylation switch, coupling a protein kinase and a PP2C phosphatase. We show, based on the evidence from numerous conserved gene neighborhoods and domain architectures, that both the TerB and TelA domains have been linked to diverse lipid-interaction domains, such as two novel PH-like and the Coq4 domains, in different bacteria, and are likely to comprise membrane-associated sensory complexes that might additionally contain periplasmic binding-protein-II and OmpA domains. We also show that the TerD and TerB domains and the TerY-associated phosphorylation system are functionally linked to many distinct DNA-processing complexes, which feature proteins with SWI2/SNF2 and RecQ-like helicases, multiple AAA+ ATPases, McrC-N-terminal domain proteins, several restriction endonuclease fold DNases, DNA-binding domains and a type-VII/Esx-like system, which is at the center of a predicted DNA transfer apparatus. These DNA-processing modules and associated genes are predicted to be involved in restriction or suicidal action in response to phages and possibly repairing xenobiotic-induced DNA damage. In some eukaryotes, certain components of the ter system appear to be recruited to function in conjunction with the ubiquitin system and calcium-signaling pathways.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|
37
|
Liu Y, Morgan S, Ream A, Huang L. Gene expression profiling of a nisin-sensitive Listeria monocytogenes Scott A ctsR deletion mutant. J Ind Microbiol Biotechnol 2013; 40:495-505. [PMID: 23494707 DOI: 10.1007/s10295-013-1243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/12/2013] [Indexed: 02/07/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen of significant threat to public health. Nisin is the only bacteriocin that can be used as a food preservative. Due to its antimicrobial activity, it can be used to control L. monocytogenes in food; however, the antimicrobial mechanism of nisin activity against L. monocytogenes is not fully understood. The CtsR (class III stress gene repressor) protein negatively regulates the expression of class III heat shock genes. A spontaneous pressure-tolerant ctsR deletion mutant that showed increased sensitivity to nisin has been identified. Microarray technology was used to monitor the gene expression profiles of the ctsR mutant under treatments with nisin. Compared to the nisin-treated wild type, 113 genes were up-regulated (>2-fold increase) in the ctsR deletion mutant whereas four genes were down-regulated (<-2-fold decrease). The up-regulated genes included genes that encode for ribosomal proteins, membrane proteins, cold-shock domain proteins, translation initiation and elongation factors, cell division, an ATP-dependent ClpC protease, a putative accessory gene regulator protein D, transport and binding proteins, a beta-glucoside-specific phosphotransferase system IIABC component, as well as hypothetical proteins. The down-regulated genes consisted of genes that encode for virulence, a transcriptional regulator, a stress protein, and a hypothetical protein. The gene expression changes determined by microarray assays were confirmed by quantitative real-time PCR analyses. Moreover, an in-frame deletion mutant for one of the induced genes (LMOf2365_1877) was constructed in the wild-type L. monocytogenes F2365 background. ΔLMOf2365_1877 had increased nisin sensitivity compared to the wild-type strain. This study enhances our understanding of how nisin interacts with the ctsR gene product in L. monocytogenes and may contribute to the understanding of the antibacterial mechanisms of nisin.
Collapse
Affiliation(s)
- Yanhong Liu
- Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | |
Collapse
|
38
|
Saturation mutagenesis of lysine 12 leads to the identification of derivatives of nisin A with enhanced antimicrobial activity. PLoS One 2013; 8:e58530. [PMID: 23505531 PMCID: PMC3594307 DOI: 10.1371/journal.pone.0058530] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
It is becoming increasingly apparent that innovations from the “golden age” of antibiotics are becoming ineffective, resulting in a pressing need for novel therapeutics. The bacteriocin family of antimicrobial peptides has attracted much attention in recent years as a source of potential alternatives. The most intensively studied bacteriocin is nisin, a broad spectrum lantibiotic that inhibits Gram-positive bacteria including important food pathogens and clinically relevant antibiotic resistant bacteria. Nisin is gene-encoded and, as such, is amenable to peptide bioengineering, facilitating the generation of novel derivatives that can be screened for desirable properties. It was to this end that we used a site-saturation mutagenesis approach to create a bank of producers of nisin A derivatives that differ with respect to the identity of residue 12 (normally lysine; K12). A number of these producers exhibited enhanced bioactivity and the nisin A K12A producer was deemed of greatest interest. Subsequent investigations with the purified antimicrobial highlighted the enhanced specific activity of this modified nisin against representative target strains from the genera Streptococcus, Bacillus, Lactococcus, Enterococcus and Staphylococcus.
Collapse
|
39
|
Krawczyk-Balska A, Marchlewicz J, Dudek D, Wasiak K, Samluk A. Identification of a ferritin-like protein of Listeria monocytogenes as a mediator of β-lactam tolerance and innate resistance to cephalosporins. BMC Microbiol 2012; 12:278. [PMID: 23176286 PMCID: PMC3534079 DOI: 10.1186/1471-2180-12-278] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/20/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The food-borne pathogen Listeria monocytogenes is the causative agent of listeriosis. The β-lactam antibiotics penicillin G and ampicillin are the current drugs of choice for the treatment of listerial infections. While isolates of L. monocytogenes are susceptible to these antibiotics, their action is only bacteriostatic and consequently, this bacterium is regarded as tolerant to β-lactams. In addition, L. monocytogenes has a high level of innate resistance to the cephalosporin family of β-lactams frequently used to treat sepsis of unknown etiology. Given the high mortality rate of listeriosis despite rational antibiotic therapy, it is important to identify genes that play a role in the susceptibility and tolerance of L. monocytogenes to β-lactams. RESULTS The hly-based promoter trap system was applied to identify penicillin G-inducible genes of L. monocytogenes. The results of reporter system studies, verified by transcriptional analysis, identified ten penicillin G-inducible genes. The contribution of three of these genes, encoding a ferritin-like protein (fri), a two-component phosphate-response regulator (phoP) and an AraC/XylS family transcriptional regulator (axyR), to the susceptibility and tolerance of L. monocytogenes to β-lactams was examined by analysis of nonpolar deletion mutants. The absence of PhoP or AxyR resulted in more rapid growth of the strains in the presence of sublethal concentration of β-lactams, but had no effect on the MIC values or the ability to survive a lethal dose of these antibiotics. However, the Δfri strain showed impaired growth in the presence of sublethal concentrations of penicillin G and ampicillin and a significantly reduced ability to survive lethal concentrations of these β-lactams. A lack of Fri also caused a 2-fold increase in the sensitivity of L. monocytogenes to cefalotin and cephradine. CONCLUSIONS The present study has identified Fri as an important mediator of β-lactam tolerance and innate resistance to cephalosporins in L. monocytogenes. PhoP and AxyR are probably involved in transmitting signals to adjust the rate of growth of L. monocytogenes under β-lactam pressure, but these regulators do not play a significant role in susceptibility and tolerance to this class of antibiotics.
Collapse
Affiliation(s)
- Agata Krawczyk-Balska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
40
|
Nishie M, Nagao JI, Sonomoto K. Antibacterial peptides "bacteriocins": an overview of their diverse characteristics and applications. Biocontrol Sci 2012; 17:1-16. [PMID: 22451427 DOI: 10.4265/bio.17.1] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bacteriocins are ribosomally synthesized antibacterial peptides produced by bacteria that inhibit the growth of similar or closely related bacterial strains. A number of bacteriocins from a wide variety of bacteria have been discovered, and their diverse structures have been reported. Growing evidence suggests that bacteriocins have diverse structures, modes of action, mechanisms of biosynthesis and self-immunity, and gene regulation. Bacteriocins are considered as an attractive compound in food and pharmaceutical industries to prevent food spoilage and pathogenic bacterial growth. Furthermore, elucidation of their biosynthesis has led to the use of bacteriocin-controlled gene-expression systems and the biosynthetic enzymes of lantibiotics, a class of bacteriocins, as tools to design novel peptides. In this review, we summarize and discuss currently known information on bacteriocins produced by Gram-positive bacteria and their applications.
Collapse
Affiliation(s)
- Mami Nishie
- Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
41
|
Collins B, Guinane CM, Cotter PD, Hill C, Ross RP. Assessing the contributions of the LiaS histidine kinase to the innate resistance of Listeria monocytogenes to nisin, cephalosporins, and disinfectants. Appl Environ Microbiol 2012; 78:2923-9. [PMID: 22327581 PMCID: PMC3318795 DOI: 10.1128/aem.07402-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/02/2012] [Indexed: 12/23/2022] Open
Abstract
The Listeria monocytogenes LiaSR two-component system (2CS) encoded by lmo1021 and lmo1022 plays an important role in resistance to the food preservative nisin. A nonpolar deletion in the histidine kinase-encoding component (ΔliaS) resulted in a 4-fold increase in nisin resistance. In contrast, the ΔliaS strain exhibited increased sensitivity to a number of cephalosporin antibiotics (and was also altered with respect to its response to a variety of other antimicrobials, including the active agents of a number of disinfectants). This pattern of increased nisin resistance and reduced cephalosporin resistance in L. monocytogenes has previously been associated with mutation of a second histidine kinase, LisK, which is a predicted regulator of liaS and a penicillin binding protein encoded by lmo2229. We noted that lmo2229 transcription is increased in the ΔliaS mutant and in a ΔliaS ΔlisK double mutant and that disruption of lmo2229 in the ΔliaS ΔlisK mutant resulted in a dramatic sensitization to nisin but had a relatively minor impact on cephalosporin resistance. We anticipate that further efforts to unravel the complex mechanisms by which LiaSR impacts on the antimicrobial resistance of L. monocytogenes could facilitate the development of strategies to increase the susceptibility of the pathogen to these agents.
Collapse
Affiliation(s)
- Barry Collins
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Caitriona M. Guinane
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Colin Hill
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| |
Collapse
|
42
|
The spiFEG locus in Streptococcus infantarius subsp. infantarius BAA-102 confers protection against nisin U. Antimicrob Agents Chemother 2011; 56:573-8. [PMID: 22064537 DOI: 10.1128/aac.05778-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nisin U is a member of the extended nisin family of lantibiotics. Here we identify the presence of nisin U immunity gene homologues in Streptococcus infantarius subsp. infantarius BAA-102. Heterologous expression of these genes in Lactococcus lactis subsp. cremoris HP confers protection to nisin U and other members of the nisin family, thereby establishing that the recently identified phenomenon of resistance through immune mimicry also occurs with respect to nisin.
Collapse
|
43
|
Misra SK, Milohanic E, Aké F, Mijakovic I, Deutscher J, Monnet V, Henry C. Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence. Proteomics 2011; 11:4155-65. [PMID: 21956863 DOI: 10.1002/pmic.201100259] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/19/2011] [Accepted: 08/04/2011] [Indexed: 11/05/2022]
Abstract
Phosphorylation is the most common and widely studied post-translational protein modification in bacteria. It plays an important role in all kinds of cellular processes and controls key regulatory mechanisms, including virulence in certain pathogens. To gain insight into the role of protein phosphorylation in the pathogen Listeria monocytogenes, the serine (Ser), threonine (Thr) and tyrosine (Tyr) phosphoproteome of this bacterium was determined. We used the "gel free" proteomic approach with high accuracy mass spectrometry after enrichment of phosphopeptides. A total of 143 sites of phosphorylation were clearly identified, on 155 unique peptides of 112 phosphoproteins. The Ser/Thr/Tyr phosphorylation site distribution was 93:43:7. All identified phosphopeptides are monophosphorylated, except one and many identified phosphoproteins are related to virulence, translation, phosphoenolpyruvate:sugar phosphotransferase system, glycolysis and stress response. A description of these phosphoproteins is provided together with a comparison of the phosphosites in the L. monocytogenes proteins and in their homologues of other bacteria for which the phosphoproteome has been determined. Compared with the previous studies, we noticed a more extended conservation of the phosphorylation sites in glycolytic enzymes as well as ribosomal proteins.
Collapse
|
44
|
Abstract
The emergence of multidrug-resistant enterococci as a leading cause of hospital-acquired infection is an important public health concern. Little is known about the genetic mechanisms by which enterococci adapt to strong selective pressures, including the use of antibiotics. The lipopeptide antibiotic daptomycin is approved to treat Gram-positive bacterial infections, including those caused by enterococci. Since its introduction, resistance to daptomycin by strains of Enterococcus faecalis and Enterococcus faecium has been reported but is still rare. We evolved daptomycin-resistant strains of the multidrug-resistant E. faecalis strain V583. Based on the availability of a fully closed genome sequence for V583, we used whole-genome resequencing to identify the mutations that became fixed over short time scales (~2 weeks) upon serial passage in the presence of daptomycin. By comparison of the genome sequences of the three adapted strains to that of parental V583, we identified seven candidate daptomycin resistance genes and three different mutational paths to daptomycin resistance in E. faecalis. Mutations in one of the seven candidate genes (EF0631), encoding a putative cardiolipin synthase, were found in each of the adapted E. faecalis V583 strains as well as in daptomycin-resistant E. faecalis and E. faecium clinical isolates. Alleles of EF0631 from daptomycin-resistant strains are dominant in trans and confer daptomycin resistance upon a susceptible host. These results demonstrate a mechanism of enterococcal daptomycin resistance that is genetically distinct from that occurring in staphylococci and indicate that enterococci possessing alternate EF0631 alleles are selected for during daptomycin therapy. However, our analysis of E. faecalis clinical isolates indicates that resistance pathways independent from mutant forms of EF0631 also exist.
Collapse
|