1
|
Kim CG, Jose J, Hay MP, Choi PJ. Novel Prodrug Strategies for the Treatment of Tuberculosis. Chem Asian J 2024; 19:e202400944. [PMID: 39179514 PMCID: PMC11613820 DOI: 10.1002/asia.202400944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is on the rise and increasing antimicrobial resistance is a global threat. This phenomenon necessitates new drug design methods such as a prodrug strategy to develop novel antitubercular agents. The prodrug strategy is a viable and useful means to improve the absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles of pharmacologically active agents. Granulomas are a pathological hallmark of M.tb infection and bear a remarkable resemblance to the tumour microenvironment, including regions of hypoxia. The hypoxic environment observed in the two structures offer an exceptional opportunity to deliver antitubercular agents selectively in a similar manner to hypoxia activated prodrugs in cancer therapy. Nitroimidazoles have been studied extensively as bioactivated prodrugs of cancer, and their suitability as substrates for mammalian reductases highlight their huge potential. This review will discuss the mechanism of action and resistance mechanisms of the current prodrugs used for the treatment of tuberculosis. It will also highlight the potential advantages and challenges of using hypoxia activated prodrugs as a viable strategy to target latent M.tb in hypoxic regions of granulomas.
Collapse
Affiliation(s)
- Christine G. Kim
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
2
|
Yeshwante SB, Hanafin P, Miller BK, Rank L, Murcia S, Xander C, Annis A, Baxter VK, Anderson EJ, Jermain B, Konicki R, Schmalstig AA, Stewart I, Braunstein M, Hickey AJ, Rao GG. Pharmacokinetic Considerations for Optimizing Inhaled Spray-Dried Pyrazinoic Acid Formulations. Mol Pharm 2023; 20:4491-4504. [PMID: 37590399 PMCID: PMC10868345 DOI: 10.1021/acs.molpharmaceut.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of death with 1.6 million deaths worldwide reported in 2021. Oral pyrazinamide (PZA) is an integral part of anti-TB regimens, but its prolonged use has the potential to drive the development of PZA-resistant Mtb. PZA is converted to the active moiety pyrazinoic acid (POA) by the Mtb pyrazinamidase encoded by pncA, and mutations in pncA are associated with the majority of PZA resistance. Conventional oral and parenteral therapies may result in subtherapeutic exposure in the lung; hence, direct pulmonary administration of POA may provide an approach to rescue PZA efficacy for treating pncA-mutant PZA-resistant Mtb. The objectives of the current study were to (i) develop novel dry powder POA formulations, (ii) assess their feasibility for pulmonary delivery using physicochemical characterization, (iii) evaluate their pharmacokinetics (PK) in the guinea pig model, and (iv) develop a mechanism-based pharmacokinetic model (MBM) using in vivo PK data to select a formulation providing adequate exposure in epithelial lining fluid (ELF) and lung tissue. We developed three POA formulations for pulmonary delivery and characterized their PK in plasma, ELF, and lung tissue following passive inhalation in guinea pigs. Additionally, the PK of POA following oral, intravenous, and intratracheal administration was characterized in guinea pigs. The MBM was used to simultaneously model PK data following administration of POA and its formulations via the different routes. The MBM described POA PK well in plasma, ELF, and lung tissue. Physicochemical analyses and MBM predictions suggested that POA maltodextrin was the best among the three formulations and an excellent candidate for further development as it has: (i) the highest ELF-to-plasma exposure ratio (203) and lung tissue-to-plasma exposure ratio (30.4) compared with POA maltodextrin and leucine (75.7/16.2) and POA leucine salt (64.2/19.3) and (ii) the highest concentration in ELF (CmaxELF: 171 nM) within 15.5 min, correlating with a fast transfer into ELF after pulmonary administration (KPM: 22.6 1/h). The data from the guinea pig allowed scaling, using the MBM to a human dose of POA maltodextrin powder demonstrating the potential feasibility of an inhaled product.
Collapse
Affiliation(s)
- Shekhar B Yeshwante
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Patrick Hanafin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brittany K Miller
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Laura Rank
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sebastian Murcia
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christian Xander
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ayano Annis
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Victoria K Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth J Anderson
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian Jermain
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robyn Konicki
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alan A Schmalstig
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian Stewart
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Miriam Braunstein
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina 27709, United States
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Yeshwante SB, Hanafin P, Miller BK, Rank L, Murcia S, Xander C, Annis A, Baxter VK, Anderson EJ, Jermain B, Konicki R, Schmalstig AA, Stewart I, Braunstein M, Hickey AJ, Rao GG. Pharmacokinetic considerations for optimizing inhaled spray-dried pyrazinoic acid formulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.534965. [PMID: 37066292 PMCID: PMC10103941 DOI: 10.1101/2023.04.01.534965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis ( Mtb ), remains a leading cause of death with 1.6 million deaths worldwide reported in 2021. Oral pyrazinamide (PZA) is an integral part of anti-TB regimens, but its prolonged use has the potential to drive development of PZA resistant Mtb . PZA is converted to the active moiety pyrazinoic acid (POA) by the Mtb pyrazinamidase encoded by pncA , and mutations in pncA are associated with the majority of PZA resistance. Conventional oral and parenteral therapies may result in subtherapeutic exposure in the lung, hence direct pulmonary administration of POA may provide an approach to rescue PZA efficacy for treating pncA- mutant PZA-resistant Mtb . The objectives of the current study were to i) develop novel dry powder POA formulations ii) assess their feasibility for pulmonary delivery using physicochemical characterization, iii) evaluate their pharmacokinetics (PK) in the guinea pig model and iv) develop a mechanism based pharmacokinetic model (MBM) using in vivo PK data to select a formulation providing adequate exposure in epithelial lining fluid (ELF) and lung tissue. We developed three POA formulations for pulmonary delivery and characterized their PK in plasma, ELF, and lung tissue following passive inhalation in guinea pigs. Additionally, the PK of POA following oral, intravenous and intratracheal administration was characterized in guinea pigs. The MBM was used to simultaneously model PK data following administration of POA and its formulations via the different routes. The MBM described POA PK well in plasma, ELF and lung tissue. Physicochemical analyses and MBM predictions suggested that POA maltodextrin was the best among the three formulations and an excellent candidate for further development as it has: (i) the highest ELF-to-plasma exposure ratio (203) and lung tissue-to-plasma exposure ratio (30.4) compared with POA maltodextrin and leucine (75.7/16.2) and POA leucine salt (64.2/19.3); (ii) the highest concentration in ELF ( Cmac ELF : 171 nM) within 15.5 minutes, correlating with a fast transfer into ELF after pulmonary administration ( k PM : 22.6 1/h). The data from the guinea pig allowed scaling, using the MBM to a human dose of POA maltodextrin powder demonstrating the potential feasibility of an inhaled product. Table of Contents TOC/Abstract Graphic
Collapse
|
4
|
Li H, Ding Y, Huang J, Zhao Y, Chen W, Tang Q, An Y, Chen R, Hu C. Angiopep-2 Modified Exosomes Load Rifampicin with Potential for Treating Central Nervous System Tuberculosis. Int J Nanomedicine 2023; 18:489-503. [PMID: 36733407 PMCID: PMC9888470 DOI: 10.2147/ijn.s395246] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Background Central nervous system tuberculosis (CNS-TB) is the most devastating form of extrapulmonary tuberculosis. Rifampin (RIF) is a first-line antimicrobial agent with potent bactericidal action. Nonetheless, the blood-brain barrier (BBB) limits the therapeutic effects on CNS-TB. Exosomes, however, can facilitate drug movements across the BBB. In addition, exosomes show high biocompatibility and drug-loading capacity. They can also be modified to increase drug delivery efficacy. In this study, we loaded RIF into exosomes and modified the exosomes with a brain-targeting peptide to improve BBB permeability of RIF; we named these exosomes ANG-Exo-RIF. Methods Exosomes were isolated from the culture medium of BMSCs by differential ultracentrifugation and loaded RIF by electroporation and modified ANG by chemical reaction. To characterize ANG-Exo-RIF, Western blot (WB), nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were performed. Bend.3 cells were incubated with DiI labeled ANG-Exo-RIF and then fluorescent microscopy and flow cytometry were used to evaluate the targeting ability of ANG-Exo-RIF in vitro. Fluorescence imaging and frozen section were used to evaluate the targeting ability of ANG-Exo-RIF in vivo. MIC and MBC were determined through microplate alamar blue assay (MABA). Results A novel exosome-based nanoparticle was developed. Compared with untargeted exosomes, the targeted exosomes exhibited high targeting capacity and permeability in vitro and in vivo. The MIC and MBC of ANG-Exo-RIF were 0.25 μg/mL, which were sufficient to meet the clinical needs. Conclusion In summary, excellent targeting ability, high antitubercular activity and biocompatibility endow ANG-Exo-RIF with potential for use in future translation-aimed research and provide hope for an effective CNS-TB treatment.
Collapse
Affiliation(s)
- Han Li
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yinan Ding
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Jiayan Huang
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanyan Zhao
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Wei Chen
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Yanli An
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Rong Chen
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Chunmei Hu
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China,Correspondence: Chunmei Hu, Department of tuberculosis, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210009, People’s Republic of China, Email
| |
Collapse
|
5
|
Hussain Z, Zhu J, Ma X. Metabolism and Hepatotoxicity of Pyrazinamide, an Antituberculosis Drug. Drug Metab Dispos 2021; 49:679-682. [PMID: 34074731 PMCID: PMC8407665 DOI: 10.1124/dmd.121.000389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022] Open
Abstract
Pyrazinamide (PZA) is an important component of a standard combination therapy against tuberculosis. However, PZA is hepatotoxic, and the underlying mechanisms are poorly understood. Biotransformation of PZA in the liver was primarily suggested behind its hepatoxicity. This review summarizes the knowledge of the key enzymes involved in PZA metabolism and discusses their contributions to PZA hepatotoxicity. SIGNIFICANCE STATEMENT: This review outlines the current understanding of PZA metabolism and hepatotoxicity. This work also highlights the gaps in this field, which can be used to guide the future studies on PZA-induced liver injury.
Collapse
Affiliation(s)
- Zahir Hussain
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
7
|
Kwan PKW, Lin W, Naim ANM, Periaswamy B, De Sessions PF, Hibberd ML, Paton NI. Gene expression responses to anti-tuberculous drugs in a whole blood model. BMC Microbiol 2020; 20:81. [PMID: 32264819 PMCID: PMC7140558 DOI: 10.1186/s12866-020-01766-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background There is a need for better tools to evaluate new or repurposed TB drugs. The whole blood bactericidal activity (WBA) assay has been advocated for this purpose. We investigated whether transcriptional responses in the WBA assay resemble TB responses in vivo, and whether the approach might additionally reveal mechanisms of action. Results 1422 of 1798 (79%) of differentially expressed genes in WBA incubated with the standard combination of rifampicin, isoniazid, pyrazinamide and ethambutol were also expressed in sputum (P < 0.0001) obtained from patients taking the same combination of drugs; these comprised well-established treatment-response genes. Gene expression profiles in WBA incubated with the standard drugs individually, or with moxifloxacin or faropenem (with amoxicillin and clavulanic acid) clustered by individual drug exposure. Distinct pathways were detected for individual drugs, although only with isoniazid did these relate to known mechanisms of drug action. Conclusions Substantial agreement between whole blood cultures and sputum and the ability to differentiate individual drugs suggest that transcriptomics may add value to the whole blood assay for evaluating new TB drugs.
Collapse
Affiliation(s)
- Philip Kam Weng Kwan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Wenwei Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Ahmad Nazri Mohamed Naim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Balamurugan Periaswamy
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Paola Florez De Sessions
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Martin L Hibberd
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,London School of Hygiene & Tropical Medicine, London, UK.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas I Paton
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore. .,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore. .,London School of Hygiene & Tropical Medicine, London, UK. .,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Gopal P, Grüber G, Dartois V, Dick T. Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends Pharmacol Sci 2019; 40:930-940. [PMID: 31704175 PMCID: PMC6884696 DOI: 10.1016/j.tips.2019.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
Abstract
Inclusion of pyrazinamide (PZA) in the tuberculosis (TB) drug regimen during the 1970s enabled a reduction in treatment duration from 12 to 6 months. PZA has this remarkable effect in patients despite displaying poor potency against Mycobacterium tuberculosis (Mtb) in vitro. The pharmacological basis for the in vivo sterilizing activity of the drug has remained obscure and its bacterial target controversial. Recently it was shown that PZA penetrates necrotic caseous TB lung lesions and kills nongrowing, drug-tolerant bacilli. Furthermore, it was uncovered that PZA inhibits bacterial Coenzyme A biosynthesis. It may block this pathway by triggering degradation of its target, aspartate decarboxylase. The elucidation of the pharmacological and molecular mechanisms of PZA provides the basis for the rational discovery of the next-generation PZA with improved in vitro potency while maintaining attractive pharmacological properties.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore; Current address: MSD Translational Medicine Research Centre, Merck Research Laboratories, 8 Biomedical Grove, Singapore 138665, Republic of Singapore.
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, 340 Kingsland Street Building 102, Nutley, NJ 07110, USA; Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, 340 Kingsland Street Building 102, Nutley, NJ 07110, USA; Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Nutley, NJ 07110, USA; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore
| |
Collapse
|
9
|
Anthony RM, den Hertog AL, van Soolingen D. 'Happy the man, who, studying nature's laws, Thro' known effects can trace the secret cause.' Do we have enough pieces to solve the pyrazinamide puzzle? J Antimicrob Chemother 2019. [PMID: 29528413 DOI: 10.1093/jac/dky060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A low pH was assumed to be required for the activity of pyrazinoic acid (the active form of pyrazinamide) against Mycobacterium tuberculosis, but recently activity has been demonstrated at neutral pH. Renewed interest in pyrazinamide has led to an increasing number of potential targets and the suspicion that pyrazinamide is a 'dirty drug'. However, it is our opinion that the recent demonstration that pyrazinoic acid is active against PanD provides an alternative explanation for the secret of pyrazinamide's unusual activity. In this article we propose that PanD is the primary target of pyrazinoic acid but expression of pyrazinoic acid susceptibility requires an intact stress response. As the mycobacterial stress response requires the interaction of a number of genes, disruption of any could result in an inability to enter the susceptible phenotype. We believe this model can explain most of the recent observations of the seemingly diverse spectrum of activity of pyrazinamide.
Collapse
Affiliation(s)
- R M Anthony
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A L den Hertog
- Institute for Life Sciences and Chemistry, HU University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - D van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
10
|
Impact of selective immune-cell depletion on growth of Mycobacterium tuberculosis (Mtb) in a whole-blood bactericidal activity (WBA) assay. PLoS One 2019; 14:e0216616. [PMID: 31100071 PMCID: PMC6524797 DOI: 10.1371/journal.pone.0216616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
We investigated the contribution of host immune cells to bacterial killing in a whole-blood bactericidal activity (WBA) assay, an ex vivo model used to test efficacy of drugs against mycobacterium tuberculosis (Mtb). We performed WBA assays with immuno-magnetic depletion of specific cell types, in the presence or absence of rifampicin. Innate immune cells decreased Mtb growth in absence of drug, but appeared to diminish the cidal activity of rifampicin, possibly attributable to intracellular bacterial sequestration. Adaptive immune cells had no effect with or without drug. The WBA assay may have potential for testing adjunctive host-directed therapies acting on phagocytic cells.
Collapse
|
11
|
Naftalin CM, Verma R, Gurumurthy M, Hee KH, Lu Q, Yeo BCM, Tan KH, Lin W, Yu B, Seng KY, Lee LSU, Paton NI. Adjunctive use of celecoxib with anti-tuberculosis drugs: evaluation in a whole-blood bactericidal activity model. Sci Rep 2018; 8:13491. [PMID: 30202030 PMCID: PMC6131161 DOI: 10.1038/s41598-018-31590-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
COX-2 inhibition may be of benefit in the treatment of tuberculosis (TB) through a number of pathways including efflux pump inhibition (increasing intracellular TB drug levels) and diverse effects on inflammation and the immune response. We investigated celecoxib (a COX-2 inhibitor) alone and with standard anti-tuberculosis drugs in the whole-blood bactericidal activity (WBA) model. Healthy volunteers took a single dose of celecoxib (400 mg), followed (after 1 week) by a single dose of either rifampicin (10 mg/kg) or pyrazinamide (25 mg/kg), followed (after 2 or 7 days respectively) by the same anti-tuberculosis drug with celecoxib. WBA was measured at intervals until 8 hours post-dose (by inoculating blood samples with Mycobacterium tuberculosis and estimating the change in bacterial colony forming units after 72 hours incubation). Celecoxib had no activity alone in the WBA assay (cumulative WBA over 8 hours post-dose: 0.03 ± 0.01ΔlogCFU, p = 1.00 versus zero). Celecoxib did not increase cumulative WBA of standard TB drugs (mean cumulative WBA −0.10 ± 0.13ΔlogCFU versus −0.10 ± 0.12ΔlogCFU for TB drugs alone versus TB drugs and celecoxib; mean difference −0.01, 95% CI −0.02 to 0.00; p = 0.16). The lack of benefit of celecoxib suggests that efflux pump inhibition or eicosanoid pathway-related responses are of limited importance in mycobacterial killing in the WBA assay.
Collapse
Affiliation(s)
- Claire M Naftalin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Rupangi Verma
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Meera Gurumurthy
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kim Hor Hee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qingshu Lu
- Singapore Clinical Research Institute, Singapore, Singapore
| | - Benjamin Chaik Meng Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kin Hup Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wenwei Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Buduo Yu
- Investigational Medicine Unit, National University Health System, Singapore, Singapore
| | - Kok Yong Seng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lawrence Soon-U Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas I Paton
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Wejse C. Medical treatment for urogenital tuberculosis (UGTB). GMS INFECTIOUS DISEASES 2018; 6:Doc04. [PMID: 30671335 PMCID: PMC6301712 DOI: 10.3205/id000039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urogenital tuberculosis (UGTB) should in general be treated as pulmonary TB with a four-drug regimen of Isoniazid, Rifampicin, Ethambutol and Pyrazinamide for a total of 6 months, Ethambutol and Pyrazinamide only the first two months. Some patients may need longer treatment (cavitary disease, kidney abscess/malfunction, HIV co-infection). Treatment of multi-drug resistant tuberculosis (MDR-TB) requires use of long-term intravenous treatment with aminoglycosides and other drugs with considerable toxicity for 18–24 months. Complications such as urinary tract obstruction may occur and should be treated with corticosteroids or surgery.
Collapse
Affiliation(s)
- Christian Wejse
- Department of Infectious Diseases/Center for Global Health, Dept of Public Health, Aarhus University, Denmark
| |
Collapse
|