1
|
Hu Y, Yang L, Lai Y. Recent findings regarding the synergistic effects of emodin and its analogs with other bioactive compounds: Insights into new mechanisms. Biomed Pharmacother 2023; 162:114585. [PMID: 36989724 DOI: 10.1016/j.biopha.2023.114585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
CONTEXT Emodin is a natural bioactive ingredient mainly extracted from traditional Chinese herbs. Increasing lines of evidence suggest that emodin and its analogs exert notable synergistic pharmacological effects with other bioactive compounds. OBJECTIVE This review provides an overview of the pharmacological activity of emodin and its analogs in combination with other physiologically active substances, describes the related molecular mechanisms, and discusses future prospects in this field. METHODS Information from multiple scientific databases, such as PubMed, the China Knowledge Resource Integrated Database from the China National Knowledge Infrastructure (CNKI), the Web of Science, Google Scholar, and Baidu Scholar, was collected between January 2006 and August 2022. The subject terms used in the literature search were emodin, pharmaceutical activities, analogs, aloe emodin, rhein, and synergistic effects. RESULTS The comprehensive literature analysis suggested that combinations of emodin or its analogs with other bioactive compounds exert notable synergistic anticancer, anti-inflammatory, and antimicrobial effects and that such combinations improve glucose and lipid metabolism and central nervous system diseases. DISCUSSION AND CONCLUSIONS Further assessments of the dose-effect relationship and the differences in the efficacy of emodin or its analogs with other bioactive compounds among various modes of administration are needed, and a drug safety evaluation of these combinations needs to be carefully performed. Future studies should also focus on determining the optimal drug combinations for specific diseases.
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW To review available data on carbapenem use in ICU. Carbapenem is a broad spectrum well tolerated antibiotic family that keep an excellent activity to extended spectrum β-lactamases and AmpC hyperproducer and in susceptible Pseudomonas aeruginosa and Acinetobacter baumannii. It becomes a drug of choice for empirical therapy of suspected sepsis in known or presumably known ESBLE carriers. RECENT FINDINGS Carbapenems remained the drug of choice for severe ESBLE infections. In severe critically ill patients, high off-label dose is necessary especially in patients with sepsis and glomerular hyperfiltration. Nevertheless, large spectrum of carbapenems leads to initial overuse. The increase in the overall consumption in the past years with lack of systematic re-evaluation observed is responsible of and carbapenem-selection pressure that contribute to the increase of carbapenem-resistant enterobacteriaceae, A. Baumannii and P. Aeruginosa in ICUs. SUMMARY Carbapenems remained a cornerstone of antibiotic therapy of severe infections. Emerging carbapenem resistance is related to the increase of carbapenem consumption. High doses are recommended for early therapy followed by systematic reevaluation on a daily basis with shift to narrow spectrum antimicrobials if possible and early stopping rules.
Collapse
|
3
|
Koulenti D, Xu E, Song A, Sum Mok IY, Karageorgopoulos DE, Armaganidis A, Tsiodras S, Lipman J. Emerging Treatment Options for Infections by Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms 2020; 8:E191. [PMID: 32019171 PMCID: PMC7074912 DOI: 10.3390/microorganisms8020191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial agents are currently the mainstay of treatment for bacterial infections worldwide. However, due to the increased use of antimicrobials in both human and animal medicine, pathogens have now evolved to possess high levels of multi-drug resistance, leading to the persistence and spread of difficult-to-treat infections. Several current antibacterial agents active against Gram-positive bacteria will be rendered useless in the face of increasing resistance rates. There are several emerging antibiotics under development, some of which have been shown to be more effective with an improved safety profile than current treatment regimens against Gram-positive bacteria. We will extensively discuss these antibiotics under clinical development (phase I-III clinical trials) to combat Gram-positive bacteria, such as Staphylococcus aureus, Enterococcus faecium and Streptococcus pneumoniae. We will delve into the mechanism of actions, microbiological spectrum, and, where available, the pharmacokinetics, safety profile, and efficacy of these drugs, aiming to provide a comprehensive review to the involved stakeholders.
Collapse
Affiliation(s)
- Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (E.X.); (A.S.); (I.Y.S.M.); (J.L.)
- 2nd Critical Care Department, Attikon University Hospital, 12462 Athens, Greece;
| | - Elena Xu
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (E.X.); (A.S.); (I.Y.S.M.); (J.L.)
| | - Andrew Song
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (E.X.); (A.S.); (I.Y.S.M.); (J.L.)
| | - Isaac Yin Sum Mok
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (E.X.); (A.S.); (I.Y.S.M.); (J.L.)
| | - Drosos E. Karageorgopoulos
- 4th Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece; (D.E.K.); (S.T.)
| | | | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece; (D.E.K.); (S.T.)
| | - Jeffrey Lipman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (E.X.); (A.S.); (I.Y.S.M.); (J.L.)
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- Anesthesiology and Critical Care, Centre Hospitalier Universitaire De Nîmes (CHU), University of Montpellier, 30029 Nîmes, France
| |
Collapse
|
4
|
Recent updates of carbapenem antibiotics. Eur J Med Chem 2017; 131:185-195. [PMID: 28324783 DOI: 10.1016/j.ejmech.2017.03.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/01/2017] [Accepted: 03/14/2017] [Indexed: 11/23/2022]
Abstract
Carbapenems are among the most commonly used and the most efficient antibiotics since they are relatively resistant to hydrolysis by most β-lactamases, they target penicillin-binding proteins, and generally have broad-spectrum antibacterial effect. In this review, we described the initial discovery and development of carbapenems, chemical characteristics, in vitro/in vivo activities, resistance studies, and clinical investigations for traditional carbapenem antibiotics in the market; imipenem-cilastatin, meropenem, ertapenem, doripenem, biapenem, panipenem/betamipron in addition to newer carbapenems such as razupenem, tebipenem, tomopenem, and sanfetrinem. We focused on the literature published from 2010 to 2016.
Collapse
|
5
|
Ansari MA, Shaikh S, Shakil S, Rizvi SMD. An enzoinformatics study for prediction of efficacies of three novel penem antibiotics against New Delhi metallo-β-lactamase-1 bacterial enzyme. Interdiscip Sci 2014; 6:208-15. [PMID: 25205498 DOI: 10.1007/s12539-013-0202-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/26/2013] [Accepted: 10/23/2013] [Indexed: 11/29/2022]
Abstract
New Delhi metallo-beta-lactamase (NDM-1) is a beta-lactamase (class B carbapenemase) containing Zn(2+) and other divalent cations as cofactors which possesses the ability to inactivate all beta lactams (including carbapenems) except aztreonam by catalyzing the hydrolytic cleavage of the substrate amide bond. Carbapenemases are either serine enzymes or metallo-β-lactamases (MBLs) that utilize at least one zinc ion for hydrolysis. The present study describes the molecular interaction of carbapenems (Imipenem, Meropenem, Ertapenem, Doripenem, Panipenem, Biapenem, Razupenem, Faropenem, Tebipenem and Tomopenem) with NDM-1, β-lactamase enzyme. Docking between NDM-1 and each of these carbapenems (separately) was performed using 'Autodock4.2'.
Collapse
|
6
|
Ansari MA, Shaikh S, Shakil S, Rizvi SMD. An enzoinformatics study for prediction of efficacies of three novel penem antibiotics against New Delhi metallo-β-lactamase-1 bacterial enzyme. Interdiscip Sci 2014. [PMID: 25118651 DOI: 10.1007/s12539-013-0027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/26/2013] [Accepted: 10/23/2013] [Indexed: 11/29/2022]
Abstract
New Delhi metallo-beta-lactamase (NDM-1) is a beta-lactamase (class B carbapenemase) containing Zn2+ and other divalent cations as cofactors which possesses the ability to inactivate all beta lactams (including carbapenems) except aztreonam by catalyzing the hydrolytic cleavage of the substrate amide bond. Carbapenemases are either serine enzymes or metallo-β-lactamases (MBLs) that utilize at least one zinc ion for hydrolysis. The present study describes the molecular interaction of carbapenems (Imipenem, Meropenem, Ertapenem, Doripenem, Panipenem, Biapenem, Razupenem, Faropenem, Tebipenem and Tomopenem) with NDM-1, β-lactamase enzyme. Docking between NDM-1 and each of these carbapenems (separately) was performed using 'Autodock4.2'.
Collapse
|
7
|
Bassetti M, Ginocchio F, Mikulska M, Taramasso L, Giacobbe DR. Will new antimicrobials overcome resistance among Gram-negatives? Expert Rev Anti Infect Ther 2014; 9:909-22. [DOI: 10.1586/eri.11.107] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Tsutsumi LS, Owusu YB, Hurdle JG, Sun D. Progress in the discovery of treatments for C. difficile infection: A clinical and medicinal chemistry review. Curr Top Med Chem 2014; 14:152-75. [PMID: 24236721 PMCID: PMC3921470 DOI: 10.2174/1568026613666131113154753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/06/2013] [Accepted: 09/15/2013] [Indexed: 02/07/2023]
Abstract
Clostridium difficile is an anaerobic, Gram-positive pathogen that causes C. difficile infection, which results in significant morbidity and mortality. The incidence of C. difficile infection in developed countries has become increasingly high due to the emergence of newer epidemic strains, a growing elderly population, extensive use of broad spectrum antibiotics, and limited therapies for this diarrheal disease. Because treatment options currently available for C. difficile infection have some drawbacks, including cost, promotion of resistance, and selectivity problems, new agents are urgently needed to address these challenges. This review article focuses on two parts: the first part summarizes current clinical treatment strategies and agents under clinical development for C. difficile infection; the second part reviews newly reported anti-difficile agents that have been evaluated or reevaluated in the last five years and are in the early stages of drug discovery and development. Antibiotics are divided into natural product inspired and synthetic small molecule compounds that may have the potential to be more efficacious than currently approved treatments. This includes potency, selectivity, reduced cytotoxicity, and novel modes of action to prevent resistance.
Collapse
Affiliation(s)
| | | | | | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA.
| |
Collapse
|
9
|
Zhao Y, Chen Z, Chen Y, Xu J, Li J, Jiang X. Synergy of Non-antibiotic Drugs and Pyrimidinethiol on Gold Nanoparticles against Superbugs. J Am Chem Soc 2013; 135:12940-3. [DOI: 10.1021/ja4058635] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuyun Zhao
- Department
of Chemistry, Tsinghua University, National Center for NanoScience and Technology, Beijing 100084, China
| | - Zeliang Chen
- Institute
of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, China
| | - Yanfen Chen
- Institute
of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, China
| | - Jie Xu
- Institute
of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, China
| | - Jinghong Li
- Department
of Chemistry, Tsinghua University, National Center for NanoScience and Technology, Beijing 100084, China
| | - Xingyu Jiang
- Department
of Chemistry, Tsinghua University, National Center for NanoScience and Technology, Beijing 100084, China
| |
Collapse
|
10
|
Kurosu M, Siricilla S, Mitachi K. Advances in MRSA drug discovery: where are we and where do we need to be? Expert Opin Drug Discov 2013; 8:1095-116. [PMID: 23829425 DOI: 10.1517/17460441.2013.807246] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) have been on the increase during the past decade, due to the steady growth of the elderly and immunocompromised patients, and the emergence of multidrug-resistant (MDR) bacterial strains. Although there are a limited number of anti-MRSA drugs available, a number of different combination antimicrobial drug regimens have been used to treat serious MRSA infections. Thus, the addition of several new antistaphylococcal drugs into clinical practice should broaden clinician's therapeutic options. As MRSA is one of the most common and problematic bacteria associated with increasing antimicrobial resistance, continuous efforts for the discovery of lead compounds as well as development of alternative therapies and faster diagnostics are required. AREAS COVERED This article summarizes the FDA-approved drugs to treat MRSA infections, the drugs in clinical trials, and the drug leads for MRSA and related Gram-positive bacterial infections. In addition, the article discusses the mode of action of antistaphylococcal molecules and the resistant mechanisms of some molecules. EXPERT OPINION The number of pipeline drugs presently undergoing clinical trials is not particularly encouraging. There are limited and rather expensive therapeutic options for MRSA infections in the critically ill. Further research efforts are required for effective phage therapy on MRSA infections in clinical use, which seem to be attractive therapeutic options for the future.
Collapse
Affiliation(s)
- Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee, 881 Madison Avenue, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
11
|
In vitro activity of beta-lactam antibiotics to community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Eur J Clin Microbiol Infect Dis 2011; 31:475-80. [PMID: 21932140 DOI: 10.1007/s10096-011-1333-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
Community-associated (CA) MRSA often display low MIC values against oxacillin. The in vitro activity of various beta-lactam antibiotics against heterogeneous CA-MRSA (n = 98) isolated in a low endemic area was determined by Etest, and Mueller-Hinton agar (MUHAP) was compared with Mueller-Hinton agar supplemented with 2% NaCl (MUHSP). In general, the CA-MRSA isolates showed higher MIC values for the various beta-lactam antibiotics on MUHSP compared with MUHAP. MIC values for oxacillin ranged from 1 to >256 mg/L on MUHSP. Cephalothin, representing the first generation of cephalosporins, showed MICs from 0.75 to 96 mg/L and the MIC(50) and MIC(90) for cefuroxime, cefotaxime and cefepime, representing the second, third and fourth generations, respectively, were rather high. However, the MIC(50) and MIC(90) for ceftobiprole (fifth generation) were 1.5 and 2 mg/L, respectively, on MUHSP. The MIC(50) and MIC(90) for imipenem were 0.75 and 2 mg/L, respectively, on MUHSP. Only 3/98 (3%) CA-MRSA isolates showed a MIC >4 mg/L. Consequently, low MIC values for imipenem, lower than those of the newly developed fifth generation cephalosporins, were found among CA-MRSA. These findings may be considered for further studies including clinical trials in order to evaluate carbapenems as a potential treatment option for infections caused by CA-MRSA.
Collapse
|
12
|
Bassetti M, Ginocchio F, Mikulska M. New treatment options against gram-negative organisms. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:215. [PMID: 21457501 PMCID: PMC3219411 DOI: 10.1186/cc9997] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Matteo Bassetti
- Clinica Malattie Infettive, AOU San Martino, L,go R, Benzi 10, 16132 Genoa, Italy.
| | | | | |
Collapse
|
13
|
New Treatment Options against Gram-negative Organisms. ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2011 2011. [DOI: 10.1007/978-3-642-18081-1_46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Sugihara K, Sugihara C, Matsushita Y, Yamamura N, Uemori M, Tokumitsu A, Inoue H, Kakuta M, Namba E, Nasu H, Koga T. In vivo pharmacodynamic activity of tomopenem (formerly CS-023) against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus in a murine thigh infection model. Antimicrob Agents Chemother 2010; 54:5298-302. [PMID: 20921311 PMCID: PMC2981229 DOI: 10.1128/aac.00267-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 08/01/2010] [Accepted: 09/26/2010] [Indexed: 11/20/2022] Open
Abstract
Tomopenem (formerly CS-023) is a novel carbapenem with broad-spectrum activities against diverse hospital pathogens, including Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA). We examined the in vivo pharmacodynamic characteristics of tomopenem against P. aeruginosa and MRSA by using a neutropenic murine thigh infection model with P. aeruginosa 12467 (MIC, 1 μg/ml) and MRSA 12372 (MIC, 2 μg/ml). The mice had 10(6) to 10(7) CFU/thigh of each strain 2 h after inoculation and were treated for 24 h with a fractionated administration of tomopenem given at intervals of 3, 6, 12, and 24 h. The serum protein binding of tomopenem was 17.4%. The efficacy of tomopenem in both infection models was enhanced by frequent dosing, which indicates that the efficacy is driven by the time above MIC (T(MIC)). In a sigmoid model, the cumulative percentages of the 24-h period that the concentrations of free, unbound fractions of the drug exceeded the MIC under steady-state pharmacokinetic conditions (f%T(MIC)s) were best correlated with efficacy when R(2) was 0.79 and 0.86 against P. aeruginosa and MRSA, respectively. Other pharmacokinetic and pharmacodynamic (PK-PD) indexes for the free, unbound fractions, the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC) and the maximum concentration of the drug in serum divided by the MIC (C(max)/MIC), showed poor correlation with efficacy when R(2) was ≤0.42. The f%T(MIC) values required for a static effect, 1-log kill, and 2-log kill against P. aeruginosa were 29, 39, and 51, respectively, which were similar to those for meropenem, for which the values were 24, 33, and 45, respectively. Against MRSA, the values for tomopenem were 27, 35, and 47. In conclusion, the pharmacodynamic characteristics of tomopenem were similar to those of meropenem against P. aeruginosa, and there was no difference between the target values for P. aeruginosa and MRSA required for efficacy in this study.
Collapse
Affiliation(s)
- Kiyoshi Sugihara
- Biological Research Laboratories IV, Daiichi Sankyo Co., Ltd., 16-13, 1-Chome Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee YS, Kang OH, Choi JG, Oh YC, Keum JH, Kim SB, Jeong GS, Kim YC, Shin DW, Kwon DY. Synergistic effect of emodin in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. PHARMACEUTICAL BIOLOGY 2010; 48:1285-1290. [PMID: 20925591 DOI: 10.3109/13880201003770150] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a substantial contributor to morbidity and mortality. In search of a natural products capable of inhibiting this multidrug resistant bacteria, we have investigated the antimicrobial activity of emodin (EM) isolated from Rheum palmatum L. (Polygonaceae) against 17 different strains of the bacterium. New antimicrobial activity was found using the paper disc diffusion method, agar dilution as well as checkerboard method. Against the 17 strains, the disc diffusion test was in the range of 18-30 mm, and the minimum inhibitory concentrations (MICs) of EM were in the range of 1.5-25 μg/mL. From those results we performed the checkerboard test to determine the synergism of EM in combination with ampicillin (AM) or oxacillin (OX) against all strains. The combined activity of EM and two antimicrobial agents (AM, OX) against all strains resulted in a fractional inhibitory concentrations index (FICI) ranging from 0.37-0.5 and from 0.37-0.75, respectively. The effect of EM with AM and OX was found to be synergistic or partially synergistic. We found that EM reduced the MICs of AM and OX. EM and in combination with AM or OX could lead to the development of new combination antibiotics against MRSA infection.
Collapse
Affiliation(s)
- Young-Seob Lee
- College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
An increasing proportion of Staphylococcus aureus infections are caused by methicillin-resistant S aureus. Treatment of infections caused by this organism is challenging, especially because therapy with vancomycin, the traditional antibiotic of choice for methicillin-resistant S aureus infections, is associated with an increasing frequency of treatment failure, and vancomycin insensitive and vancomycin-resistant strains have emerged. In addition, Enterococcus sp. isolated from human infections are increasingly resistant to multiple antimicrobial agents. Newer drugs available for treatment of resistant Gram-positive bacterial infections in the United States include linezolid, daptomycin, tigecycline and telavancin. The precise role for these newer agents is still evolving. Organisms resistant to each of these antimicrobials have emerged. New drugs in development include cephalosporins and carbapenems with MRSA activity.
Collapse
|
17
|
Parkins MD, Elborn JS. Newer antibacterial agents and their potential role in cystic fibrosis pulmonary exacerbation management. J Antimicrob Chemother 2010; 65:1853-61. [DOI: 10.1093/jac/dkq245] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
18
|
Bouza E. New therapeutic choices for infections caused by methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2010; 15 Suppl 7:44-52. [PMID: 19951334 DOI: 10.1111/j.1469-0691.2009.03091.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, a marked increase in the incidence of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has occurred in many countries. This review addresses the effectiveness and limitations of drugs classically used for the treatment of MRSA, e.g. vancomycin, and also newer anti-MRSA antimicrobials, e.g. second-generation glycolipopeptides, tigecycline, and beta-lactams.
Collapse
Affiliation(s)
- E Bouza
- Servicio de Microbiología Clínica y E. Infecciosas, Hospital General Universitario Gregorio Marañón, Universidad Complutenste, Madrid, and Ciber de Enfermedades Respiratories (CIBERES), Spain.
| |
Collapse
|
19
|
Tomozawa T, Sugihara C, Kakuta M, Sugihara K, Koga T. In vitro postantibiotic effects of tomopenem (CS-023) against Staphylococcus aureus and Pseudomonas aeruginosa. J Med Microbiol 2010; 59:438-441. [PMID: 20093378 DOI: 10.1099/jmm.0.017905-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The postantibiotic effect (PAE) of tomopenem was determined after a 2 h exposure of two strains of meticillin-susceptible and meticillin-resistant Staphylococcus aureus (MSSA and MRSA), and imipenem-susceptible and imipenem-resistant Pseudomonas aeruginosa, to tenfold the respective MIC. The PAEs on MSSA and P. aeruginosa were approximately 1 h and they were comparable to those of meropenem. The PAE on MRSA was 1.5 to 3 h, equal to or longer than those of vancomycin. The PAEs of tomopenem not only were found for MRSA, but also were present in the imipenem-resistant P. aeruginosa tested.
Collapse
Affiliation(s)
- Takanori Tomozawa
- Biological Research Laboratories IV, Daiichi Sankyo Co. Ltd, 1-2-58 Hiromachi,Shinagawa-ku, Tokyo 140-8710, Japan
| | - Chika Sugihara
- Biological Research Laboratories IV, Daiichi Sankyo Co. Ltd, 1-2-58 Hiromachi,Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masayo Kakuta
- Biological Research Laboratories IV, Daiichi Sankyo Co. Ltd, 1-2-58 Hiromachi,Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyoshi Sugihara
- Biological Research Laboratories IV, Daiichi Sankyo Co. Ltd, 1-2-58 Hiromachi,Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tetsufumi Koga
- Biological Research Laboratories IV, Daiichi Sankyo Co. Ltd, 1-2-58 Hiromachi,Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
20
|
|
21
|
El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother 2009; 64:229-238. [DOI: 10.1093/jac/dkp201] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
22
|
Pournaras S, Iosifidis E, Roilides E. Advances in Antibacterial Therapy Against Emerging Bacterial Pathogens. Semin Hematol 2009; 46:198-211. [DOI: 10.1053/j.seminhematol.2009.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Affinity of Tomopenem (CS-023) for penicillin-binding proteins in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008; 53:1238-41. [PMID: 19104025 DOI: 10.1128/aac.01433-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tomopenem (formerly CS-023), a novel 1beta-methylcarbapenem, exhibited high affinity for penicillin-binding protein (PBP) 2 in Staphylococcus aureus, PBP 2 in Escherichia coli, and PBPs 2 and 3 in Pseudomonas aeruginosa, which are considered major lethal targets. Morphologically, tomopenem induced spherical forms in E. coli and short filamentation with bulges in P. aeruginosa, which correlated with the drug's PBP profiles. The potential of resistance of these bacteria to tomopenem was comparable to that to imipenem.
Collapse
|