1
|
Smirnova G, Tyulenev A, Sutormina L, Kalashnikova T, Samoilova Z, Muzyka N, Ushakov V, Oktyabrsky O. Effect of H 2S and cysteine homeostasis disturbance on ciprofloxacin sensitivity of Escherichia coli in cystine-free and cystine-fed minimal medium. Arch Microbiol 2024; 206:456. [PMID: 39495300 DOI: 10.1007/s00203-024-04185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Endogenous H2S has been proposed to be a universal defense mechanism against different antibiotics. Here, we studied the role of H2S transiently generated during ciprofloxacin (CF) treatment in M9 minimal medium with sulfate or produced by E. coli when fed with cystine. The cysM and mstA mutants did not produce H2S, while gshA generated more H2S in response to ciprofloxacin in cystine-free media. All mutants showed a reduced ability to maintain cysteine homeostasis under these conditions. We found no relationship between H2S generation, cysteine concentration and sensitivity to ciprofloxacin. Excess cysteine, which occurred during E. coli growth in cystine-fed media, triggered continuous H2S production, accelerated glutathione synthesis and cysteine export. This was accompanied by a twofold increase in ciprofloxacin tolerance in all strains except gshA, whose sensitivity increased 5-8-fold at high CF doses, indicating the importance of GSH in restoring the intracellular redox situation during growth in cystine-fed media.
Collapse
Affiliation(s)
- Galina Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia.
| | - Aleksey Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Lyubov Sutormina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Tatyana Kalashnikova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Zoya Samoilova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Nadezda Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Vadim Ushakov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Oleg Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| |
Collapse
|
2
|
Pedretti M, Fernández-Rodríguez C, Conter C, Oyenarte I, Favretto F, di Matteo A, Dominici P, Petrosino M, Martinez-Chantar ML, Majtan T, Astegno A, Martínez-Cruz LA. Catalytic specificity and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa. Sci Rep 2024; 14:9364. [PMID: 38654065 PMCID: PMC11039470 DOI: 10.1038/s41598-024-57625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.
Collapse
Affiliation(s)
- Marco Pedretti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Carmen Fernández-Rodríguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Carolina Conter
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Iker Oyenarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Filippo Favretto
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Adele di Matteo
- CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Maria Petrosino
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, Bldg. PER17, 1700, Fribourg, FR, Switzerland
| | - Maria Luz Martinez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Santander, Spain
| | - Tomas Majtan
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, Bldg. PER17, 1700, Fribourg, FR, Switzerland
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Luis Alfonso Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| |
Collapse
|
3
|
Caruso L, Mellini M, Catalano Gonzaga O, Astegno A, Forte E, Di Matteo A, Giuffrè A, Visca P, Imperi F, Leoni L, Rampioni G. Hydrogen sulfide production does not affect antibiotic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2024; 68:e0007524. [PMID: 38445869 PMCID: PMC10989007 DOI: 10.1128/aac.00075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Hydrogen sulfide (H2S) has been proposed to protect bacteria from antibiotics, pointing to H2S-producing enzymes as possible targets for the development of antibiotic adjuvants. Here, MIC assays performed with Pseudomonas aeruginosa mutants producing altered H2S levels demonstrate that H2S does not affect antibiotic resistance in this bacterium. Moreover, correlation analyses in a large collection of P. aeruginosa cystic fibrosis isolates argue against the protective role of H2S from antibiotic activity during chronic lung infection.
Collapse
Affiliation(s)
| | - Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
4
|
Nastasi MR, Caruso L, Giordano F, Mellini M, Rampioni G, Giuffrè A, Forte E. Cyanide Insensitive Oxidase Confers Hydrogen Sulfide and Nitric Oxide Tolerance to Pseudomonas aeruginosa Aerobic Respiration. Antioxidants (Basel) 2024; 13:383. [PMID: 38539916 PMCID: PMC10968556 DOI: 10.3390/antiox13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 07/31/2024] Open
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are long-known inhibitors of terminal oxidases in the respiratory chain. Yet, they exert pivotal signaling roles in physiological processes, and in several bacterial pathogens have been reported to confer resistance against oxidative stress, host immune responses, and antibiotics. Pseudomonas aeruginosa, an opportunistic pathogen causing life-threatening infections that are difficult to eradicate, has a highly branched respiratory chain including four terminal oxidases of the haem-copper type (aa3, cbb3-1, cbb3-2, and bo3) and one oxidase of the bd-type (cyanide-insensitive oxidase, CIO). As Escherichia coli bd-type oxidases have been shown to be H2S-insensitive and to readily recover their activity from NO inhibition, here we tested the effect of H2S and NO on CIO by performing oxygraphic measurements on membrane preparations from P. aeruginosa PAO1 and isogenic mutants depleted of CIO only or all other terminal oxidases except CIO. We show that O2 consumption by CIO is unaltered even in the presence of high levels of H2S, and that CIO expression is enhanced and supports bacterial growth under such stressful conditions. In addition, we report that CIO is reversibly inhibited by NO, while activity recovery after NO exhaustion is full and fast, suggesting a protective role of CIO under NO stress conditions. As P. aeruginosa is exposed to H2S and NO during infection, the tolerance of CIO towards these stressors agrees with the proposed role of CIO in P. aeruginosa virulence.
Collapse
Affiliation(s)
- Martina R. Nastasi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Lorenzo Caruso
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Francesca Giordano
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Marta Mellini
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Alessandro Giuffrè
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| |
Collapse
|
5
|
Wang J, Cheng Z, Wang J, Chen D, Chen J, Yu J, Qiu S, Dionysiou DD. Enhancement of bio-S 0 recovery and revealing the inhibitory effect on microorganisms under high sulfide loading. ENVIRONMENTAL RESEARCH 2023; 238:117214. [PMID: 37783332 DOI: 10.1016/j.envres.2023.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Biodesulfurization is a mature technology, but obtaining biosulfur (S0) that can be easily settled naturally is still a challenge. Increasing the sulfide load is one of the known methods to obtain better settling of S0. However, the inhibitory effect of high levels of sulfide on microbes has also not been well studied. We constructed a high loading sulfide (1.55-10.86 kg S/m3/d) biological removal system. 100% sulfide removal and 0.56-2.53 kg S/m3/d S0 (7.0 ± 0.09-16.4 ± 0.25 μm) recovery were achieved at loads of 1.55-7.75 kg S/m3/d. Under the same load, S0 in the reflux sedimentation tank, which produced larger S0 particles (24.2 ± 0.73-53.8 ± 0.70 μm), increased the natural settling capacity and 45% recovery. For high level sulfide inhibitory effect, we used metagenomics and metatranscriptomics analyses. The increased sulfide load significantly inhibited the expression of flavin cytochrome c sulfide dehydrogenase subunit B (fccB) (Decreased from 615 ± 75 to 30 ± 5 TPM). At this time sulfide quinone reductase (SQR) (324 ± 185-1197 ± 51 TPM) was mainly responsible for sulfide oxidation and S0 production. When the sulfide load reached 2800 mg S/L, the SQR (730 ± 100 TPM) was also suppressed. This resulted in the accumulation of sulfide, causing suppression of carbon sequestration genes (Decreased from 3437 ± 842 to 665 ± 175 TPM). Other inhibitory effects included inhibition of microbial respiration, production of reactive oxygen species, and DNA damage. More sulfide-oxidizing bacteria (SOB) and newly identified potential SOB (99.1%) showed some activity (77.6%) upon sulfide accumulation. The main microorganisms in the sulfide accumulation environment were Thiomicrospiracea and Burkholderiaceae, whose sulfide oxidation capacity and respiration were not significantly inhibited. This study provides a new approach to enhance the natural sedimentation of S0 and describes new microbial mechanisms for the inhibitory effects of sulfide.
Collapse
Affiliation(s)
- Junjie Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China.
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Dongzhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316004, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Jianming Yu
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Songkai Qiu
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Haina-Water Engineering Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
6
|
Shakeri Yekta S, Svensson BH, Skyllberg U, Schnürer A. Sulfide in engineered methanogenic systems - Friend or foe? Biotechnol Adv 2023; 69:108249. [PMID: 37666371 DOI: 10.1016/j.biotechadv.2023.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Sulfide ions are regarded to be toxic to microorganisms in engineered methanogenic systems (EMS), where organic substances are anaerobically converted to products such as methane, hydrogen, alcohols, and carboxylic acids. A vast body of research has addressed solutions to mitigate process disturbances associated with high sulfide levels, yet the established paradigm has drawn the attention away from the multifaceted sulfide interactions with minerals, organics, microbial interfaces and their implications for performance of EMS. This brief review brings forward sulfide-derived pathways other than toxicity and with potential significance for anaerobic organic matter degradation. Available evidence on sulfide reactions with organic matter, interventions with key microbial metabolisms, and interspecies electron transfer are critically synthesized as a guidance for comprehending the sulfide effects on EMS apart from the microbial toxicity. The outcomes identify existing knowledge gaps and specify future research needs as a step forward towards realizing the potential of sulfide-derived mechanisms in diversifying and optimizing EMS applications.
Collapse
Affiliation(s)
- Sepehr Shakeri Yekta
- Department of Thematic Studies - Environmental Change, Linköping University, 58183 Linköping, Sweden; Biogas Solutions Research Center, Linköping University, 58183 Linköping, Sweden.
| | - Bo H Svensson
- Department of Thematic Studies - Environmental Change, Linköping University, 58183 Linköping, Sweden; Biogas Solutions Research Center, Linköping University, 58183 Linköping, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Anna Schnürer
- Biogas Solutions Research Center, Linköping University, 58183 Linköping, Sweden; Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| |
Collapse
|
7
|
Antibacterial gas therapy: Strategies, advances, and prospects. Bioact Mater 2023; 23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
|
8
|
Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al-Ouqaili MTS, Chinedu Ikem J, Victor Chigozie U, Saki M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal 2022; 36:e24655. [PMID: 35949048 PMCID: PMC9459344 DOI: 10.1002/jcla.24655] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background Antibiotic resistance is currently the most serious global threat to the effective treatment of bacterial infections. Antibiotic resistance has been established to adversely affect both clinical and therapeutic outcomes, with consequences ranging from treatment failures and the need for expensive and safer alternative drugs to the cost of higher rates of morbidity and mortality, longer hospitalization, and high‐healthcare costs. The search for new antibiotics and other antimicrobials continues to be a pressing need in humanity's battle against bacterial infections. Antibiotic resistance appears inevitable, and there is a continuous lack of interest in investing in new antibiotic research by pharmaceutical industries. This review summarized some new strategies for tackling antibiotic resistance in bacteria. Methods To provide an overview of the recent research, we look at some new strategies for preventing resistance and/or reviving bacteria's susceptibility to already existing antibiotics. Results Substantial pieces of evidence suggest that antimicrobials interact with host immunity, leading to potent indirect effects that improve antibacterial activities and may result in more swift and complete bactericidal effects. A new class of antibiotics referred to as immuno‐antibiotics and the targeting of some biochemical resistance pathway components including inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria can be considered as new emerging strategies to combat antibiotic resistance in bacteria. Conclusion This review highlighted and discussed immuno‐antibiotics and inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria as new weapons against antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- David Chinemerem Nwobodo
- Department of Microbiology, Renaissance University, Enugu, Nigeria.,Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Malachy Chigozie Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Clement Oliseloke Anie
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University Abraka, Abraka, Nigeria
| | | | - Joseph Chinedu Ikem
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria.,Department of Pharmaceutical Microbiology and Biotechnology, Madonna University, Elele, Nigeria
| | - Uchenna Victor Chigozie
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Hembus J, Rößler L, Springer A, Frank M, Klinder A, Bader R, Zietz C, Enz A. Experimental Investigation of Material Transfer on Bearings for Total Hip Arthroplasty-A Retrieval Study on Ceramic and Metallic Femoral Heads. J Clin Med 2022; 11:3946. [PMID: 35887710 PMCID: PMC9318345 DOI: 10.3390/jcm11143946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Metallic deposition is a commonly observed phenomenon on the surface of revised femoral heads in total hip arthroplasty and can lead to increased wear due to third bodies. In order to find out the origin and composition of the transfer material, 98 retrieved femoral heads of different materials were examined with regard to the cause of revision, localization, pattern and composition of the transfer material by energy dispersive X-ray spectroscopy. We found that in 53.1%, the deposition was mostly in the region of the equator and the adjacent pole of the femoral heads. The most common cause for revision of heads with metallic deposition was polyethylene wear (43.9%). Random stripes (44.9%), random patches (41.8%) and solid patches (35.7%) were most prevalent on retrieved femoral heads. Random patches were a typical pattern in ceramic-on-ceramic bearing couples. The solid patch frequently occurred in association with dislocation of the femoral head (55%). The elemental analysis of the depositions showed a variety of different materials. In most cases, titanium was an element of the transferred material (76.5%). In addition to metallic components, several non-metallic components were also detected, such as carbon (49%) or sulfur (4.1%). Many of the determined elements could be assigned with regard to their origin with the help of the associated revision cause. Since the depositions lead to an introduction of third-body particles and thus to increased wear, the depositions on the bearing surfaces should be avoided in any case.
Collapse
Affiliation(s)
- Jessica Hembus
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany; (L.R.); (A.K.); (R.B.); (C.Z.)
| | - Lisa Rößler
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany; (L.R.); (A.K.); (R.B.); (C.Z.)
| | - Armin Springer
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Strempelstrasse 14, 18057 Rostock, Germany; (A.S.); (M.F.)
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Strempelstrasse 14, 18057 Rostock, Germany; (A.S.); (M.F.)
| | - Annett Klinder
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany; (L.R.); (A.K.); (R.B.); (C.Z.)
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany; (L.R.); (A.K.); (R.B.); (C.Z.)
| | - Carmen Zietz
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany; (L.R.); (A.K.); (R.B.); (C.Z.)
| | - Andreas Enz
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany;
| |
Collapse
|
10
|
Goff JL, Schaefer JK, Yee N. Extracellular sulfite is protective against reactive oxygen species and antibiotic stress in Shewanella oneidensis MR-1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:394-400. [PMID: 33870629 DOI: 10.1111/1758-2229.12947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the extracellular reactive sulfur species produced by Shewanella oneidensis MR-1 during growth. The results showed that sulfite is the major extracellular sulfur metabolite released to the growth medium under both aerobic and anaerobic growth conditions. Exogenous sulfite at physiological concentrations protected S. oneidensis MR-1 from hydrogen peroxide toxicity and enhanced tolerance to the beta-lactam antibiotics cefazolin, meropenem, doripenem and ertapenem. These findings suggest that the release of extracellular sulfite is a bacterial defence mechanism that plays a role in the mitigation of environmental stress.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
| | - Jeffra K Schaefer
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Mendes SS, Miranda V, Saraiva LM. Hydrogen Sulfide and Carbon Monoxide Tolerance in Bacteria. Antioxidants (Basel) 2021; 10:729. [PMID: 34063102 PMCID: PMC8148161 DOI: 10.3390/antiox10050729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Hydrogen sulfide and carbon monoxide share the ability to be beneficial or harmful molecules depending on the concentrations to which organisms are exposed. Interestingly, humans and some bacteria produce small amounts of these compounds. Since several publications have summarized the recent knowledge of its effects in humans, here we have chosen to focus on the role of H2S and CO on microbial physiology. We briefly review the current knowledge on how bacteria produce and use H2S and CO. We address their potential antimicrobial properties when used at higher concentrations, and describe how microbial systems detect and survive toxic levels of H2S and CO. Finally, we highlight their antimicrobial properties against human pathogens when endogenously produced by the host and when released by external chemical donors.
Collapse
|
12
|
Ng SY, Ong KX, Surendran ST, Sinha A, Lai JJH, Chen J, Liang J, Tay LKS, Cui L, Loo HL, Ho P, Han J, Moreira W. Hydrogen Sulfide Sensitizes Acinetobacter baumannii to Killing by Antibiotics. Front Microbiol 2020; 11:1875. [PMID: 32849459 PMCID: PMC7427342 DOI: 10.3389/fmicb.2020.01875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
The production of endogenous hydrogen sulfide (H2S) has been shown to confer antibiotic tolerance in all bacteria studied to date. Therefore, this mediator has been speculated to be a universal defense mechanism against antibiotics in bacteria. This is assuming that all bacteria produce endogenous H2S. In this study, we established that the pathogenic bacteria Acinetobacter baumannii does not produce endogenous H2S, giving us the opportunity to test the effect of exogenous H2S on antibiotic tolerance in a bacterium that does not produce it. By using a H2S-releasing compound to modulate the sulfide content in A. baumannii, we demonstrated that instead of conferring antibiotic tolerance, exogenous H2S sensitized A. baumannii to multiple antibiotic classes, and was able to revert acquired resistance to gentamicin. Exogenous H2S triggered a perturbation of redox and energy homeostasis that translated into hypersensitivity to antibiotic killing. We propose that H2S could be used as an antibiotic-potentiator and resistance-reversion agent in bacteria that do not produce it.
Collapse
Affiliation(s)
- Say Yong Ng
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Kai Xun Ong
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Smitha Thamarath Surendran
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group (CAMP IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Ameya Sinha
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Joey Jia Hui Lai
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Jacqueline Chen
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Jiaqi Liang
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Leona Kwan Sing Tay
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Hooi Linn Loo
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Jongyoon Han
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Wilfried Moreira
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| |
Collapse
|
13
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
14
|
Smith J, Mulhall R, Goodman S, Fleming G, Allison H, Raval R, Hasell T. Investigating the Antibacterial Properties of Inverse Vulcanized Sulfur Polymers. ACS OMEGA 2020; 5:5229-5234. [PMID: 32201811 PMCID: PMC7081397 DOI: 10.1021/acsomega.9b04267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
More than 60 million tons of sulfur are produced as a byproduct of the petrochemical industry annually. Recently, the inverse vulcanization process has transformed this excess sulfur into functional polymers by stabilization with organic cross-linkers. These interesting new polymers have many potential applications covering diverse areas. However, there has been very little focus on the potential of these high-sulfur polymers for their antibacterial properties. These properties are examined here by exposing two common bacteria species, Escherichia coli (E. Coli) and Staphylococcus aureus (S. aureus), to two structurally different, inverse vulcanized sulfur polymers: sulfur-co-diisopropenyl benzene (S-DIB) and sulfur dicyclopentadiene (S-DCPD). We report the highest bacteria log reduction (>log 4.3) of adhered bacterial cells (S. aureus) to an inverse vulcanized sulfur polymer to date and investigate the potential pathways in which antibacterial activity may occur.
Collapse
Affiliation(s)
- Jessica
A. Smith
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Ross Mulhall
- Open
Innovation Hub for Antimicrobial Surfaces at the Surface Science Research
Centre and Department of Chemistry, University
of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Sean Goodman
- Open
Innovation Hub for Antimicrobial Surfaces at the Surface Science Research
Centre and Department of Chemistry, University
of Liverpool, Liverpool L69 3BX, United Kingdom
| | - George Fleming
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Heather Allison
- Institute
of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Rasmita Raval
- Open
Innovation Hub for Antimicrobial Surfaces at the Surface Science Research
Centre and Department of Chemistry, University
of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Tom Hasell
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
15
|
Smirnova GV, Tyulenev AV, Bezmaternykh KV, Muzyka NG, Ushakov VY, Oktyabrsky ON. Cysteine homeostasis under inhibition of protein synthesis in Escherichia coli cells. Amino Acids 2019; 51:1577-1592. [PMID: 31617110 DOI: 10.1007/s00726-019-02795-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/02/2019] [Indexed: 01/23/2023]
Abstract
Increased intracellular cysteine poses a potential danger to cells due to the high ability of cysteine to reduce free iron and promote the Fenton reaction. Here, we studied ways to maintain cysteine homeostasis in E. coli cells while inhibiting protein synthesis with valine or chloramphenicol. When growing wild-type bacteria on minimal medium with sulfate, an excess of cysteine resulting from the inhibition of protein synthesis is mainly incorporated into glutathione (up to 90%), which, therefore, can be considered as cysteine buffer. The share of hydrogen sulfide, which is the product of cysteine degradation by cysteine synthase B (CysM), does not exceed 1-3%, the rest falls on free cysteine, exported from cells. As a result, intracellular free cysteine is maintained at a low level (about 0.1 mM). The lack of glutathione in the gshA mutant increases H2S production and excretion of cysteine and leads to a threefold increase in the level of intracellular cysteine in response to valine and chloramphenicol. The relA mutants, exposed to valine, produce more H2S, dramatically accelerate the export of glutathione and accumulate more cysteine in the cytoplasm than their parent, which indicates that the regulatory nucleotide (p)ppGpp is involved in maintaining cysteine homeostasis. Disruption of cysteine homeostasis in gshA and relA mutants increases their sensitivity to peroxide stress.
Collapse
Affiliation(s)
- Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia.
| | - Aleksey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia
| | - Kseniya V Bezmaternykh
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia
| | - Vadim Y Ushakov
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia.,Perm State University, Bukireva Street 15, 614990, Perm, Russia
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia.,Perm National Research Polytechnic University, Komsomolsky Pr. 29, 614990, Perm, Russia
| |
Collapse
|
16
|
Nzungize L, Ali MK, Wang X, Huang X, Yang W, Duan X, Yan S, Li C, Abdalla AE, Jeyakkumar P, Xie J. Mycobacterium tuberculosis metC (Rv3340) derived hydrogen sulphide conferring bacteria stress survival. J Drug Target 2019; 27:1004-1016. [DOI: 10.1080/1061186x.2019.1579820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lambert Nzungize
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoyu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenmin Yang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuangquan Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Abualgasim Elgaili Abdalla
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
- Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman, Islamic University, Omdurman, Sudan
| | - Ponmani Jeyakkumar
- Institute of Bioorganic and Medical Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|