1
|
Haghani I, Hashemi SM, Abastabar M, Yahyazadeh Z, Ebrahimi-Barough R, Hoseinnejad A, Teymoori A, Azadeh H, Rashidi M, Aghili SR, Hedayati MT, Shokohi T, Otasevic S, Sillanpää M, Nosratabadi M, Badali H. In vitro and silico activity of piperlongumine against azole-susceptible/resistant Aspergillus fumigatus and terbinafine-susceptible/resistant Trichophyton species. Diagn Microbiol Infect Dis 2025; 111:116578. [PMID: 39500105 DOI: 10.1016/j.diagmicrobio.2024.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
In recent years, the widespread emergence of drug resistance in yeasts and filamentous fungi to existing antifungal armamentariums has become a severe threat to global health. There is also concern regarding increased rates of azole resistance in Aspergillus fumigatus and Terbinafine resistance in Trichophyton species. To overcome this concern of resistance to regular therapies, new antifungal drugs with novel and effective mechanisms are crucially needed. Herbal remedies may be promising strategies for the treatment of resistant infections. We aimed to investigate the in vitro and silico activity of piperlongumine against clinical azole susceptible/resistant A. fumigatus and terbinafine-susceptible/resistant Trichophyton species. In the current study, piperlongumine demonstrated potent antifungal activity, with minimum inhibitory concentrations (MICs) ranging from 0.016-4 μg/mL against Trichophyton isolates and 0.25-2 μg/mL for A. fumigatus isolates. Additionally, molecular docking studies indicated that piperlongumine has a strong binding affinity to the active sites of squalene epoxidase and sterol 14-alpha demethylase. However, further studies are warranted to correlate these findings with clinical outcomes and provide the basis for further investigations to pave the way for developing novel antifungal agents.
Collapse
Affiliation(s)
- Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Yahyazadeh
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Robab Ebrahimi-Barough
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Akbar Hoseinnejad
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teymoori
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Azadeh
- Department of Internal Medicine, Rheumatology Division, Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4847191628, Iran
| | - Seyed Reza Aghili
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Taghi Hedayati
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahereh Shokohi
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093 Kuwait, Kuwait; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura-140401, Punjab, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India
| | - Mohsen Nosratabadi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| | - Hamid Badali
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Molecular Microbiology & Immunology/South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Villalba de la Peña M, Kronholm I. Antimicrobial resistance in the wild: Insights from epigenetics. Evol Appl 2024; 17:e13707. [PMID: 38817397 PMCID: PMC11134192 DOI: 10.1111/eva.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Spreading of bacterial and fungal strains that are resistant to antimicrobials poses a serious threat to the well-being of humans, animals, and plants. Antimicrobial resistance has been mainly investigated in clinical settings. However, throughout their evolutionary history microorganisms in the wild have encountered antimicrobial substances, forcing them to evolve strategies to combat antimicrobial action. It is well known that many of these strategies are based on genetic mechanisms, but these do not fully explain important aspects of the antimicrobial response such as the rapid development of resistance, reversible phenotypes, and hetero-resistance. Consequently, attention has turned toward epigenetic pathways that may offer additional insights into antimicrobial mechanisms. The aim of this review is to explore the epigenetic mechanisms that confer antimicrobial resistance, focusing on those that might be relevant for resistance in the wild. First, we examine the presence of antimicrobials in natural settings. Then we describe the documented epigenetic mechanisms in bacteria and fungi associated with antimicrobial resistance and discuss innovative epigenetic editing techniques to establish causality in this context. Finally, we discuss the relevance of these epigenetic mechanisms on the evolutionary dynamics of antimicrobial resistance in the wild, emphasizing the critical role of priming in the adaptation process. We underscore the necessity of incorporating non-genetic mechanisms into our understanding of antimicrobial resistance evolution. These mechanisms offer invaluable insights into the dynamics of antimicrobial adaptation within natural ecosystems.
Collapse
Affiliation(s)
| | - Ilkka Kronholm
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
3
|
Xu S, Shen J, Lang H, Zhang L, Fang H, Yu Y. Triazole resistance in Aspergillus fumigatus exposed to new chiral fungicide mefentrifluconazole. PEST MANAGEMENT SCIENCE 2023; 79:560-568. [PMID: 36205310 DOI: 10.1002/ps.7224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Triazole resistance in the human fungal pathogen Aspergillus fumigatus has been a growing challenge in clinic treatment with triazole drugs such as itraconazole. The fast evolvement of triazole resistance in A. fumigatus in the ecosystem has drawn great attention, and there has been a possible link between the application of triazole fungicides in agriculture and triazole resistance in A. fumigatus. The change in susceptibility of A. fumigatus exposed to the new chiral triazole fungicide mefentrifluconazole was investigated in this study. RESULTS The results indicated that triazole resistance in A. fumigatus was acquired with exposure to mefentrifluconazole at a level of greater than or equal to 2 mg L-1 in liquid medium and soil (not at 0.4 nor 1 mg L-1 ). Interestingly, stereoselectivity was found in the acquisition of triazole resistance in A. fumigatus when exposed to mefentrifluconazole. R-mefentrifluconazole, which is very active on plant pathogens, exhibited stronger possibility in the development of the resistance in A. fumigatus than its antipode. Overexpression of cyp51A, AtrF, AfuMDR1 and AfuMDR4 were associated with the acquired resistance in A. fumigatus with hereditary stability. CONCLUSION The results suggest that triazole resistance in A. fumigatus could be resulted from the selection of mefentrifluconazole at concentrations larger than 2 mg L-1 . Mefentrifluconazole should be applied within the dosage recommended by good agricultural practice to avoid the resistance in A. fumigatus in soil. This also may be applicable to other triazole fungicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiji Xu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiatao Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongbin Lang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|