1
|
Preijers T, Muller AE, Abdulla A, de Winter BCM, Koch BCP, Sassen SDT. Dose Individualisation of Antimicrobials from a Pharmacometric Standpoint: The Current Landscape. Drugs 2024; 84:1167-1178. [PMID: 39240531 PMCID: PMC11512831 DOI: 10.1007/s40265-024-02084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Successful antimicrobial therapy depends on achieving optimal drug concentrations within individual patients. Inter-patient variability in pharmacokinetics (PK) and differences in pathogen susceptibility (reflected in the minimum inhibitory concentration, [MIC]) necessitate personalised approaches. Dose individualisation strategies aim to address this challenge, improving treatment outcomes and minimising the risk of toxicity and antimicrobial resistance. Therapeutic drug monitoring (TDM), with the application of population pharmacokinetic (popPK) models, enables model-informed precision dosing (MIPD). PopPK models mathematically describe drug behaviour across populations and can be combined with patient-specific TDM data to optimise dosing regimens. The integration of machine learning (ML) techniques promises to further enhance dose individualisation by identifying complex patterns within extensive datasets. Implementing these approaches involves challenges, including rigorous model selection and validation to ensure suitability for target populations. Understanding the relationship between drug exposure and clinical outcomes is crucial, as is striking a balance between model complexity and clinical usability. Additionally, regulatory compliance, outcome measurement, and practical considerations for software implementation will be addressed. Emerging technologies, such as real-time biosensors, hold the potential for revolutionising TDM by enabling continuous monitoring, immediate and frequent dose adjustments, and near patient testing. The ongoing integration of TDM, advanced modelling techniques, and ML within the evolving digital health care landscape offers a potential for enhancing antimicrobial therapy. Careful attention to model development, validation, and ethical considerations of the applied techniques is paramount for successfully optimising antimicrobial treatment for the individual patient.
Collapse
Affiliation(s)
- Tim Preijers
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
| | - Anouk E Muller
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medisch Centrum, The Hague, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands.
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands.
| | - Sebastiaan D T Sassen
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| |
Collapse
|
2
|
Strukova EN, Golikova MV, Dovzhenko SA, Kobrin MB, Zinner SH. Pharmacodynamics of Doripenem Alone and in Combination with Relebactam in an In Vitro Hollow-Fiber Dynamic Model: Emergence of Resistance of Carbapenemase-Producing Klebsiella pneumoniae and the Inoculum Effect. Antibiotics (Basel) 2023; 12:1705. [PMID: 38136739 PMCID: PMC10741200 DOI: 10.3390/antibiotics12121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of bacteria resistant to beta-lactam/beta-lactamase inhibitor combinations is insufficiently studied, wherein the role of the inoculum effect (IE) in decreased efficacy is unclear. To address these issues, 5-day treatments with doripenem and doripenem/relebactam combination at different ratios of the agents were simulated in a hollow-fiber dynamic model against carbapenemase-producing K. pneumoniae at standard and high inocula. Minimal inhibitory concentrations (MICs) of doripenem alone and in the presence of relebactam at two inocula were determined. Combination MICs were tested using traditional (fixed relebactam concentration) and pharmacokinetic-based approach (fixed doripenem-to-relebactam concentration ratio equal to the therapeutic 24-h area under the concentration-time curve (AUC) ratio). In all experiments, resistant subpopulations were noted, but combined simulations reduced their numbers. With doripenem, the IE was apparent for both K. pneumoniae isolates in combined treatments for one strain. The pharmacokinetic-based approach to combination MIC estimation compared to traditional showed stronger correlation between DOSE/MIC and emergence of resistance. These results support (1) the constraint of relebactam combined with doripenem against the emergence of resistance and IE; (2) the applicability of a pharmacokinetic-based approach to estimate carbapenem MICs in the presence of an inhibitor to predict the IE and to describe the patterns of resistance occurrence.
Collapse
Affiliation(s)
- Elena N. Strukova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia; (E.N.S.); (S.A.D.); (M.B.K.)
| | - Maria V. Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia; (E.N.S.); (S.A.D.); (M.B.K.)
| | - Svetlana A. Dovzhenko
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia; (E.N.S.); (S.A.D.); (M.B.K.)
| | - Mikhail B. Kobrin
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia; (E.N.S.); (S.A.D.); (M.B.K.)
| | - Stephen H. Zinner
- Harvard Medical School, Department of Medicine, Mount Auburn Hospital, 330 Mount Auburn St., Cambridge, MA 02138, USA;
| |
Collapse
|
3
|
Cartagena AJ, Taylor KL, Smith JT, Manson AL, Pierce VM, Earl AM, Bhattacharyya RP. The carbapenem inoculum effect provides insight into the molecular mechanisms underlying carbapenem resistance in Enterobacterales. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541813. [PMID: 37292717 PMCID: PMC10245868 DOI: 10.1101/2023.05.23.541813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbapenem-resistant Enterobacterales (CRE) are important pathogens that can develop resistance via multiple molecular mechanisms, including hydrolysis or reduced antibiotic influx. Identifying these mechanisms can improve pathogen surveillance, infection control, and patient care. We investigated how resistance mechanisms influence the carbapenem inoculum effect (IE), a phenomenon where inoculum size affects antimicrobial susceptibility testing (AST). We demonstrated that seven different carbapenemases impart a meropenem IE in Escherichia coli. Across 110 clinical CRE isolates, the carbapenem IE strictly depended on resistance mechanism: all carbapenemase-producing CRE (CP-CRE) exhibited a strong IE, whereas porin-deficient CRE displayed none. Concerningly, 50% and 24% of CP-CRE isolates changed susceptibility classification to meropenem and ertapenem, respectively, across the allowable inoculum range in clinical guidelines. The meropenem IE, and the ratio of ertapenem to meropenem minimal inhibitory concentration (MIC) at standard inoculum, reliably identified CP-CRE. Understanding how resistance mechanisms affect AST could improve diagnosis and guide therapies for CRE infections.
Collapse
Affiliation(s)
| | - Kyra L. Taylor
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua T. Smith
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Abigail L. Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Virginia M. Pierce
- Microbiology Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Roby P. Bhattacharyya
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
4
|
Borsa BA, Hernandez LI, Jiménez T, Tellapragada C, Giske CG, Hernandez FJ. Therapeutic-oligonucleotides activated by nucleases (TOUCAN): A nanocarrier system for the specific delivery of clinical nucleoside analogues. J Control Release 2023; 361:260-269. [PMID: 37541593 DOI: 10.1016/j.jconrel.2023.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Nucleoside analogues have been in clinical use since 1960s and they are still used as the first therapeutic option for several cancers and viral infections, due to their high therapeutic efficacy. However, their wide clinical acceptance has been limited due to their high toxicity and severe side effects to patients. Herein, we report on a nanocarrier system that delivers nucleosides analogues in a target-specific manner, making nucleoside-based therapeutics safer and with the possibility to be used in other human conditions. This system, named, Therapeutic OligonUCleotides Activated by Nucleases" (TOUCAN) combines: i) the recognition power of oligonucleotides as substrates, ii) the use of nucleases as enzymatic biomarkers and iii) the clinical efficacy of nucleoside analogues, in a single approach. As a proof-of-concept, we report on a TOUCAN that is activated by a specific nuclease produced by bacteria and releases a therapeutic nucleoside, floxuridine. We demonstrate, for the first time, that, by incorporating a therapeutic nucleoside analogue into oligonucleotide probes, we can specifically inhibit bacterial growth in cultures. In this study, Staphylococcus aureus was selected as the targeted bacteria and the TOUCAN strategy successfully inhibited its growth with minimal inhibitory concentration (MIC) values ranging from 0.62 to 40 mg/L across all tested strains. Moreover, our results indicate that the intravenous administration of TOUCANs at a dose of 20 mg/kg over a 24-h period is a highly effective method for treating bacterial infections in a mouse model of pyomyositis. Importantly, no signs of toxicity were observed in our in vitro and in vivo studies. This work can significantly impact the current management of bacterial infections, laying the grounds for the development of a different class of antibiotics. Furthermore, it can provide a safer delivery platform for clinical nucleoside therapeutics in any human conditions, such as cancer and viral infection, where specific nuclease activity has been reported.
Collapse
Affiliation(s)
- Baris A Borsa
- Wallenberg Center for Molecular Medicine (WCMM), Linköping, Sweden; Department of Physics, Chemistry and Biology (IFM), Linköping University, Sweden; Nucleic Acid Technologies Laboratory (NAT-Lab), Linköping, Sweden
| | - Luiza I Hernandez
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Sweden; SOMAprobes, Science and Technology Park of Gipuzkoa, Donostia-San Sebastian, Spain
| | - Tania Jiménez
- SOMAprobes, Science and Technology Park of Gipuzkoa, Donostia-San Sebastian, Spain
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Frank J Hernandez
- Wallenberg Center for Molecular Medicine (WCMM), Linköping, Sweden; Department of Physics, Chemistry and Biology (IFM), Linköping University, Sweden; Nucleic Acid Technologies Laboratory (NAT-Lab), Linköping, Sweden.
| |
Collapse
|
5
|
Golikova MV, Strukova EN, Alieva KN, Ageevets VA, Avdeeva AA, Sulian OS, Zinner SH. Meropenem MICs at Standard and High Inocula and Mutant Prevention Concentration Inter-Relations: Comparative Study with Non-Carbapenemase-Producing and OXA-48-, KPC- and NDM-Producing Klebsiella pneumoniae. Antibiotics (Basel) 2023; 12:antibiotics12050872. [PMID: 37237775 DOI: 10.3390/antibiotics12050872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The minimal inhibitory concentration (MIC) is conventionally used to define in vitro levels of susceptibility or resistance of a specific bacterial strain to an antibiotic and to predict its clinical efficacy. Along with MIC, other measures of bacteria resistance exist: the MIC determined at high bacterial inocula (MICHI) that allow the estimation of the occurrence of inoculum effect (IE) and the mutant prevention concentration, MPC. Together, MIC, MICHI and MPC represent the bacterial "resistance profile". In this paper, we provide a comprehensive analysis of such profiles of K. pneumoniae strains that differ by meropenem susceptibility, ability to produce carbapenemases and specific carbapenemase types. In addition, we have analyzed inter-relations between the MIC, MICHI and MPC for each tested K. pneumoniae strain. Low IE probability was detected with carbapenemase-non-producing K. pneumoniae, and high IE probability was detected with those that were carbapenemase-producing. MICs did not correlate with the MPCs; significant correlation was observed between the MICHIs and the MPCs, indicating that these bacteria/antibiotic characteristics display similar resistance properties of a given bacterial strain. To determine the possible resistance-related risk due to a given K. pneumoniae strain, we propose determining the MICHI. This can more or less predict the MPC value of the particular strain.
Collapse
Affiliation(s)
- Maria V Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Elena N Strukova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Kamilla N Alieva
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Vladimir A Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popov Street, 197022 St. Petersburg, Russia
| | - Alisa A Avdeeva
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popov Street, 197022 St. Petersburg, Russia
| | - Ofeliia S Sulian
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popov Street, 197022 St. Petersburg, Russia
| | - Stephen H Zinner
- Department of Medicine, Harvard Medical School, Mount Auburn Hospital, 330 Mount Auburn St., Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Ruiz-Ramos J, Gras-Martín L, Ramírez P. Antimicrobial Pharmacokinetics and Pharmacodynamics in Critical Care: Adjusting the Dose in Extracorporeal Circulation and to Prevent the Genesis of Multiresistant Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12030475. [PMID: 36978342 PMCID: PMC10044431 DOI: 10.3390/antibiotics12030475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Critically ill patients suffering from severe infections are prone to pathophysiological pharmacokinetic changes that are frequently associated with inadequate antibiotic serum concentrations. Minimum inhibitory concentrations (MICs) of the causative pathogens tend to be higher in intensive care units. Both pharmacokinetic changes and high antibiotic resistance likely jeopardize the efficacy of treatment. The use of extracorporeal circulation devices to support hemodynamic, respiratory, or renal failure enables pharmacokinetic changes and makes it even more difficult to achieve an adequate antibiotic dose. Besides a clinical response, antibiotic pharmacokinetic optimization is important to reduce the selection of strains resistant to common antibiotics. In this review, we summarize the present knowledge regarding pharmacokinetic changes in critically ill patients and we discuss the effects of extra-corporeal devices on antibiotic treatment together with potential solutions.
Collapse
Affiliation(s)
- Jesus Ruiz-Ramos
- Pharmacy Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Laura Gras-Martín
- Pharmacy Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Paula Ramírez
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Correspondence:
| |
Collapse
|
7
|
Dalton BR. What Is the Best Vancomycin Therapeutic Drug Monitoring Parameter to Assess Efficacy? A Critical Review of Experimental Data and Assessment of the Need for Individual Patient Minimum Inhibitory Concentration Value. Microorganisms 2023; 11:microorganisms11030567. [PMID: 36985141 PMCID: PMC10051726 DOI: 10.3390/microorganisms11030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Therapeutic drug monitoring is recommended for the use of vancomycin, but a recent widely publicized US medical society consensus statement has changed the suggested optimal method(s) of dose adjustment. Specifically, 24 h area under the curve (AUC24)-based monitoring is has been recommended for vancomycin in preference to monitoring of trough concentrations. One reason cited for this change is the claim that AUC24 is a superior correlate to efficacy than trough (Cmin). Evidence from a number of retrospective analyses have been critically reviewed and determined to have weaknesses. This narrative review focuses on the experimental studies performed in vivo in animal models of infection and in vitro to determine the extent to which these data may provide a compelling distinction between pharmacokinetic/pharmacodynamics (PKPD) parameters that may translate to clinical use in therapeutic drug monitoring. Animal in vivo studies have been presented at conferences, but no original peer reviewed studies could be found that compare various PKPD parameters. These conference proceeding findings were supportive but unconvincing, even though they were favorably presented subsequently in review articles and clinical practice guidelines. In vitro data are somewhat conflicting, but the range of concentrations may play a role in the discrepancies found. It has been suggested that MIC may be assumed to have a value of 1 mg/L; however, it can be demonstrated that this assumption may lead to considerable discrepancy from results with an actual MIC value. The AUC24 parameter has been weighed against the percentage of time above the MIC (%T > MIC) as a comparative PKPD parameter, yet this may be an inappropriate comparison for vancomycin since all clinically useful dosing provides 100% T > MIC. Regardless, there is a distinction between clinical TDM parameters and PKPD parameters, so, in practice, the change to AUC24:MIC based on animal experiments and in vitro evidence for vancomycin may be premature.
Collapse
Affiliation(s)
- Bruce R Dalton
- Pharmacy Department, Alberta Health Services, Calgary, AB T2N 2T9, Canada
| |
Collapse
|
8
|
Sorting Out the Risks and Benefits of the #797 Recommended Intrapartum Vancomycin Dosing Approach. Antibiotics (Basel) 2022; 12:antibiotics12010032. [PMID: 36671234 PMCID: PMC9854597 DOI: 10.3390/antibiotics12010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
ACOG Committee Opinion #797 proposed intrapartum vancomycin dosing guidelines in the absence of thorough evaluation of its risk versus benefit profile on the maternal and neonatal systems. The previously published serum and cord-blood concentration-time data of vancomycin given to mothers in the intrapartum period was analyzed in this work with a two-compartment pharmacokinetic (PK) model. Monte Carlo simulation was used to establish exposure for the studied population for doses of 1000 mg to 2000 mg every 8 h for gestational ages (GA) of 33 to 40 weeks and for birth times up to 4-h intervals. Probabilities of target attainment (PTA) were calculated for efficacy and toxicity indices unique to the peripartum maternal and neonatal population. Neonatal evaluations indicate uniformly high PTAs for the evaluated dosing regimens when the efficacy target is considered. On the other hand, the PTAs for potentially nephrotoxic exposure is expected to reach undesirable levels when three or more doses were to be administered. The risk is profoundly high in GA below 36 weeks and birth times beyond 20 h after the initiation of intrapartum prophylaxis and with doses greater than 1250 mg. Maternal vancomycin exposures seem reasonable up to two intrapartum doses given at 8 h intervals when the dose is kept to 1250 mg or less. Most mothers (up to 83%) who receive three or more doses of the commonly administered regimens are subjected to nephrotoxic exposures. Thus, it appears that the current recommendations by #797 for dosing of vancomycin pose considerable risk to mother and newborn alike, especially in cases with lengthy duration of preterm labor. Capping of doses at 1250 mg may be considered to minimize the need for therapeutic drug monitoring (TDM) interventions. Alternatively, and irrespective of the baseline maternal renal function, TDM for all cases requiring more than two doses of 1500 mg or higher must be assured.
Collapse
|
9
|
Chauzy A, Akrong G, Aranzana-Climent V, Moreau J, Prouvensier L, Mirfendereski H, Buyck JM, Couet W, Marchand S. PKPD Modeling of the Inoculum Effect of Acinetobacter baumannii on Polymyxin B in vivo. Front Pharmacol 2022; 13:842921. [PMID: 35370719 PMCID: PMC8966651 DOI: 10.3389/fphar.2022.842921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
The reduction in antimicrobial activity at high bacterial counts is a microbiological phenomenon known as the inoculum effect (IE). In a previous in vitro study, a significant IE was observed for polymyxin B (PMB) against a clinical isolate of Acinetobacter baumannii, and well described by a new pharmacokinetic-pharmacodynamic model. Few in vivo studies have investigated the impact of inoculum size on survival or antibiotic efficacy. Therefore, our objective was to confirm the influence of inoculum size of this A. baumannii clinical isolate on PMB in vivo effect over time. Pharmacokinetics and pharmacodynamics of PMB after a single subcutaneous administration (1, 15 and 40 mg/kg) were studied in a neutropenic murine thigh infection model. The impact of A. baumannii inoculum size (105, 106 and 107 CFU/thigh) on PMB efficacy was also evaluated. In vivo PMB PK was well described by a two-compartment model including saturable absorption from the subcutaneous injection site and linear elimination. The previous in vitro PD model was modified to adequately describe the decrease of PMB efficacy with increased inoculum size in infected mice. The IE was modeled as a decrease of 32% in the in vivo PMB bactericidal effect when the starting inoculum increases from 105 to 107 CFU/thigh. Although not as important as previously characterized in vitro an IE was confirmed in vivo.
Collapse
Affiliation(s)
- Alexia Chauzy
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - Grace Akrong
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - Vincent Aranzana-Climent
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - Jérémy Moreau
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - Laure Prouvensier
- INSERM U1070, Poitiers, France.,Département de Toxicologie et de Pharmacocinétique, CHU de Poitiers, Poitiers, France
| | - Hélène Mirfendereski
- INSERM U1070, Poitiers, France.,Département de Toxicologie et de Pharmacocinétique, CHU de Poitiers, Poitiers, France
| | - Julien M Buyck
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - William Couet
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France.,Département de Toxicologie et de Pharmacocinétique, CHU de Poitiers, Poitiers, France
| | - Sandrine Marchand
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France.,Département de Toxicologie et de Pharmacocinétique, CHU de Poitiers, Poitiers, France
| |
Collapse
|
10
|
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022; 183:114171. [PMID: 35189264 PMCID: PMC10019944 DOI: 10.1016/j.addr.2022.114171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
11
|
Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Pharmaceutics 2022; 14:pharmaceutics14030489. [PMID: 35335866 PMCID: PMC8955715 DOI: 10.3390/pharmaceutics14030489] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/08/2023] Open
Abstract
Background: To promote model-informed precision dosing (MIPD) for vancomycin (VCM), we developed statements for therapeutic drug monitoring (TDM). Methods: Ten clinical questions were selected. The committee conducted a systematic review and meta-analysis as well as clinical studies to establish recommendations for area under the concentration-time curve (AUC)-guided dosing. Results: AUC-guided dosing tended to more strongly decrease the risk of acute kidney injury (AKI) than trough-guided dosing, and a lower risk of treatment failure was demonstrated for higher AUC/minimum inhibitory concentration (MIC) ratios (cut-off of 400). Higher AUCs (cut-off of 600 μg·h/mL) significantly increased the risk of AKI. Although Bayesian estimation with two-point measurement was recommended, the trough concentration alone may be used in patients with mild infections in whom VCM was administered with q12h. To increase the concentration on days 1–2, the routine use of a loading dose is required. TDM on day 2 before steady state is reached should be considered to optimize the dose in patients with serious infections and a high risk of AKI. Conclusions: These VCM TDM guidelines provide recommendations based on MIPD to increase treatment response while preventing adverse effects.
Collapse
|
12
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2311-2312. [DOI: 10.1093/jac/dkac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Revisiting the inoculum effect for Streptococcus pyogenes with a hollow fibre infection model. Eur J Clin Microbiol Infect Dis 2021; 40:2137-2144. [PMID: 33948751 DOI: 10.1007/s10096-021-04262-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Severe, invasive Streptococcus pyogenes (Strep A) infections result in greater than 500,000 deaths annually. First line treatment for such infections is benzylpenicillin, often with the addition of clindamycin, but treatment failure can occur with this regimen. This failure has been partially attributed to the inoculum effect, which presents as reduced antibiotic susceptibility during high bacterial density and plateau-phase growth. Hollow fibre infection models (HFIM) have been proposed as an in vitro alternative to in vivo research to study these effects. To re-evaluate the inoculum effect for benzylpenicillin, clindamycin, linezolid, and trimethoprim-sulfamethoxazole using a Strep A HFIM. Differential antibiotic susceptibility of Strep A was measured in a HFIM starting from low- and high-density inocula with an average difference in bacterial concentration of 56-fold. Dynamic antibiotic concentrations were delivered over 48 h to simulate in vivo human pharmacokinetics in an in vitro model. Differences in antibiotic susceptibility were measured by plate count of colony-forming units over time. Inoculum effects were seen in benzylpenicillin and linezolid at 24 h, and benzylpenicillin, linezolid, and clindamycin at 48 h. The effect size was greatest for continuously infused benzylpenicillin at 48 h with a log10-fold difference of 4.02 between groups. No inoculum effect was seen in trimethoprim-sulfamethoxazole, with a maximal log10-fold difference of 0.40. Inoculum effects were seen using benzylpenicillin, linezolid, and clindamycin, which may predict reduced clinical efficacy following treatment delay. The model has proven robust and largely in agreeance with published data, recommending it for further Strep A study.
Collapse
|
14
|
Lang Y, Shah NR, Tao X, Reeve SM, Zhou J, Moya B, Sayed ARM, Dharuman S, Oyer JL, Copik AJ, Fleischer BA, Shin E, Werkman C, Basso KB, Lucas DD, Sutaria DS, Mégroz M, Kim TH, Loudon-Hossler V, Wright A, Jimenez-Nieves RH, Wallace MJ, Cadet KC, Jiao Y, Boyce JD, LoVullo ED, Schweizer HP, Bonomo RA, Bharatham N, Tsuji BT, Landersdorfer CB, Norris MH, Shin BS, Louie A, Balasubramanian V, Lee RE, Drusano GL, Bulitta JB. Combating Multidrug-Resistant Bacteria by Integrating a Novel Target Site Penetration and Receptor Binding Assay Platform Into Translational Modeling. Clin Pharmacol Ther 2021; 109:1000-1020. [PMID: 33576025 PMCID: PMC10662281 DOI: 10.1002/cpt.2205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of β-lactam antibiotics and β-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While β-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.
Collapse
Affiliation(s)
- Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Nirav R. Shah
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Jansen R&D, Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Xun Tao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Genentech USA,Inc., South San Francisco, California, USA
| | - Stephanie M. Reeve
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alaa R. M. Sayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremiah L. Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Alicja J. Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Brett A. Fleischer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Eunjeong Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Carolin Werkman
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Genentech USA,Inc., South San Francisco, California, USA
| | - Marianne Mégroz
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tae Hwan Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, Korea
| | - Victoria Loudon-Hossler
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amy Wright
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Rossie H. Jimenez-Nieves
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Miranda J. Wallace
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Keisha C. Cadet
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - John D. Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Eric D. LoVullo
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Nagakumar Bharatham
- BUGWORKS Research India Pvt. Ltd., Centre for Cellular & Molecular Platforms, National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Brian T. Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, Buffalo, New York, USA
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael H. Norris
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Venkataraman Balasubramanian
- BUGWORKS Research India Pvt. Ltd., Centre for Cellular & Molecular Platforms, National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
15
|
Abstract
The phenomenon of attenuated antibacterial activity at inocula above those utilized for susceptibility testing is referred to as the inoculum effect. Although the inoculum effect has been reported for several decades, it is currently debatable whether the inoculum effect is clinically significant. The aim of the present review was to consolidate currently available evidence to summarize which β-lactam drug classes demonstrate an inoculum effect against specific bacterial pathogens. Review of the literature showed that the majority of studies that evaluated the inoculum effect of β-lactams were in vitro investigations of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Haemophilus influenzae and Staphylococcus aureus. Across all five pathogens, cephalosporins consistently displayed observable inoculum effects in vitro, whereas carbapenems were less susceptible to an inoculum effect. A handful of animal studies were available that validated that the in vitro inoculum effect translates into attenuated pharmacodynamics of β-lactams in vivo. Only a few clinical investigations were available and suggested that an in vitro inoculum effect of cefazolin against MSSA may correspond to an increased likeliness of adverse clinical outcomes in patients receiving cefazolin for bacteraemia. The presence of β-lactamase enzymes was the primary mechanism responsible for an inoculum effect, but the observation of an inoculum effect in multiple pathogens lacking β-lactamase enzymes indicates that there are likely multiple mechanisms that may result in an inoculum effect. Further clinical studies are needed to better define whether interventions made in the clinic in response to organisms displaying an in vitro inoculum effect will optimize clinical outcomes.
Collapse
Affiliation(s)
- Justin R Lenhard
- California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - Zackery P Bulman
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Alsaeed A, Wright G, Deneer H, Rubin JE, Sanche SE, Blondeau JM. Methicillin-resistant Staphylococcus aureus replication in the presence of high (≥32 µg/ml) drug concentration of vancomycin as seen by electron microscopy. J Chemother 2020; 32:179-187. [PMID: 32393118 DOI: 10.1080/1120009x.2020.1761191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has unfortunately become a common pathogen in many healthcare facilities. In many institutions, vancomycin remains the preferred agent for treating serious MRSA infections including bacteraemia with or without endocarditis. The mutant prevention concentration (MPC) testing ≥109 colony forming units of bacteria, describes the antimicrobial drug concentration blocking the growth of the least susceptible cell from high density bacterial populations. With blood culture isolates of MRSA, we discovered strains with MPC values ≥32 µg/ml and viable cells could be readily recovered from agar plates containing 32 µg/ml of vancomycin. To investigate MRSA strains surviving in high concentrations of vancomycin on drug containing agar plates, we utilized electron microscopy to measure cell wall thickness as this has been previously reported as a potential mechanism of resistance1 along with septum thickening. Our data shows MRSA replication from high density bacterial populations in the presence of ≥32 µg/ml of vancomycin. Such observations may explain vancomycin failure in some patients and/or persistent bacteraemia and could potentially question the use of this drug in some critically ill patients in favour of an alternative agent.
Collapse
Affiliation(s)
- Amal Alsaeed
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Glenda Wright
- Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Harry Deneer
- Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Division of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada
| | - Joseph E Rubin
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Stephen E Sanche
- Division of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada.,Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph M Blondeau
- Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Division of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada.,Departments of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Ophthalmology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
17
|
Kim HK, Choi SM, Kang G, Park KH, Lee DG, Park WB, Rhee SJ, Lee S, Jung SI, Jang HC. Comparison of In Vivo Pharmacokinetics and Pharmacodynamics of Vancomycin Products Available in Korea. Yonsei Med J 2020; 61:301-309. [PMID: 32233172 PMCID: PMC7105400 DOI: 10.3349/ymj.2020.61.4.301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Few studies have been investigated the in vivo efficacy of generic vancomycin products available outside of the United States. In this study, we aimed to compare the in vivo pharmacokinetics (PK) and pharmacodynamics (PD) of five generic vancomycin products available in Korea with those of the innovator. MATERIALS AND METHODS The in vitro vancomycin purity of each product was examined using high-pressure liquid chromatography. Single-dose PK analyses were performed using neutropenic mice. The in vivo efficacy of vancomycin products was compared with that of the innovator in dose-effect experiments (25 to 400 mg/kg per day) using a thigh-infection model with neutropenic mice. RESULTS Generic products had a lower proportion of vancomycin B (range: 90.3-93.8%) and a higher proportion of impurities (range: 6.2-9.7%) than the innovator (94.5% and 5.5%, respectively). In an in vivo single-dose PK study, the maximum concentration (Cmax) values of each generic were lower than that of the innovator, and the geographic mean area under the curve ratios of four generics were significantly lower than that of the innovator (all p<0.1). In the thigh-infection model, the maximum efficacies of generic products reflected in maximal effect (Emax) values were not significantly different from the innovator. However, the PD profile curves of some generic products differed significantly from that of the innovator in mice injected with a high level of Mu3 (all p≤0.05). CONCLUSION Some generic vancomycin products available in Korea showed inferior PK and PD profiles, especially in mice infected with hetero-vancomycin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Hee Kyung Kim
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Su-Mi Choi
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Gaeun Kang
- Division of Clinical Pharmacology, Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Wan-Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Su-jin Rhee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
18
|
Pharmacodynamics of ClpP-Activating Antibiotic Combinations against Gram-Positive Pathogens. Antimicrob Agents Chemother 2019; 64:AAC.01554-19. [PMID: 31611348 DOI: 10.1128/aac.01554-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
It is often difficult to cure endocarditis, osteomyelitis, and device-associated infections caused by Gram-positive pathogens, despite therapy with clinically appropriate antibiotics. This may be due to antibiotic tolerance or resistance development. Acyldepsipeptides (ADEPs) are a class of bactericidal compounds active against a variety of clinically important Gram-positive bacteria, including staphylococci, streptococci, and enterococci. ADEPs activate caseinolytic protease P (ClpP), killing high-density, nondividing cultures of bacteria that are tolerant to approved classes of antibiotics. Acyldepsipeptide analog 4 (ADEP4) was active against a panel of drug-resistant Gram-positive pathogens in MIC assays, with no preexisting resistance detected. Killing of stationary-phase cultures was observed when ADEP4 was combined with multiple classes of approved antibiotics. Additionally, a hollow-fiber infection model was used to assess the effects of ADEP4 antibiotic combinations on bacterial killing and resistance development. These studies were performed on high-density cultures of methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA), and vancomycin-resistant Enterococcus faecalis (VRE). None of the approved antibiotics linezolid, ampicillin, and oxacillin tested alone had bactericidal activity under these conditions. ADEP4 initially caused killing, but regrowth of the culture was apparent within 96 h due to resistance. Combinations of ADEP4 with linezolid or oxacillin caused substantially improved killing of MRSA or MSSA cultures, respectively, and no regrowth due to resistance was observed. The combination of ADEP4 and ampicillin eradicated cultures of VRE to the limit of detection within 52 h. These data suggest that combining ClpP activators with traditional antibiotics may be a good strategy to treat complicated Gram-positive infections.
Collapse
|
19
|
Hornak JP, Anjum S, Reynoso D. Adjunctive ceftaroline in combination with daptomycin or vancomycin for complicated methicillin-resistant Staphylococcus aureus bacteremia after monotherapy failure. Ther Adv Infect Dis 2019; 6:2049936119886504. [PMID: 31857898 PMCID: PMC6915839 DOI: 10.1177/2049936119886504] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/14/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus bacteremia (MRSA-B) may fail to improve with standard monotherapy, particularly in patients with multifocal infection, incomplete source control, or persistent bacteremia. Synergy observed in vitro between ceftaroline (CPT) and daptomycin (DAP) or vancomycin (VAN) may translate into clinical benefit. Here, we describe our experience with DAP/CPT and VAN/CPT for complicated MRSA-B after monotherapy failure. Methods: Single-center, retrospective review of consecutive patients treated with DAP/CPT or VAN/CPT for MRSA-B after monotherapy failure from 1 January 2016 to 30 November 2018. Results: We identified 11 instances of combination therapy in 10 patients (DAP/CPT = 6, VAN/CPT = 5) with 1 patient receiving VAN/CPT followed by DAP/CPT. Rates of multifocal infection, incomplete source control, persistent bacteremia, and infective endocarditis were high (100%, 80%, 60%, and 60%, respectively). Combination therapy was initiated most commonly for persistent bacteremia (60%). When patients were persistently bacteremic, median preceding duration was 13 days and median time to clearance was 3 days. Total microbiologic cure rate was 100%. There were zero instances of bacteremia relapse at 30 days (30D) or 60 days (60D). All-cause 30D and 60D mortality rates were 11.1% and 33.3%, respectively. Conclusions: Combination therapy demonstrated success in diverse cases of refractory MRSA-B, including instances of persistent bacteremia paired with incomplete source control. Optimal timing and therapeutic cadence for combination therapy remain unclear. Our findings suggest that DAP/CPT and VAN/CPT can be considered for complicated MRSA bacteremia when other treatment options fail or are unavailable. We propose persistent bacteremia with incomplete source control to be a clinical niche particularly worthy of further investigation.
Collapse
Affiliation(s)
- Joseph Patrik Hornak
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Seher Anjum
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - David Reynoso
- The University of Texas Medical Branch, Division of Infectious Diseases, 301 University Blvd., Rte. 0435, Marvin Graves Building 4.210H, Galveston, TX, 77555-0435, USA
| |
Collapse
|
20
|
Tellis M, Joseph J, Khande H, Bhagwat S, Patel M. In vitro bactericidal activity of levonadifloxacin (WCK 771) against methicillin- and quinolone-resistant Staphylococcus aureus biofilms. J Med Microbiol 2019; 68:1129-1136. [DOI: 10.1099/jmm.0.000999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Melroy Tellis
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Jiji Joseph
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Hemant Khande
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Sachin Bhagwat
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Mahesh Patel
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| |
Collapse
|
21
|
Franklyne JS, Andrew Ebenazer L, Mukherjee A, Natarajan C. Cinnamon and clove oil nanoemulsions: novel therapeutic options against vancomycin intermediate susceptible Staphylococcus aureus. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01111-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Generating Robust and Informative Nonclinical In Vitro and In Vivo Bacterial Infection Model Efficacy Data To Support Translation to Humans. Antimicrob Agents Chemother 2019; 63:AAC.02307-18. [PMID: 30833428 PMCID: PMC6496039 DOI: 10.1128/aac.02307-18] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In June 2017, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, organized a workshop entitled “Pharmacokinetics-Pharmacodynamics (PK/PD) for Development of Therapeutics against Bacterial Pathogens.” The aims were to discuss details of various PK/PD models and identify sound practices for deriving and utilizing PK/PD relationships to design optimal dosage regimens for patients. Workshop participants encompassed individuals from academia, industry, and government, including the United States Food and Drug Administration. In June 2017, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, organized a workshop entitled “Pharmacokinetics-Pharmacodynamics (PK/PD) for Development of Therapeutics against Bacterial Pathogens.” The aims were to discuss details of various PK/PD models and identify sound practices for deriving and utilizing PK/PD relationships to design optimal dosage regimens for patients. Workshop participants encompassed individuals from academia, industry, and government, including the United States Food and Drug Administration. This and the accompanying review on clinical PK/PD summarize the workshop discussions and recommendations. Nonclinical PK/PD models play a critical role in designing human dosage regimens and are essential tools for drug development. These include in vitro and in vivo efficacy models that provide valuable and complementary information for dose selection and translation from the laboratory to human. It is crucial that studies be designed, conducted, and interpreted appropriately. For antibacterial PK/PD, extensive published data and expertise are available. These have been leveraged to develop recommendations, identify common pitfalls, and describe the applications, strengths, and limitations of various nonclinical infection models and translational approaches. Despite these robust tools and published guidance, characterizing nonclinical PK/PD relationships may not be straightforward, especially for a new drug or new class. Antimicrobial PK/PD is an evolving discipline that needs to adapt to future research and development needs. Open communication between academia, pharmaceutical industry, government, and regulatory bodies is essential to share perspectives and collectively solve future challenges.
Collapse
|
23
|
Wicha WW, Craig WA, Andes D. In vivo pharmacodynamics of lefamulin, the first systemic pleuromutilin for human use, in a neutropenic murine thigh infection model. J Antimicrob Chemother 2019; 74:iii5-iii10. [PMID: 30949706 PMCID: PMC6449574 DOI: 10.1093/jac/dkz085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To characterize the pharmacokinetics (PK) and pharmacodynamics (PD) of lefamulin in the neutropenic murine thigh infection model to ascertain (i) which PK/PD index best correlates with efficacy and (ii) whether the magnitude of the index that drives efficacy varies for different pathogens. METHODS We evaluated the in vivo PK/PD of lefamulin against five Streptococcus pneumoniae and five Staphylococcus aureus strains using a neutropenic murine thigh infection model. The relationships between bacterial burden in the thigh of normal and neutropenic mice after 24 h of lefamulin treatment and various PK/PD indices were determined. RESULTS The kinetics of the three doses was linear by AUC. Rate of killing was maximal at concentrations near the MIC; suppression of regrowth was dose dependent, with a post-antibiotic effect of 3.0-3.5 and 1.0-1.5 h against S. pneumoniae and S. aureus, respectively. The efficacy of lefamulin correlated most strongly with the AUC0-24/MIC ratio; coefficient of determination was 79.9% for S. pneumoniae and 78.3% for S. aureus. The magnitude of the 24 h AUC/MIC of total drug required ranged from 9.92 to 32.1 for S. pneumoniae and 40.2 to 82.5 for S. aureus, corresponding to free drug values (∼20% free fraction) of 1.98-6.42 and 8.04-16.5, respectively. CONCLUSIONS Lefamulin, the first systemically available pleuromutilin in humans, exhibits time- and concentration-dependent killing. The presence of white blood cells had only a slight effect in enhancing the activity of the drug, indicating a leucocyte-independent effect. The identified driver of efficacy, the AUC0-24/MIC ratio and the ratios determined against various S. aureus and S. pneumoniae strains, will inform further non-clinical and clinical trials.
Collapse
Affiliation(s)
| | - William A Craig
- University of Wisconsin School of Medicine and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - David Andes
- University of Wisconsin School of Medicine and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
24
|
Heffernan AJ, Sime FB, Lipman J, Roberts JA. Individualising Therapy to Minimize Bacterial Multidrug Resistance. Drugs 2019; 78:621-641. [PMID: 29569104 DOI: 10.1007/s40265-018-0891-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scourge of antibiotic resistance threatens modern healthcare delivery. A contributing factor to this significant issue may be antibiotic dosing, whereby standard antibiotic regimens are unable to suppress the emergence of antibiotic resistance. This article aims to review the role of pharmacokinetic and pharmacodynamic (PK/PD) measures for optimising antibiotic therapy to minimise resistance emergence. It also seeks to describe the utility of combination antibiotic therapy for suppression of resistance and summarise the role of biomarkers in individualising antibiotic therapy. Scientific journals indexed in PubMed and Web of Science were searched to identify relevant articles and summarise existing evidence. Studies suggest that optimising antibiotic dosing to attain defined PK/PD ratios may limit the emergence of resistance. A maximum aminoglycoside concentration to minimum inhibitory concentration (MIC) ratio of > 20, a fluoroquinolone area under the concentration-time curve to MIC ratio of > 285 and a β-lactam trough concentration of > 6 × MIC are likely required for resistance suppression. In vitro studies demonstrate a clear advantage for some antibiotic combinations. However, clinical evidence is limited, suggesting that the use of combination regimens should be assessed on an individual patient basis. Biomarkers, such as procalcitonin, may help to individualise and reduce the duration of antibiotic treatment, which may minimise antibiotic resistance emergence during therapy. Future studies should translate laboratory-based studies into clinical trials and validate the appropriate clinical PK/PD predictors required for resistance suppression in vivo. Other adjunct strategies, such as biomarker-guided therapy or the use of antibiotic combinations require further investigation.
Collapse
Affiliation(s)
- A J Heffernan
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - F B Sime
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia
| | - J Lipman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - J A Roberts
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
- Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
25
|
Kidd JM, Abdelraouf K, Nicolau DP. Comparative efficacy of human-simulated epithelial lining fluid exposures of tedizolid, linezolid and vancomycin in neutropenic and immunocompetent murine models of staphylococcal pneumonia. J Antimicrob Chemother 2018; 74:970-977. [DOI: 10.1093/jac/dky513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- James M Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
26
|
Skovdal SM, Jørgensen NP, Petersen E, Jensen-Fangel S, Ogaki R, Zeng G, Johansen MI, Wang M, Rohde H, Meyer RL. Ultra-dense polymer brush coating reduces Staphylococcus epidermidis biofilms on medical implants and improves antibiotic treatment outcome. Acta Biomater 2018; 76:46-55. [PMID: 30078425 DOI: 10.1016/j.actbio.2018.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 01/09/2023]
Abstract
Staphylococcal biofilm formation is a severe complication of medical implants, leading to high antibiotic tolerance and treatment failure. Ultra-dense poly(ethylene glycol) (udPEG) coating resists adsorption of proteins, polysaccharides and extracellular DNA. It is therefore uniquely resistant to attachment by Staphylococcus epidermidis, which remains loosely adhered to the surface. Our aim was to determine if S. epidermidis remains susceptible to antibiotics when adhering to udPEG, and if udPEG coatings can improve the treatment outcome for implant-associated infections. We tested the in vitro efficacy of vancomycin treatment on recently adhered S. epidermidis AUH4567 on udPEG, conventional PEG or titanium surfaces using live/dead staining and microscopy. udPEG was then applied to titanium implants and inserted subcutaneously in mice and inoculated with S. epidermidis to induce infection. Mice were given antibiotic prophylaxis or a short antibiotic treatment. One group was given immunosuppressive therapy. After five days, implants and surrounding tissue were harvested for CFU enumeration. Only few S. epidermidis cells adhered to udPEG compared to conventional PEG and uncoated titanium, and a much lower fraction of cells on udPEG survived antibiotic treatment in vitro. In vivo, the bacterial load on implants in mice receiving vancomycin treatment was significantly lower on udPEG-coated compared to uncoated implants, also in neutropenic mice. Our results suggest that the improved outcome results from the coating's anti-adhesive properties that leads to less biofilm and increased efficacy of antibiotic treatment. Thus, the combination of udPEG with antibiotics is a promising strategy to prevent acute implant-associated infections that arise due to perioperative contaminations. STATEMENT OF SIGNIFICANCE Infections of medical implants is an ever-present danger. Here, bacteria develop biofilms that cannot be eradicated with antibiotics. By using an ultra-dense polymer-brush coating (udPEG), bacterial attachment and the subsequent biofilm formation can be reduced, resulting in increased antibiotic susceptibility of bacteria surrounding the implant. udPEG combined with antibiotics proved to significantly reduce bacteria on implants inserted into mice, in our animal model. As the coating is not antibacterial per se, it does not induce antimicrobial resistance and its effect is independent of the bacterial species. Our results are encouraging for the prospect of preventing and treating implant-associated infections that arise due to perioperative contaminations.
Collapse
Affiliation(s)
- Sandra M Skovdal
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark; Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus 8000, Denmark.
| | | | - Eskild Petersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Microbiology, Aarhus University Hospital, Aarhus 8200, Denmark.
| | - Søren Jensen-Fangel
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark.
| | - Ryosuke Ogaki
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus 8000, Denmark.
| | - Guanghong Zeng
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus 8000, Denmark.
| | - Mikkel Illemann Johansen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark; Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus 8000, Denmark
| | - Mikala Wang
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus 8200, Denmark.
| | - Holger Rohde
- Department of Medical Microbiology, Virology and Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus 8000, Denmark; Department of Bioscience, Faculty of Science and Technology, Aarhus University, Aarhus 8000, Denmark.
| |
Collapse
|
27
|
In Vivo and In Vitro Effects of a ClpP-Activating Antibiotic against Vancomycin-Resistant Enterococci. Antimicrob Agents Chemother 2018; 62:AAC.00424-18. [PMID: 29784838 DOI: 10.1128/aac.00424-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/06/2018] [Indexed: 01/14/2023] Open
Abstract
Antibiotics with novel bactericidal mechanisms of action are urgently needed. The antibiotic acyldepsipeptide 4 (ADEP4) activates the ClpP protease and causes cells to self-digest. The effects of ADEP4 and ClpP activation have not been characterized sufficiently for the enterococci, which are important pathogens known for high levels of acquired and intrinsic antibiotic resistance. In the present study, ADEP4 was found to be potently active against both Enterococcus faecalis and Enterococcus faecium, with MIC90s of 0.016 μg/ml and 0.031 μg/ml, respectively. ClpP purified from E. faecium was found to bind ADEP4 in a surface plasmon resonance analysis, and ClpP activation by ADEP4 was demonstrated biochemically with a β-casein digestion assay. In addition, E. faecium ClpP was crystallized in the presence of ADEP4, revealing ADEP4 binding to ClpP in the activated state. These results confirm that the anti-enterococcal activity of ADEP4 occurs through ClpP activation. In killing curve assays, ADEP4 was found to be bactericidal against stationary-phase vancomycin-resistant E. faecalis (VRE) strain V583, and resistance development was prevented when ADEP4 was combined with multiple classes of approved antibiotics. ADEP4 in combination with partnering antibiotics also eradicated mature VRE biofilms within 72 h of treatment. Biofilm killing with ADEP4 antibiotic combinations was superior to that with the clinically used combinations ampicillin-gentamicin and ampicillin-daptomycin. In a murine peritoneal septicemia model, ADEP4 alone was as effective as ampicillin. ADEP4 coadministered with ampicillin was significantly more effective than either drug alone. These data suggest that ClpP-activating antibiotics may be useful for treating enterococcal infections.
Collapse
|
28
|
Ramos-Martín V, Johnson A, McEntee L, Farrington N, Padmore K, Cojutti P, Pea F, Neely MN, Hope WW. Pharmacodynamics of teicoplanin against MRSA. J Antimicrob Chemother 2018; 72:3382-3389. [PMID: 28962026 DOI: 10.1093/jac/dkx289] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/17/2017] [Indexed: 11/14/2022] Open
Abstract
Objectives The overall study aim was to identify the relevant preclinical teicoplanin pharmacokinetic (PK)/pharmacodynamic (PD) indices to predict efficacy and suppression of resistance in MRSA infection. Methods A hollow-fibre infection model and a neutropenic murine thigh infection model were developed. The PK/PD data generated were modelled using a non-parametric population modelling approach with Pmetrics. The posterior Bayesian estimates derived were used to study the exposure-effect relationships. Monte Carlo simulations from previously developed population PK models in adults and children were conducted to explore the probability of target attainment (PTA) for teicoplanin dosage regimens against the current EUCAST WT susceptibility range. Results There was a concentration-dependent activity of teicoplanin in both the in vitro and in vivo models. A total in vivo AUC/MIC of 610.4 (total AUC of 305.2 mg·h/L) for an MRSA strain with an MIC of 0.5 mg/L was needed for efficacy (2 log10 cell kill) against a total bacterial population. A total AUC/MIC ratio of ∼1500 (total AUC of ∼750 mg·h/L) was needed to suppress the emergence of resistance. The PTA analyses showed that adult and paediatric patients receiving a standard regimen were only successfully treated for the in vivo bactericidal target if the MIC was ≤0.125 mg/L in adults and ≤0.064 mg/L in children. Conclusions This study improves our understanding of teicoplanin PD against MRSA and defines an in vivo AUC/MIC target for efficacy and suppression of resistance. Additional studies are needed to further corroborate the PK/PD index in a variety of infection models and in patients.
Collapse
Affiliation(s)
- V Ramos-Martín
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - A Johnson
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - L McEntee
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - N Farrington
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - K Padmore
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - P Cojutti
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital, ASUIUD, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - F Pea
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital, ASUIUD, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - M N Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute and The Division of Paediatric Infectious Diseases, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - W W Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
29
|
Andes DR, Lepak AJ. In vivo infection models in the pre-clinical pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Curr Opin Pharmacol 2017; 36:94-99. [DOI: 10.1016/j.coph.2017.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
30
|
Charles PE, Dargent A, Andreu P. Nouvelles molécules anti-infectieuses. Quelle place en médecine intensive réanimation pour le tédizolide, la ceftaroline et le ceftobiprole ? MEDECINE INTENSIVE REANIMATION 2017. [DOI: 10.1007/s13546-017-1271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Comparative In Vivo Efficacies of Tedizolid in Neutropenic versus Immunocompetent Murine Streptococcus pneumoniae Lung Infection Models. Antimicrob Agents Chemother 2016; 61:AAC.01957-16. [PMID: 27799200 DOI: 10.1128/aac.01957-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 11/20/2022] Open
Abstract
Given that tedizolid exhibits substantial lung penetration, we hypothesize that it could achieve good efficacy against Streptococcus pneumoniae lung infections. We evaluated the pharmacodynamics of tedizolid for treatment of S. pneumoniae lung infections and compared the efficacies of tedizolid human-simulated epithelial lining fluid (ELF) exposures in immunocompetent and neutropenic murine lung infection models. ICR mice were rendered neutropenic via intraperitoneal cyclophosphamide injections and then inoculated intranasally with S. pneumoniae suspensions. Immunocompetent CBA/J mice were inoculated similarly. Single daily tedizolid doses were administered 4 h postinoculation (termed 0 h). Changes in log10 CFU at 24 h compared with 0-h controls were estimated. Ratios of area under the free-drug concentration-time curve to MIC (fAUC0-24/MIC) required to achieve various efficacy endpoints against each isolate were estimated using the Hill equation. Tedizolid doses in neutropenic and immunocompetent mice that mimic the human-simulated ELF exposure were examined. Stasis, 1-log reduction, and 2-log reduction were achieved at fAUC0-24/MIC of 8.96, 24.62, and 48.34, respectively, in immunocompetent mice and 19.21, 48.29, and 103.95, respectively, in neutropenic mice. Tedizolid at 40 mg/kg of body weight/day and 55 mg/kg/day in immunocompetent and neutropenic mice, respectively, resulted in ELF AUC0-24 comparable to that achieved in humans following a 200-mg once-daily clinical dose. These human-simulated ELF exposures were adequate to attain >2-log reduction in bacterial burden at 24 h in 3 out of 4 isolates in both models and 1.58- and 0.74-log reductions with the fourth isolate in immunocompetent and neutropenic mice, respectively. Tedizolid showed potent in vivo efficacy against S. pneumoniae in both immunocompetent and neutropenic lung infection models, which support its consideration for S. pneumoniae lung infections.
Collapse
|
32
|
Park C, Kwon EY, Choi SM, Cho SY, Byun JH, Park JY, Lee DG, Kang JH, Shin J, Kim H. Comparative evaluation of a newly developed 13-valent pneumococcal conjugate vaccine in a mouse model. Hum Vaccin Immunother 2016; 13:1169-1176. [PMID: 27960627 PMCID: PMC5443391 DOI: 10.1080/21645515.2016.1261772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Animal models facilitate evaluation of vaccine efficacy at relatively low cost. This study was a comparative evaluation of the immunogenicity and protective efficacy of a new 13-valent pneumococcal conjugate vaccine (PCV13) with a control vaccine in a mouse model. After vaccination, anti-capsular antibody levels were evaluated by pneumococcal polysaccharide (PnP) enzyme-linked immunosorbent assay (ELISA) and opsonophagocytic killing assay (OPA). Also, mice were challenged intraperitoneally with 100-fold of the 50% lethal dose of Streptococcus pneumoniae. The anti-capsular IgG levels against serotypes 1, 4, 7F, 14, 18C, 19A, and 19F were high (quartile 2 >1,600), while those against the other serotypes were low (Q2 ≤ 800). Also, the OPA titres were similar to those determined by PnP ELISA. Comparative analysis between new PCV13 and control vaccination group in a mouse model exhibited significant differences in serological immunity of a few serotypes and the range of anti-capsular IgG in the population. Challenge of wild-type or neutropenic mice with serotypes 3, 5, 6A, 6B, and 9V showed protective immunity despite of induced relatively low levels of anti-capsular antibodies. With comparison analysis, a mouse model should be adequate for evaluating serological efficacy and difference in the population level as preclinical trial.
Collapse
Affiliation(s)
- Chulmin Park
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Eun-Young Kwon
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Su-Mi Choi
- b Division of Infectious Diseases , Department of Internal Medicine, College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Sung-Yeon Cho
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea.,b Division of Infectious Diseases , Department of Internal Medicine, College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Ji-Hyun Byun
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Jung Yeon Park
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Dong-Gun Lee
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea.,b Division of Infectious Diseases , Department of Internal Medicine, College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Jin Han Kang
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea.,c Department of Pediatrics , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Jinhwan Shin
- d School of Pharmacy , Sungkyunkwan University , Suwon , the Republic of Korea.,e SK Chemicals Co. Ltd ., Seongnam , Gynuggi-do , the Republic of Korea
| | - Hun Kim
- e SK Chemicals Co. Ltd ., Seongnam , Gynuggi-do , the Republic of Korea
| |
Collapse
|
33
|
Antibacterial activity of the novel semisynthetic lantibiotic NVB333 in vitro and in experimental infection models. J Antibiot (Tokyo) 2016; 69:850-857. [PMID: 27189121 DOI: 10.1038/ja.2016.47] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/26/2016] [Accepted: 04/03/2016] [Indexed: 12/19/2022]
Abstract
NVB333 is a novel semisynthetic lantibiotic derived from the amide coupling of 3,5-dichlorobenzylamine to the C-terminal of deoxyactagardine B. The in vitro activity of NVB333 includes efficacy against clinically relevant pathogens including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus spp. NVB333 shows no cross-resistance with other antibiotics tested and a very low propensity for resistance development. After intravenous dosing NVB333 has high exposure in mouse plasma and shows generally improved in vivo activity compared with vancomycin in mouse infection models despite modest MIC values. In thigh infection models, promising efficacy was demonstrated against several strains of S. aureus including methicillin-resistant S. aureus (MRSA) and vancomycin-intermediate S. aureus (VISA) strains, and against Enterococcus faecalis UNT126-3. Area under the concentration curve (AUC)/MIC was shown to be the best predictor of efficacy against S. aureus UNT103-3 with an AUC/MIC of 138 (uncorrected for protein binding) achieving a static effect. NVB333 was also effective in a disseminated infection model where it conferred complete survival from the MRSA strain ATCC 33591. NVB333 showed rather modest lung penetration after intravenous dosing (AUC in lung 2-3% of plasma AUC), but because of very high plasma exposure, therapeutic levels of compound were achieved in the lung. Efficacy at least equal to vancomycin was demonstrated against an MRSA strain (UNT084-3) in a bronchoalveolar infection model. The impressive in vivo efficacy of NVB333 and strong resistance prognosis makes this compound an interesting candidate for development for treating systemic Gram-positive infections.
Collapse
|
34
|
Sequential Evolution of Vancomycin-Intermediate Resistance Alters Virulence in Staphylococcus aureus: Pharmacokinetic/Pharmacodynamic Targets for Vancomycin Exposure. Antimicrob Agents Chemother 2015; 60:1584-91. [PMID: 26711763 DOI: 10.1128/aac.02657-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/13/2015] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus possesses exceptional virulence and a remarkable ability to adapt in the face of antibiotic therapy. We examined the in vitro evolution of S. aureus in response to escalating vancomycin exposure by evaluating bacterial killing and the progression of resistance. A hollow-fiber infection model was utilized to simulate human doses of vancomycin increasing from 0.5 to 4 g every 12 h (q12h) versus a high inoculum (10(8) CFU/ml) of methicillin-resistant S. aureus (MRSA) USA300 and USA400. Host-pathogen interactions using Galleria mellonella and accessory gene regulator (agr) expression were studied in serially obtained isolates. In both USA300 and USA400 MRSA isolates, vancomycin exposure up to 2 g q12h resulted in persistence and regrowth, whereas 4 g administered q12h achieved sustained killing against both strains. As vancomycin exposure increased from 0.5 to 2 g q12h, the bacterial population shifted toward vancomycin-intermediate resistance, and collateral increases in the MICs of daptomycin and televancin were observed over 10 days. Guideline-recommended exposure of a ratio of the area under the concentration-time curve for the free, unbound fraction of the drug to the MIC (fAUC/MIC ratio) of 200 displayed a 0.344-log bacterial reduction in area, whereas fAUC/MICs of 371 and 554 were needed to achieve 1.00- and 2.00-log reductions in area, respectively. The stepwise increase in resistance paralleled a decrease in G. mellonella mortality (P = 0.021) and a gradual decline of RNAIII expression over 10 days. Currently recommended doses of vancomycin resulted in amplification of resistance and collateral damage to other antibiotics. Decreases in agr expression and virulence during therapy may be an adaptive mechanism of S. aureus persistence.
Collapse
|
35
|
In Vivo Pharmacodynamics of Cefquinome in a Neutropenic Mouse Thigh Model of Streptococcus suis Serotype 2 at Varied Initial Inoculum Sizes. Antimicrob Agents Chemother 2015; 60:1114-20. [PMID: 26666923 DOI: 10.1128/aac.02065-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis serotype 2 is an emerging zoonotic pathogen and causes severe disease in both pigs and human beings. Cefquinome (CEQ), a fourth-generation cephalosporin, exhibits broad-spectrum activity against Gram-positive bacteria such as S. suis. This study evaluated the in vitro and in vivo antimicrobial activities of CEQ against four strains of S. suis serotype 2 in a murine neutropenic thigh infection model. We investigated the effect of varied inoculum sizes (10(6) to 10(8) CFU/thigh) on the pharmacokinetic (PK)/pharmacodynamic (PD) indices and magnitudes of a particular PK/PD index or dose required for efficacy. Dose fractionation studies included total CEQ doses ranging from 0.625 to 640 mg/kg/24 h. Data were analyzed via a maximum effect (Emax) model using nonlinear regression. The PK/PD studies demonstrated that the percentage of time that serum drug levels were above the MIC of free drug (%ƒT>MIC) in a 24-h dosing interval was the primary index driving the efficacy of both inoculum sizes (R(2) = 91% and R(2) = 63%). CEQ doses of 2.5 and 40 mg/kg body weight produced prolonged postantibiotic effects (PAEs) of 2.45 to 8.55 h. Inoculum sizes had a significant influence on CEQ efficacy. Compared to the CEQ exposure and dosages in tests using standard inocula, a 4-fold dose (P = 0.006) and a 2-fold exposure time (P = 0.01) were required for a 1-log kill using large inocula of 10(8) CFU/thigh.
Collapse
|
36
|
Pharmacokinetics/Pharmacodynamics of Peptide Deformylase Inhibitor GSK1322322 against Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus in Rodent Models of Infection. Antimicrob Agents Chemother 2015; 60:180-9. [PMID: 26482300 DOI: 10.1128/aac.01842-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
GSK1322322 is a novel inhibitor of peptide deformylase (PDF) with good in vitro activity against bacteria associated with community-acquired pneumonia and skin infections. We have characterized the in vivo pharmacodynamics (PD) of GSK1322322 in immunocompetent animal models of infection with Streptococcus pneumoniae and Haemophilus influenzae (mouse lung model) and with Staphylococcus aureus (rat abscess model) and determined the pharmacokinetic (PK)/PD index that best correlates with efficacy and its magnitude. Oral PK studies with both models showed slightly higher-than-dose-proportional exposure, with 3-fold increases in area under the concentration-time curve (AUC) with doubling doses. GSK1322322 exhibited dose-dependent in vivo efficacy against multiple isolates of S. pneumoniae, H. influenzae, and S. aureus. Dose fractionation studies with two S. pneumoniae and S. aureus isolates showed that therapeutic outcome correlated best with the free AUC/MIC (fAUC/MIC) index in S. pneumoniae (R(2), 0.83), whereas fAUC/MIC and free maximum drug concentration (fCmax)/MIC were the best efficacy predictors for S. aureus (R(2), 0.9 and 0.91, respectively). Median daily fAUC/MIC values required for stasis and for a 1-log10 reduction in bacterial burden were 8.1 and 14.4 for 11 S. pneumoniae isolates (R(2), 0.62) and 7.2 and 13.0 for five H. influenzae isolates (R(2), 0.93). The data showed that for eight S. aureus isolates, fAUC correlated better with efficacy than fAUC/MIC (R(2), 0.91 and 0.76, respectively), as efficacious AUCs were similar for all isolates, independent of their GSK1322322 MIC (range, 0.5 to 4 μg/ml). Median fAUCs of 2.1 and 6.3 μg · h/ml were associated with stasis and 1-log10 reductions, respectively, for S. aureus.
Collapse
|
37
|
New antibiotics against gram-positives: present and future indications. Curr Opin Pharmacol 2015; 24:45-51. [PMID: 26232669 DOI: 10.1016/j.coph.2015.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 11/23/2022]
Abstract
Gram-positive cocci are the most frequent aetiology of community and nosocomially bacterial acquired infections. The prevalence of multidrug-resistant gram-positive bacteria is increasing and is associated with high morbidity and mortality. New antibiotics will be available in the European market during the next months. This revision is focused on lipoglycopeptides, new cephalosporins active against methicillin-resistant Staphylococcus aureus (MRSA) and the new oxazolidinone, tedizolid. The purpose of this review is to describe their in vitro activity, pharmacokinetic and pharmacodynamic characteristics, and experience from clinical trials.
Collapse
|
38
|
Syed YY. Ceftobiprole medocaril: a review of its use in patients with hospital- or community-acquired pneumonia. Drugs 2015; 74:1523-42. [PMID: 25117196 DOI: 10.1007/s40265-014-0273-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ceftobiprole, the active metabolite of the prodrug ceftobiprole medocaril (Zevtera(®)), is a new generation broad-spectrum intravenous cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Ceftobiprole exhibits potent in vitro activity against a number of Gram-positive and Gram-negative pathogens associated with hospital-acquired pneumonia (HAP) and community-acquired pneumonia (CAP). It is the first cephalosporin monotherapy approved in the EU for the treatment of both HAP (excluding ventilator associated-pneumonia [VAP]) and CAP. In phase III trials, ceftobiprole medocaril was noninferior, in terms of clinical cure rates at the test-of-cure visit, to ceftazidime plus linezolid in patients with HAP and to ceftriaxone ± linezolid in patients with CAP severe enough to require hospitalization. In patients with HAP, noninferiority of ceftobiprole medocaril to ceftazidime plus linezolid was not demonstrated in a subset of patients with VAP. In patients with CAP, ceftobiprole medocaril was effective in those at risk for poor outcomes (pneumonia severity index ≥91, Pneumonia Patient Outcomes Research Team score IV-V or bacteraemic pneumonia). In the phase III trials, ceftobiprole medocaril was generally well tolerated, with ≈10 % of patients discontinuing the treatment because of adverse events. The most common treatment-related adverse events occurring in ceftobiprole recipients in the trials in patients with HAP or CAP included nausea, diarrhoea, infusion site reactions, vomiting, hepatic enzyme elevations and hyponatraemia. Therefore, ceftobiprole medocaril monotherapy offers a simplified option for the initial empirical treatment of patients with HAP (excluding VAP) and in those with CAP requiring hospitalization.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer, Private Bag 65901, Mairangi Bay 0754, Auckland, New Zealand,
| |
Collapse
|
39
|
In vivo pharmacokinetics and pharmacodynamics of the lantibiotic NAI-107 in a neutropenic murine thigh infection model. Antimicrob Agents Chemother 2014; 59:1258-64. [PMID: 25512404 DOI: 10.1128/aac.04444-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NAI-107 is a novel lantibiotic compound with potent in vitro activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The purpose of this study was to examine the activity of NAI-107 against S. aureus strains, including MRSA, in the neutropenic murine thigh infection model. Serum pharmacokinetics were determined and time-kill studies were performed following administration of single subcutaneous doses of 5, 20, and 80 mg/kg body weight. The dose fractionation included total doses ranging from 1.56 to 400 mg/kg/72 h, divided into 1, 2, 3, or 6 doses. Studies of treatment effects against 9 S. aureus strains (4 methicillin-susceptible Staphylococcus aureus [MSSA] and 5 MRSA) using a 12-h dosing interval and total dose range of 1.56 to 400 mg/kg/72 h were also performed. A maximum effect (Emax) model was used to determine the pharmacokinetic/pharmacodynamic (PK/PD) index that best described the dose-response data and to estimate the doses required to achieve a net bacteriostatic dose (SD) and a 1-log reduction in CFU/thigh. The pharmacokinetic studies demonstrated an area under the concentration-time curve (AUC) range of 26.8 to 276 mg·h/liter and half-lives of 4.2 to 8.2 h. MICs ranged from 0.125 to 0.5 μg/ml. The 2 highest single doses produced more than a 2-log kill and prolonged postantibiotic effects (PAEs) ranging from 36 to >72 h. The dose fractionation-response curves were similar, and the AUC/MIC ratio was the most predictive PD index (AUC/MIC, coefficient of determination [R2]=0.89; maximum concentration of drug in serum [Cmax]/MIC, R2=0.79; time [T]>MIC, R2=0.63). A ≥2-log kill was observed against all 9 S. aureus strains. The total drug 24-h AUC/MIC values associated with stasis and a 1-log kill for the 9 S. aureus strains were 371±130 and 510±227, respectively. NAI-107 demonstrated concentration-dependent killing and prolonged PAEs. The AUC/MIC ratio was the predictive PD index. Extensive killing was observed for S. aureus organisms, independent of the MRSA status. The AUC/MIC target should be useful for the design of clinical dosing regimens.
Collapse
|
40
|
Mei Q, Ye Y, Zhu YL, Cheng J, Chang X, Liu YY, Li HR, Li JB. Testing the mutant selection window hypothesis in vitro and in vivo with Staphylococcus aureus exposed to fosfomycin. Eur J Clin Microbiol Infect Dis 2014; 34:737-44. [PMID: 25424036 DOI: 10.1007/s10096-014-2285-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/13/2014] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to test the mutant selection window (MSW) hypothesis in vitro and in vivo with Staphylococcus aureus exposed to fosfomycin. With the in vitro time-kill studies, S. aureus ATCC 29213 [with a minimal concentration that inhibits colony formation by 99% (MIC99) of 2.2 μg/mL and a mutant prevention concentration (MPC) of 57.6 μg/mL] lost fosfomycin susceptibility at antibiotic concentrations (2×, 4×, and 8× MIC) that are between the lower and upper boundaries of the MSW. In the tissue-cage model, S. aureus was exposed to fosfomycin pharmacokinetics at concentrations below the MIC99, between the MIC99 and the MPC, and above the MPC, respectively. Changes in susceptibility and counts of total and resistant viable bacteria were monitored in tissue-cage fluid obtained daily. However, the selection of resistant mutants was not observed during antibacterial treatment and 48 h after the termination of fosfomycin treatment, regardless of the fosfomycin dosage. Besides, we found no differences between the in vitro-isolated mutant and its sensitive parental strain, which indicates the absence of fitness cost of fosfomycin resistance in S. aureus ATCC 29213. These findings demonstrate that agar plate determinations do not fit the MSW for fosfomycin treatment of rabbits infected with S. aureus ATCC 29213; therefore, the existence of the window must be demonstrated not only in vitro but also in vivo. Further research is needed on the exact mechanism of resistance.
Collapse
Affiliation(s)
- Q Mei
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
So W, Crandon JL, Zhanel GG, Nicolau DP. Comparison of in vivo and in vitro pharmacodynamics of a humanized regimen of 600 milligrams of Ceftaroline Fosamil every 12 hours against Staphylococcus aureus at initial inocula of 106 and 108 CFU per milliliter. Antimicrob Agents Chemother 2014; 58:6931-3. [PMID: 25136006 PMCID: PMC4249378 DOI: 10.1128/aac.03652-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/08/2014] [Indexed: 11/20/2022] Open
Abstract
In light of the in vivo/in vitro discordance among beta-lactams against Gram-negative pathogens, we compared the in vivo pharmacodynamics of humanized ceftaroline against 9 Staphylococcus aureus strains (MICs of 0.13 to 1 mg/liter) from published in vitro studies using standard and high inocula in the murine thigh infection model. Consistent with the in vitro findings, mean reductions of ≥1 log10 CFU were observed for ceftaroline against all strains using both standard and high inocula. These results suggest in vivo/in vitro concordance with no observed inoculum effect.
Collapse
Affiliation(s)
- Wonhee So
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Jared L Crandon
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
42
|
Zuluaga AF, Rodriguez CA, Agudelo M, Vesga O. About the validation of animal models to study the pharmacodynamics of generic antimicrobials. Clin Infect Dis 2014; 59:459-61. [PMID: 24785234 DOI: 10.1093/cid/ciu306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andres F Zuluaga
- Grupo Investigador de Problemas en Enfermedades Infecciosas (GRIPE) Department of Pharmacology and Toxicology
| | - Carlos A Rodriguez
- Grupo Investigador de Problemas en Enfermedades Infecciosas (GRIPE) Department of Pharmacology and Toxicology
| | - Maria Agudelo
- Grupo Investigador de Problemas en Enfermedades Infecciosas (GRIPE) Department of Pharmacology and Toxicology
| | - Omar Vesga
- Grupo Investigador de Problemas en Enfermedades Infecciosas (GRIPE) Department of Pharmacology and Toxicology Department of Internal Medicine, School of Medicine, Universidad de Antioquia Department of Infectious Diseases Unit, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| |
Collapse
|
43
|
Bulitta JB, Kinzig M, Jakob V, Holzgrabe U, Sörgel F, Holford NHG. Nonlinear pharmacokinetics of piperacillin in healthy volunteers--implications for optimal dosage regimens. Br J Clin Pharmacol 2010; 70:682-93. [PMID: 21039762 PMCID: PMC2997308 DOI: 10.1111/j.1365-2125.2010.03750.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 06/25/2010] [Indexed: 11/30/2022] Open
Abstract
AIMS (i) To describe the first-order and mixed-order elimination pathways of piperacillin, (ii) to determine the between occasion variability (BOV) of pharmacokinetic parameters and (iii) to propose optimized dosage regimens. METHODS We performed a five-period replicate dose study in four healthy volunteers. Each subject received 4g piperacillin as a single 5min intravenous infusion in each study period. Drug analysis was performed by HPLC. We used NONMEM and S-ADAPT for population pharmacokinetic analysis and Monte Carlo simulation to predict the probability of target attainment (PTA) with a target time of non-protein bound concentration above MIC >50% of the dosing interval. RESULTS A model with first-order nonrenal elimination and parallel first-order and mixed-order renal elimination had the best predictive performance. For a 70kg subject we estimated 4.40lh(-1) for nonrenal clearance, 5.70lh(-1) for first-order renal clearance, 170mgh(-1) for V(max) , and 49.7mgl(-1) for K(m) for the mixed-order renal elimination. The BOV was 39% for V(max) , 117% for K(m) , and 8.5% for total clearance. A 30min infusion of 4g every 6h achieved robust (≥90%) PTAs for MICs ≤12mgl(-1) . As an alternative mode of administration, a 5h infusion of 6g every 8h achieved robust PTAs for MICs ≤48mgl(-1) . CONCLUSIONS Part of the renal elimination of piperacillin is saturable at clinically used doses. The BOV of total clearance and volume of distribution were low. Prolonged infusions achieved better PTAs compared with shorter infusions at similar daily doses. This benefit was most pronounced for MICs between 12 and 48mgl(-1) .
Collapse
Affiliation(s)
- Jürgen B Bulitta
- IBMP – Institute for Biomedical and Pharmaceutical Research, Nürnberg-HeroldsbergWürzburg, Germany
| | - Martina Kinzig
- IBMP – Institute for Biomedical and Pharmaceutical Research, Nürnberg-HeroldsbergWürzburg, Germany
| | - Verena Jakob
- IBMP – Institute for Biomedical and Pharmaceutical Research, Nürnberg-HeroldsbergWürzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of WürzburgWürzburg, Germany
| | - Fritz Sörgel
- IBMP – Institute for Biomedical and Pharmaceutical Research, Nürnberg-HeroldsbergWürzburg, Germany
- Department of Pharmacology, University of Duisburg – EssenEssen, Germany
| | - Nicholas H G Holford
- Department of Pharmacology and Clinical Pharmacology, University of AucklandAuckland, New Zealand
| |
Collapse
|
44
|
Rose WE, Leonard SN, Rossi KL, Kaatz GW, Rybak MJ. Impact of inoculum size and heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) on vancomycin activity and emergence of VISA in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 2009; 53:805-7. [PMID: 19015334 PMCID: PMC2630635 DOI: 10.1128/aac.01009-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/04/2008] [Accepted: 11/11/2008] [Indexed: 11/20/2022] Open
Abstract
The activity of vancomycin against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and non-hVISA isolates, using an in vitro pharmacodynamic model, was reduced in the presence of a high inoculum amount (10(8) CFU/ml). A high bacterial load of >10(5) CFU/ml persisted for all strains with doses up to 5 g every 12 h against high inoculum amounts. No change in the vancomycin MIC was detected in any isolate at a moderate inoculum amount (10(6) CFU/ml), and bactericidal activity occurred only against the non-hVISA isolate (time to 99% kill, 7.5 h; P = 0.001).
Collapse
Affiliation(s)
- Warren E Rose
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|