1
|
qnrE1, a Member of a New Family of Plasmid-Located Quinolone Resistance Genes, Originated from the Chromosome of Enterobacter Species. Antimicrob Agents Chemother 2017; 61:AAC.02555-16. [PMID: 28193666 DOI: 10.1128/aac.02555-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
qnrE1, found in a clinical Klebsiella pneumoniae isolate, was undetectable by PCR assays used for the six qnr families. qnrE1 was located on a conjugative plasmid (ca. 185 kb) and differed from qnrB alleles by 25%. Phylogenetic reconstructions of qnr genes and proteins and analysis of the qnrE1 surroundings showed that this gene belongs to a new qnr family and was likely mobilized by ISEcp1 from the chromosome of Enterobacter spp. to plasmids of K. pneumoniae.
Collapse
|
3
|
Falgenhauer L, Ghosh H, Guerra B, Yao Y, Fritzenwanker M, Fischer J, Helmuth R, Imirzalioglu C, Chakraborty T. Comparative genome analysis of IncHI2 VIM-1 carbapenemase-encoding plasmids of Escherichia coli and Salmonella enterica isolated from a livestock farm in Germany. Vet Microbiol 2015; 200:114-117. [PMID: 26411323 DOI: 10.1016/j.vetmic.2015.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/16/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae are not any more isolated only from human settings, but also from livestock. We reported for the first time the presence of VIM-1 carbapenemases in a livestock farm in Germany. The VIM-1 resistance gene found in these farms was located on IncHI2 plasmids. In order to be able to analyse these plasmids in more detail, two different plasmids from a single farm (pRH-R27 from Salmonella enterica and pRH-R178 from Escherichia coli) were completely sequenced and analysed for the presence of antibiotic and heavy metal resistances. The plasmids showed to harbour blaVIM-1, aacA4, aadA1, sul1, qacEΔ (encoded in an In110 class 1 integron), as well as blaACC-1, strA/strB, and catA1 genes together with resistance to heavy metals (ter-, mer-, sil-, ars-, rcn-, and pco). Comparison with other IncHI2 plasmid revealed that while pRH-R27 is a mosaic IncHI2 plasmid with both high homology to the plasmid pSTm-A54650 and R478, both isolated from humans, pRH-R178 is a deletion derivative of pRH-R27, presumably caused by several IS-mediated deletions indicating genetic evolution of plasmids in this environment.
Collapse
Affiliation(s)
- Linda Falgenhauer
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Hiren Ghosh
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Beatriz Guerra
- Federal Institute for Risk Assessment, National Reference Laboratory for Antimicrobial Resistance, Department Biological Safety, Berlin, Germany
| | - Yancheng Yao
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Jennie Fischer
- Federal Institute for Risk Assessment, National Reference Laboratory for Antimicrobial Resistance, Department Biological Safety, Berlin, Germany
| | - Reiner Helmuth
- Federal Institute for Risk Assessment, National Reference Laboratory for Antimicrobial Resistance, Department Biological Safety, Berlin, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany.
| |
Collapse
|
4
|
Mobile genetic elements related to the diffusion of plasmid-mediated AmpC β-lactamases or carbapenemases from Enterobacteriaceae: findings from a multicenter study in Spain. Antimicrob Agents Chemother 2015; 59:5260-6. [PMID: 26077249 DOI: 10.1128/aac.00562-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
We examined the genetic context of 74 acquired ampC genes and 17 carbapenemase genes from 85 of 640 Enterobacteriaceae isolates collected in 2009. Using S1 pulsed-field gel electrophoresis and Southern hybridization, 37 of 74 bla AmpC genes were located on large plasmids of different sizes belonging to six incompatibility groups. We used sequencing and PCR mapping to investigate the regions flanking the acquired ampC genes. The bla CMY-2-like genes were associated with ISEcp1; the surrounding bla DHA genes were similar to Klebsiella pneumoniae plasmid pTN60013 associated with IS26 and the psp and sap operons; and the bla ACC-1 genes were associated with IS26 elements inserted into ISEcp1. All of the carbapenemase genes (bla VIM-1, bla IMP-22, and bla IMP-28) were located in class 1 integrons. Therefore, although plasmids are the main cause of the rapid dissemination of ampC genes among Enterobacteriaceae, we need to be aware that other mobile genetic elements, such as insertion sequences, transposons, or integrons, can be involved in the mobilization of these genes of chromosomal origin. Additionally, three new integrons (In846 to In848) are described in this study.
Collapse
|
5
|
Ben Aissa M, Herteg Fernea A, Bouraoui H, Ben Aissa R, Mercuri PS, Manai M. Molecular characterization of plasmid-encoded ACC-1a4 β-lactamase produced by Salmonella strains isolated from water in a Tunisian hospital. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-011-0221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Mata C, Miró E, Alvarado A, Garcillán-Barcia MP, Toleman M, Walsh TR, de la Cruz F, Navarro F. Plasmid typing and genetic context of AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: findings from a Spanish hospital 1999–2007. J Antimicrob Chemother 2011; 67:115-22. [DOI: 10.1093/jac/dkr412] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Abstract
Antibiotic resistance in Gram-negative bacteria is often due to the acquisition of resistance genes from a shared pool. In multiresistant isolates these genes, together with associated mobile elements, may be found in complex conglomerations on plasmids or on the chromosome. Analysis of available sequences reveals that these multiresistance regions (MRR) are modular, mosaic structures composed of different combinations of components from a limited set arranged in a limited number of ways. Components common to different MRR provide targets for homologous recombination, allowing these regions to evolve by combinatorial evolution, but our understanding of this process is far from complete. Advances in technology are leading to increasing amounts of sequence data, but currently available automated annotation methods usually focus on identifying ORFs and predicting protein function by homology. In MRR, where the genes are often well characterized, the challenge is to identify precisely which genes are present and to define the boundaries of complete and fragmented mobile elements. This review aims to summarize the types of mobile elements involved in multiresistance in Gram-negative bacteria and their associations with particular resistance genes, to describe common components of MRR and to illustrate methods for detailed analysis of these regions.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia.
| |
Collapse
|
9
|
Sequence of pR3521, an IncB plasmid from Escherichia coli encoding ACC-4, SCO-1, and TEM-1 beta-lactamases. Antimicrob Agents Chemother 2010; 55:376-81. [PMID: 20956594 DOI: 10.1128/aac.00875-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequence of pR3521, a self-transmissible plasmid from Escherichia coli, was determined. pR3521 (110,416 bp) comprised a contiguous IncB sequence (84,034 bp) sharing extensive similarities with IncI replicons and an acquired region (26,382 bp) carrying sequences of diverse origin, containing bla(ACC-4), bla(SCO-1), bla(TEM-1b) (two copies), strA, strB, sul2, and aacC2.
Collapse
|
10
|
Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Herman L, Haesebrouck F, Butaye P. Broad-spectrum β-lactamases amongEnterobacteriaceaeof animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol Rev 2010; 34:295-316. [DOI: 10.1111/j.1574-6976.2009.00198.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Abstract
SUMMARY AmpC beta-lactamases are clinically important cephalosporinases encoded on the chromosomes of many of the Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and beta-lactamase inhibitor-beta-lactam combinations. In many bacteria, AmpC enzymes are inducible and can be expressed at high levels by mutation. Overexpression confers resistance to broad-spectrum cephalosporins including cefotaxime, ceftazidime, and ceftriaxone and is a problem especially in infections due to Enterobacter aerogenes and Enterobacter cloacae, where an isolate initially susceptible to these agents may become resistant upon therapy. Transmissible plasmids have acquired genes for AmpC enzymes, which consequently can now appear in bacteria lacking or poorly expressing a chromosomal bla(AmpC) gene, such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Resistance due to plasmid-mediated AmpC enzymes is less common than extended-spectrum beta-lactamase production in most parts of the world but may be both harder to detect and broader in spectrum. AmpC enzymes encoded by both chromosomal and plasmid genes are also evolving to hydrolyze broad-spectrum cephalosporins more efficiently. Techniques to identify AmpC beta-lactamase-producing isolates are available but are still evolving and are not yet optimized for the clinical laboratory, which probably now underestimates this resistance mechanism. Carbapenems can usually be used to treat infections due to AmpC-producing bacteria, but carbapenem resistance can arise in some organisms by mutations that reduce influx (outer membrane porin loss) or enhance efflux (efflux pump activation).
Collapse
|