1
|
Wang Z, Tang Z, Heidari H, Molaeipour L, Ghanavati R, Kazemian H, Koohsar F, Kouhsari E. Global status of phenotypic pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates: an updated systematic review and meta-analysis. J Chemother 2023; 35:583-595. [PMID: 37211822 DOI: 10.1080/1120009x.2023.2214473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Pyrazinamide (PZA) is an essential first-line tuberculosis drug for its unique mechanism of action active against multidrug-resistant-TB (MDR-TB). Thus, the aim of updated meta-analysis was to estimate the PZA weighted pooled resistance (WPR) rate in M. tuberculosis isolates based on publication date and WHO regions. We systematically searched the related reports in PubMed, Scopus, and Embase (from January 2015 to July 2022). Statistical analyses were performed using STATA software. The 115 final reports in the analysis investigated phenotypic PZA resistance data. The WPR of PZA was 57% (95% CI 48-65%) in MDR-TB cases. According to the WHO regions, the higher WPRs of PZA were reported in the Western Pacific (32%; 95% CI 18-46%), South East Asian region (37%; 95% CI 31-43%), and the Eastern Mediterranean (78%; 95% CI 54-95%) among any-TB patients, high risk of MDR-TB patients, and MDR-TB patients, respectively. A negligible increase in the rate of PZA resistance were showed in MDR-TB cases (55% to 58%). The rate of PZA resistance has been rising in recent years among MDR-TB cases, underlines the essential for both standard and novel drug regimens development.
Collapse
Affiliation(s)
- Zheming Wang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Molaeipour
- Department of Epidemiology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
2
|
Rodriguez J, Alcántara R, Rodríguez J, Vargas J, Roncal E, Antiparra R, Gilman RH, Grandjean L, Moore D, Zimic M, Sheen P. Evaluation of three alternatives cost-effective culture media for Mycobacterium tuberculosis detection and drug susceptibility determination using the microscopic observation drug susceptibility (MODS) assay. Tuberculosis (Edinb) 2022; 137:102273. [PMID: 36403561 PMCID: PMC10022417 DOI: 10.1016/j.tube.2022.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Tuberculosis phenotypic detection assays are commonly used in low-resource countries. Therefore, reliable detection methods are crucial for early diagnosis and treatment. The microscopic observation drug susceptibility (MODS) assay is a culture-based test to detect Mycobacterium tuberculosis and characterize drug resistance in 7-10 days directly from sputum. The use of MODS is limited by the availability of supplies necessary for preparing the enriched culture. In this study, we evaluated three dry culture media that are easier to produce and cheaper than the standard one used in MODS [1]: an unsterilized powder-based mixed (Boldú et al., 2007) [2], a sterile-lyophilized medium, and (Sengstake et al., 2017) [3] an irradiated powder-based mixed. Mycobacterial growth and drug susceptibility were evaluated for rifampin, isoniazid, and pyrazinamide (PZA). The alternative cultures were evaluated using 282 sputum samples with positive acid-fast smears. No significant differences were observed in the positivity test rates. The positivity time showed high correlations (Rho) of 0.925, 0.889, and 0.866 between each of the three alternative media and the standard. Susceptibility testing for MDR and PZA showed an excellent concordance of 1 compared to the reference test. These results demonstrate that dry culture media are appropriate and advantageous for use in MODS in low-resource settings.
Collapse
Affiliation(s)
- Jhojailith Rodriguez
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
| | - Roberto Alcántara
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, 15023, Peru
| | - Joseline Rodríguez
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
| | - Johnny Vargas
- Instituto Peruano de Energía Nuclear (IPEN), Lima, 15076, Peru
| | - Elisa Roncal
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
| | - Ricardo Antiparra
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
| | - Robert H Gilman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, United States
| | - Louis Grandjean
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, London, WC1N 1EH, UK
| | - David Moore
- TB Centre, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
| | - Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru.
| |
Collapse
|
3
|
Direct Determination of Pyrazinamide (PZA) Susceptibility by Sputum Microscopic Observation Drug Susceptibility (MODS) Culture at Neutral pH: the MODS-PZA Assay. J Clin Microbiol 2020; 58:JCM.01165-19. [PMID: 32132191 PMCID: PMC7180241 DOI: 10.1128/jcm.01165-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pyrazinamide (PZA) is considered the pivot drug in all tuberculosis treatment regimens due to its particular action on the persistent forms of Mycobacterium tuberculosis. However, no drug susceptibility test (DST) is considered sufficiently reliable for routine application. Although molecular tests are endorsed, their application is limited to known PZA resistance associated mutations. Microbiological DSTs for PZA have been restricted by technical limitations, especially the necessity for an acidic pH. Pyrazinamide (PZA) is considered the pivot drug in all tuberculosis treatment regimens due to its particular action on the persistent forms of Mycobacterium tuberculosis. However, no drug susceptibility test (DST) is considered sufficiently reliable for routine application. Although molecular tests are endorsed, their application is limited to known PZA resistance associated mutations. Microbiological DSTs for PZA have been restricted by technical limitations, especially the necessity for an acidic pH. Here, for the first time, MODS culture at neutral pH was evaluated using high PZA concentrations (400 and 800 μg/ml) to determine PZA susceptibility directly from sputum samples. Sputum samples were cultured with PZA for up to 21 days at 37°C. Plate reading was performed at two time points: R1 (mean, 10 days) and R2 (mean, 13 days) for each PZA concentration. A consensus reference test, composed of MGIT-PZA, pncA sequencing, and the classic Wayne test, was used. A total of 182 samples were evaluated. The sensitivity and specificity for 400 μg/ml ranged from 76.9 to 89.7 and from 93.0 to 97.9%, respectively, and for 800 μg/ml ranged from 71.8 to 82.1 and from 95.8 to 98.6%, respectively. Compared to MGIT-PZA, our test showed a similar turnaround time (medians of 10 and 12 days for PZA-sensitive and -resistant isolates, respectively). In conclusion, MODS-PZA is presented as a fast, simple, and low-cost DST that could complement the MODS assay to evaluate resistance to the principal first-line antituberculosis drugs. Further optimization of test conditions would be useful in order to increase its performance.
Collapse
|
4
|
Nahid P, Mase SR, Migliori GB, Sotgiu G, Bothamley GH, Brozek JL, Cattamanchi A, Cegielski JP, Chen L, Daley CL, Dalton TL, Duarte R, Fregonese F, Horsburgh CR, Ahmad Khan F, Kheir F, Lan Z, Lardizabal A, Lauzardo M, Mangan JM, Marks SM, McKenna L, Menzies D, Mitnick CD, Nilsen DM, Parvez F, Peloquin CA, Raftery A, Schaaf HS, Shah NS, Starke JR, Wilson JW, Wortham JM, Chorba T, Seaworth B. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 200:e93-e142. [PMID: 31729908 PMCID: PMC6857485 DOI: 10.1164/rccm.201909-1874st] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America jointly sponsored this new practice guideline on the treatment of drug-resistant tuberculosis (DR-TB). The document includes recommendations on the treatment of multidrug-resistant TB (MDR-TB) as well as isoniazid-resistant but rifampin-susceptible TB.Methods: Published systematic reviews, meta-analyses, and a new individual patient data meta-analysis from 12,030 patients, in 50 studies, across 25 countries with confirmed pulmonary rifampin-resistant TB were used for this guideline. Meta-analytic approaches included propensity score matching to reduce confounding. Each recommendation was discussed by an expert committee, screened for conflicts of interest, according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.Results: Twenty-one Population, Intervention, Comparator, and Outcomes questions were addressed, generating 25 GRADE-based recommendations. Certainty in the evidence was judged to be very low, because the data came from observational studies with significant loss to follow-up and imbalance in background regimens between comparator groups. Good practices in the management of MDR-TB are described. On the basis of the evidence review, a clinical strategy tool for building a treatment regimen for MDR-TB is also provided.Conclusions: New recommendations are made for the choice and number of drugs in a regimen, the duration of intensive and continuation phases, and the role of injectable drugs for MDR-TB. On the basis of these recommendations, an effective all-oral regimen for MDR-TB can be assembled. Recommendations are also provided on the role of surgery in treatment of MDR-TB and for treatment of contacts exposed to MDR-TB and treatment of isoniazid-resistant TB.
Collapse
|
5
|
Dixit A, Freschi L, Vargas R, Calderon R, Sacchettini J, Drobniewski F, Galea JT, Contreras C, Yataco R, Zhang Z, Lecca L, Kolokotronis SO, Mathema B, Farhat MR. Whole genome sequencing identifies bacterial factors affecting transmission of multidrug-resistant tuberculosis in a high-prevalence setting. Sci Rep 2019; 9:5602. [PMID: 30944370 PMCID: PMC6447560 DOI: 10.1038/s41598-019-41967-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022] Open
Abstract
Whole genome sequencing (WGS) can elucidate Mycobacterium tuberculosis (Mtb) transmission patterns but more data is needed to guide its use in high-burden settings. In a household-based TB transmissibility study in Peru, we identified a large MIRU-VNTR Mtb cluster (148 isolates) with a range of resistance phenotypes, and studied host and bacterial factors contributing to its spread. WGS was performed on 61 of the 148 isolates. We compared transmission link inference using epidemiological or genomic data and estimated the dates of emergence of the cluster and antimicrobial drug resistance (DR) acquisition events by generating a time-calibrated phylogeny. Using a set of 12,032 public Mtb genomes, we determined bacterial factors characterizing this cluster and under positive selection in other Mtb lineages. Four of the 61 isolates were distantly related and the remaining 57 isolates diverged ca. 1968 (95%HPD: 1945-1985). Isoniazid resistance arose once and rifampin resistance emerged subsequently at least three times. Emergence of other DR types occurred as recently as within the last year of sampling. We identified five cluster-defining SNPs potentially contributing to transmissibility. In conclusion, clusters (as defined by MIRU-VNTR typing) may be circulating for decades in a high-burden setting. WGS allows for an enhanced understanding of transmission, drug resistance, and bacterial fitness factors.
Collapse
Affiliation(s)
- Avika Dixit
- Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | - Zibiao Zhang
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Leonid Lecca
- Harvard Medical School, Boston, MA, USA
- Socios En Salud, Lima, Peru
| | | | - Barun Mathema
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maha R Farhat
- Harvard Medical School, Boston, MA, USA
- Massachussetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
MODS-Wayne, a Colorimetric Adaptation of the Microscopic-Observation Drug Susceptibility (MODS) Assay for Detection of Mycobacterium tuberculosis Pyrazinamide Resistance from Sputum Samples. J Clin Microbiol 2019; 57:JCM.01162-18. [PMID: 30429257 PMCID: PMC6355525 DOI: 10.1128/jcm.01162-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/27/2018] [Indexed: 02/03/2023] Open
Abstract
Although pyrazinamide (PZA) is a key component of first- and second-line tuberculosis treatment regimens, there is no gold standard to determine PZA resistance. Approximately 50% of multidrug-resistant tuberculosis (MDR-TB) and over 90% of extensively drug-resistant tuberculosis (XDR-TB) strains are also PZA resistant. Although pyrazinamide (PZA) is a key component of first- and second-line tuberculosis treatment regimens, there is no gold standard to determine PZA resistance. Approximately 50% of multidrug-resistant tuberculosis (MDR-TB) and over 90% of extensively drug-resistant tuberculosis (XDR-TB) strains are also PZA resistant. pncA sequencing is the endorsed test to evaluate PZA susceptibility. However, molecular methods have limitations for their wide application. In this study, we standardized and evaluated a new method, MODS-Wayne, to determine PZA resistance. MODS-Wayne is based on the detection of pyrazinoic acid, the hydrolysis product of PZA, directly in the supernatant of sputum cultures by detecting a color change following the addition of 10% ferrous ammonium sulfate. Using a PZA concentration of 800 µg/ml, sensitivity and specificity were evaluated at three different periods of incubation (reading 1, reading 2, and reading 3) using a composite reference standard (MGIT-PZA, pncA sequencing, and the classic Wayne test). MODS-Wayne was able to detect PZA resistance, with a sensitivity and specificity of 92.7% and 99.3%, respectively, at reading 3. MODS-Wayne had an agreement of 93.8% and a kappa index of 0.79 compared to the classic Wayne test, an agreement of 95.3% and kappa index of 0.86 compared to MGIT-PZA, and an agreement of 96.9% and kappa index of 0.90 compared to pncA sequencing. In conclusion, MODS-Wayne is a simple, fast, accurate, and inexpensive approach to detect PZA resistance, making this an attractive assay especially for low-resource countries, where TB is a major public health problem.
Collapse
|
7
|
Calderón RI, Velásquez GE, Becerra MC, Zhang Z, Contreras CC, Yataco RM, Galea JT, Lecca LW, Kritski AL, Murray MB, Mitnick CD. Prevalence of pyrazinamide resistance and Wayne assay performance analysis in a tuberculosis cohort in Lima, Peru. Int J Tuberc Lung Dis 2018; 21:894-901. [PMID: 28786798 DOI: 10.5588/ijtld.16.0850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multidrug-resistant tuberculosis (MDR-TB) regimens often contain pyrazinamide (PZA) even if susceptibility to the drug has not been confirmed. This gap is due to the limited availability and reliability of PZA susceptibility testing. OBJECTIVES To estimate the prevalence of PZA resistance using the Wayne assay among TB patients in Lima, Peru, to describe characteristics associated with PZA resistance and to compare the performance of Wayne with that of BACTEC™ MGIT™ 960. METHODS PZA susceptibility using the Wayne assay was tested in patients diagnosed with culture-positive pulmonary TB from September 2009 to August 2012. Factors associated with PZA resistance were evaluated. We compared the performance of the Wayne assay to that of MGIT 960 in a convenience sample. RESULTS The prevalence of PZA resistance was 6.6% (95%CI 5.8-7.5) among 3277 patients, and 47.7% (95%CI 42.7-52.6) among a subset of 405 MDR-TB patients. In multivariable analysis, MDR-TB (OR 86.0, 95%CI 54.0-136.9) and Latin American-Mediterranean lineage (OR 3.40, 95%CI 2.33-4.96) were associated with PZA resistance. The Wayne assay was in agreement with MGIT 960 in 83.9% of samples (κ 0.66, 95%CI 0.56-0.76). CONCLUSION PZA resistance was detected using the Wayne assay in nearly half of MDR-TB patients in Lima. This test can inform the selection and composition of regimens, especially those dependent on additional resistance.
Collapse
Affiliation(s)
- R I Calderón
- Socios En Salud Sucursal Peru, Lima, Peru; Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - G E Velásquez
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - M C Becerra
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Z Zhang
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - R M Yataco
- Socios En Salud Sucursal Peru, Lima, Peru
| | - J T Galea
- Socios En Salud Sucursal Peru, Lima, Peru
| | - L W Lecca
- Socios En Salud Sucursal Peru, Lima, Peru
| | - A L Kritski
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - M B Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - C D Mitnick
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ngabonziza JCS, Diallo AB, Tagliani E, Diarra B, Kadanga AE, Togo ACG, Thiam A, de Rijk WB, Alagna R, Houeto S, Ba F, Dagnra AY, Ivan E, Affolabi D, Schwoebel V, Trebucq A, de Jong BC, Rigouts L, Daneau G. Half of rifampicin-resistant Mycobacterium tuberculosis complex isolated from tuberculosis patients in Sub-Saharan Africa have concomitant resistance to pyrazinamide. PLoS One 2017; 12:e0187211. [PMID: 29088294 PMCID: PMC5663438 DOI: 10.1371/journal.pone.0187211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022] Open
Abstract
Background Besides inclusion in 1st line regimens against tuberculosis (TB), pyrazinamide (PZA) is used in 2nd line anti-TB regimens, including in the short regimen for multidrug-resistant TB (MDR-TB) patients. Guidelines and expert opinions are contradictory about inclusion of PZA in case of resistance. Moreover, drug susceptibility testing (DST) for PZA is not often applied in routine testing, and the prevalence of resistance is unknown in several regions, including in most African countries. Methods Six hundred and twenty-three culture isolates from rifampicin-resistant (RR) patients were collected in twelve Sub-Saharan African countries. Among those isolates, 71% were from patients included in the study on the Union short-course regimen for MDR-TB in Benin, Burkina Faso, Burundi, Cameroon, Central Africa Republic, the Democratic Republic of the Congo, Ivory Coast, Niger, and Rwanda PZA resistance, and the rest (29%) were consecutive isolates systematically stored from 2014–2015 in Mali, Rwanda, Senegal, and Togo. Besides national guidelines, the isolates were tested for PZA resistance through pncA gene sequencing. Results Over half of these RR-TB isolates (54%) showed a mutation in the pncA gene, with a significant heterogeneity between countries. Isolates with fluoroquinolone resistance (but not with injectable resistance or XDR) were more likely to have concurrent PZA resistance. The pattern of mutations in the pncA gene was quite diverse, although some isolates with an identical pattern of mutations in pncA and other drug-related genes were isolated from the same reference center, suggesting possible transmission of these strains. Conclusion Similar to findings in other regions, more than half of the patients having RR-TB in West and Central Africa present concomitant resistance to PZA. Further investigations are needed to understand the relation between resistance to PZA and resistance to fluoroquinolones, and whether continued use of PZA in the face of PZA resistance provides clinical benefit to the patients.
Collapse
Affiliation(s)
- Jean Claude Semuto Ngabonziza
- National Reference Laboratory Division, Biomedical Services Department, Rwanda Biomedical Centre, Kigali, Rwanda
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| | - Awa Ba Diallo
- Mycobacteriology Unit, Bacteriology- Virology Laboratory, CHNU Aristide le Dantec, Dakar, Senegal
| | - Elisa Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bassirou Diarra
- SEREFO/UCRC Program, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | | | - Aliou Thiam
- Mycobacteriology Unit, Bacteriology- Virology Laboratory, CHNU Aristide le Dantec, Dakar, Senegal
| | - Willem Bram de Rijk
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Riccardo Alagna
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine Houeto
- Laboratoire de Référence des Mycobactéries, Cotonou, Benin
| | - Fatoumata Ba
- Laboratoire de Reference des Mycobactéries, Dakar, Senegal
| | | | - Emil Ivan
- National Reference Laboratory Division, Biomedical Services Department, Rwanda Biomedical Centre, Kigali, Rwanda
| | | | - Valérie Schwoebel
- International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Arnaud Trebucq
- International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Bouke Catherine de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Géraldine Daneau
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Biomedical section, Haute Ecole Francisco Ferrer, Brussels, Belgium
| | | |
Collapse
|
9
|
Yadon AN, Maharaj K, Adamson JH, Lai YP, Sacchettini JC, Ioerger TR, Rubin EJ, Pym AS. A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide. Nat Commun 2017; 8:588. [PMID: 28928454 PMCID: PMC5605632 DOI: 10.1038/s41467-017-00721-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis chemotherapy is dependent on the use of the antibiotic pyrazinamide, which is being threatened by emerging drug resistance. Resistance is mediated through mutations in the bacterial gene pncA. Methods for testing pyrazinamide susceptibility are difficult and rarely performed, and this means that the full spectrum of pncA alleles that confer clinical resistance to pyrazinamide is unknown. Here, we performed in vitro saturating mutagenesis of pncA to generate a comprehensive library of PncA polymorphisms resultant from a single-nucleotide polymorphism. We then screened it for pyrazinamide resistance both in vitro and in an infected animal model. We identify over 300 resistance-conferring substitutions. Strikingly, these mutations map throughout the PncA structure and result in either loss of enzymatic activity and/or decrease in protein abundance. Our comprehensive mutational and screening approach should stand as a paradigm for determining resistance mutations and their mechanisms of action.The antibiotic pyrazinamide is central to tuberculosis treatment regimens, globally. Despite its efficacy, resistance to the drug is increasing. Here, Eric Rubin and colleagues characterise the genetic basis of pyrazinamide resistance.
Collapse
Affiliation(s)
- Adam N Yadon
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg 1, Rm 810, Boston, MA, 02115, USA
- African Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, K-RITH Tower Building, Level 3, 719 Umbilo Road, Durban, 4001, South Africa
| | - Kashmeel Maharaj
- African Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, K-RITH Tower Building, Level 3, 719 Umbilo Road, Durban, 4001, South Africa
| | - John H Adamson
- African Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, K-RITH Tower Building, Level 3, 719 Umbilo Road, Durban, 4001, South Africa
| | - Yi-Pin Lai
- Department of Computer Science and Engineering, 3112 Texas A&M University, 301 H.R. Bright Building, College Station, TX, 77843, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, Interdisciplinary Life Sciences Building, 301 Old Main Dr., College Station, TX, 77843, USA
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, 3112 Texas A&M University, 301 H.R. Bright Building, College Station, TX, 77843, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg 1, Rm 810, Boston, MA, 02115, USA.
| | - Alexander S Pym
- African Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, K-RITH Tower Building, Level 3, 719 Umbilo Road, Durban, 4001, South Africa.
| |
Collapse
|
10
|
Ramirez-Busby SM, Rodwell TC, Fink L, Catanzaro D, Jackson RL, Pettigrove M, Catanzaro A, Valafar F. A Multinational Analysis of Mutations and Heterogeneity in PZase, RpsA, and PanD Associated with Pyrazinamide Resistance in M/XDR Mycobacterium tuberculosis. Sci Rep 2017; 7:3790. [PMID: 28630430 PMCID: PMC5476565 DOI: 10.1038/s41598-017-03452-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/28/2017] [Indexed: 11/28/2022] Open
Abstract
Pyrazinamide (PZA) is an important first-line drug in all existing and new tuberculosis (TB) treatment regimens. PZA-resistance in M. tuberculosis is increasing, especially among M/XDR cases. Noted issues with PZA Drug Susceptibility Testing (DST) have driven the search for alternative tests. This study provides a comprehensive assessment of PZA molecular diagnostics in M/XDR TB cases. A set of 296, mostly XDR, clinical M. tuberculosis isolates from four countries were subjected to DST for eight drugs, confirmatory Wayne's assay, and whole-genome sequencing. Three genes implicated in PZA resistance, pncA, rpsA, and panD were investigated. Assuming all non-synonymous mutations cause resistance, we report 90% sensitivity and 65% specificity for a pncA-based molecular test. The addition of rpsA and panD potentially provides 2% increase in sensitivity. Molecular heterogeneity in pncA was associated with resistance and should be evaluated as a diagnostic tool. Mutations near the N-terminus and C-terminus of PZase were associated with East-Asian and Euro-American lineages, respectively. Finally, Euro-American isolates are most likely to have a wild-type PZase and escape molecular detection. Overall, the 8-10% resistance without markers may point to alternative mechanisms of resistance. Confirmatory mutagenesis may improve the disconcertingly low specificity but reduce sensitivity since not all mutations may cause resistance.
Collapse
Affiliation(s)
- S M Ramirez-Busby
- Biological and Medical Informatics Research Center, San Diego State University, San Diego, California, USA
| | - T C Rodwell
- Department of Medicine, University of California, San Diego, California, USA
| | - L Fink
- Biological and Medical Informatics Research Center, San Diego State University, San Diego, California, USA
| | - D Catanzaro
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - R L Jackson
- Department of Medicine, University of California, San Diego, California, USA
| | - M Pettigrove
- Department of Medicine, University of California, San Diego, California, USA
| | - A Catanzaro
- Department of Medicine, University of California, San Diego, California, USA
| | - F Valafar
- Biological and Medical Informatics Research Center, San Diego State University, San Diego, California, USA.
| |
Collapse
|