1
|
Capodimonte L, Meireles FTP, Bahr G, Bonomo RA, Dal Peraro M, López C, Vila AJ. OXA β-lactamases from Acinetobacter spp. are membrane bound and secreted into outer membrane vesicles. mBio 2025; 16:e0334324. [PMID: 39670715 PMCID: PMC11796391 DOI: 10.1128/mbio.03343-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
β-lactamases from Gram-negative bacteria are generally regarded as soluble, periplasmic enzymes. NDMs have been exceptionally characterized as lipoproteins anchored to the outer membrane. A bioinformatics study on all sequenced β-lactamases was performed that revealed a predominance of putative lipidated enzymes in the Class D OXAs. Namely, 60% of the OXA Class D enzymes contain a lipobox sequence in their signal peptide, that is expected to trigger lipidation and membrane anchoring. This contrasts with β-lactamases from other classes, which are predicted to be mostly soluble proteins. Almost all (>99%) putative lipidated OXAs are present in Acinetobacter spp. Importantly, we further demonstrate that OXA-23 and OXA-24/40 are lipidated, membrane-bound proteins in Acinetobacter baumannii. In contrast, OXA-48 (commonly produced by Enterobacterales) lacks a lipobox and is a soluble protein. Outer membrane vesicles (OMVs) from A. baumannii cells expressing OXA-23 and OXA-24/40 contain these enzymes in their active form. Moreover, OXA-loaded OMVs were able to protect A. baumannii, Escherichia coli, and Pseudomonas aeruginosa cells susceptible to piperacillin and imipenem. These results permit us to conclude that membrane binding is a bacterial host-specific phenomenon in OXA enzymes. These findings reveal that membrane-bound β-lactamases are more common than expected and support the hypothesis that OMVs loaded with lipidated β-lactamases are vehicles for antimicrobial resistance and its dissemination. This advantage could be crucial in polymicrobial infections, in which Acinetobacter spp. are usually involved, and underscore the relevance of identifying the cellular localization of lactamases to better understand their physiology and target them.IMPORTANCEβ-lactamases represent the main mechanism of antimicrobial resistance in Gram-negative pathogens. Their catalytic function (cleaving β-lactam antibiotics) occurs in the bacterial periplasm, where they are commonly reported as soluble proteins. A bioinformatic analysis reveals a significant number of putative lipidated β-lactamases, expected to be attached to the outer bacterial membrane. Notably, 60% of Class D OXA β-lactamases (all from Acinetobacter spp.) are predicted as membrane-anchored proteins. We demonstrate that two clinically relevant carbapenemases, OXA-23 and OXA-24/40, are membrane-bound proteins in A. baumannii. This cellular localization favors the secretion of these enzymes into outer membrane vesicles that transport them outside the boundaries of the cell. β-lactamase-loaded vesicles can protect populations of antibiotic-susceptible bacteria, enabling them to thrive in the presence of β-lactam antibiotics. The ubiquity of this phenomenon suggests that it may have influenced the dissemination of resistance mediated by Acinetobacter spp., particularly in polymicrobial infections, being a potent evolutionary advantage.
Collapse
Affiliation(s)
- Lucia Capodimonte
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | | | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carolina López
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
2
|
Park JY, Senevirathne A, Lee JH. Development of a candidate vaccine against severe fever with thrombocytopenia syndrome virus using Gn/Gc glycoprotein via multiple expression vectors delivered by attenuated Salmonella confers effective protection in hDC-SIGN transduced mice. Vaccine 2025; 43:126524. [PMID: 39547019 DOI: 10.1016/j.vaccine.2024.126524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
In this study, we developed two plasmid constructs, pJHL270 and pJHL305, for the dual expression of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Gn and Gc glycoproteins in both prokaryotic and eukaryotic systems. The constructs feature a prokaryotic expression controlled by the Ptrc promoter and a eukaryotic expression driven by the cytomegalovirus promoter and Semliki Forest Virus RNA-dependent RNA polymerase. The Gn/Gc antigenic epitope was derived from consensus sequences of 12 SFTSV M segments collected in South Korea and designed for optimal antigen expression. The full antigen was expressed eukaryotically for post-translational modifications, while the epitope construct was expressed prokaryotically. These constructs were electroporated into an attenuated Salmonella Typhimurium strain (JOL2500) for plasmid delivery, resulting in JOL3042 and JOL3045. Successful expression was confirmed via qRT-PCR and western blot analysis. Mice immunized with JOL3042 showed antibody responses as early as two weeks, while JOL3045 elicited responses at six weeks, skewed toward a Th1 response initially, later balancing with Th2. Flow cytometry revealed significant CD3+CD4+ and CD3+CD8+ T-cell responses. Both constructs generated neutralizing antibodies, and a challenge study indicated significant reductions in viral loads in the serum, liver, and spleen of vaccinated mice, demonstrating the effectiveness of the Salmonella-mediated delivery system against SFTSV infection. The outcome of the current study may pave the way to develop a safer and more effective Salmonella-mediated vaccine against lethal SFTSV infection in vulnerable populations.
Collapse
MESH Headings
- Animals
- Phlebovirus/immunology
- Phlebovirus/genetics
- Mice
- Salmonella typhimurium/immunology
- Salmonella typhimurium/genetics
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Female
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Severe Fever with Thrombocytopenia Syndrome/prevention & control
- Severe Fever with Thrombocytopenia Syndrome/immunology
- Genetic Vectors/immunology
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/genetics
- Mice, Inbred BALB C
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/genetics
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Plasmids/genetics
- Plasmids/immunology
- Glycoproteins/immunology
- Glycoproteins/genetics
- Receptors, Cell Surface
Collapse
Affiliation(s)
- Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea.
| |
Collapse
|
3
|
Capodimonte L, Meireles FTP, Bahr G, Bonomo RA, Dal Peraro M, López C, Vila AJ. OXA β-lactamases from Acinetobacter spp. are membrane-bound and secreted into outer membrane vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.622015. [PMID: 39574660 PMCID: PMC11580949 DOI: 10.1101/2024.11.04.622015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
β-lactamases from Gram-negative bacteria are generally regarded as soluble, periplasmic enzymes. NDMs have been exceptionally characterized as lipoproteins anchored to the outer membrane. A bioinformatics study on all sequenced β-lactamases was performed that revealed a predominance of putative lipidated enzymes in the class D OXAs. Namely, 60% of the OXA class D enzymes contain a lipobox sequence in their signal peptide, that is expected to trigger lipidation and membrane anchoring. This contrasts with β-lactamases from other classes, which are predicted to be mostly soluble proteins. Almost all (> 99%) putative lipidated OXAs are present in Acinetobacter spp. Importantly, we further demonstrate that OXA-23 and OXA-24/40 are lipidated, membrane-bound proteins in Acinetobacter baumannii. In contrast, OXA-48 (commonly produced by Enterobacterales) lacks a lipobox and is a soluble protein. Outer membrane vesicles (OMVs) from Acinetobacter baumannii cells expressing OXA-23 and OXA-24/40 contain these enzymes in their active form. Moreover, OXA-loaded OMVs were able to protect A. baumannii, Escherichia coli and Pseudomonas aeruginosa cells susceptible to piperacillin and imipenem. These results permit us to conclude that membrane binding is a bacterial host-specific phenomenon in OXA enzymes. These findings reveal that membrane-bound β-lactamases are more common than expected and support the hypothesis that OMVs loaded with lipidated β-lactamases are vehicles for antimicrobial resistance and its dissemination. This advantage could be crucial in polymicrobial infections, in which Acinetobacter spp. are usually involved, and underscore the relevance of identifying the cellular localization of lactamases to better understand their physiology and target them.
Collapse
Affiliation(s)
- Lucia Capodimonte
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Fernando Teixeira Pinto Meireles
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carolina López
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
4
|
Jeffs MA, Gray RAV, Sheth PM, Lohans CT. Development of a whole-cell biosensor for β-lactamase inhibitor discovery. Chem Commun (Camb) 2023; 59:12707-12710. [PMID: 37801331 DOI: 10.1039/d3cc03583b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The production of β-lactamases by bacterial pathogens endangers antimicrobial therapy, and new inhibitors for β-lactamases are urgently needed. We report the development of a luminescent-based biosensor that quantifies β-lactamase inhibition in a cellular context, based on the activation of transcriptional factor AmpR following the exposure of bacterial cells to β-lactams. This rapid method can account for factors like membrane permeability and can be employed to identify new β-lactamase inhibitors.
Collapse
Affiliation(s)
- Mitchell A Jeffs
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Rachel A V Gray
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Prameet M Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
5
|
Senevirathne A, Aganja RP, Hewawaduge C, Lee JH. Inflammation-Related Immune-Modulatory SLURP1 Prevents the Proliferation of Human Colon Cancer Cells, and Its Delivery by Salmonella Demonstrates Cross-Species Efficacy against Murine Colon Cancer. Pharmaceutics 2023; 15:2462. [PMID: 37896222 PMCID: PMC10609686 DOI: 10.3390/pharmaceutics15102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigates the anticancer properties of the α7-nAChR antagonist SLURP1 with a specific focus on its effect as an inflammation modulator on human colorectal cancer cell lines Caco2, Colo320DM, and H508 cells. The investigation includes the evaluation of cell cycle arrest, cell migration arrest, endogenous expression of SLURP1 and related proteins, calcium influx, and inflammatory responses. The results demonstrate that SLURP1 not only inhibits cell proliferation but also has the potential to arrest the cell cycle at the G1/S interface. The impact of SLURP1 on cell cycle regulation varied among cell lines, with H508 cells displaying the strongest response to exogenous SLURP1. Additionally, SLURP1 affects the nuclear factor kappa B expression and effectively reverses inflammatory responses elicited by purified lipopolysaccharides in H508 and Caco2 cells. This study further confirmed the expression of human SLURP1 by Salmonella, under Ptrc promoter, through Western blot analysis. Moreover, Salmonella secreting SLURP1 revealed a significant tumor regression in a mouse CT26 tumor model, suggesting the cross-species anticancer potential of human SLURP1. However, further investigations are required to fully understand the mechanisms underlying SLURP1's ability to prevent cancer proliferation and its protective function in humans.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (A.S.); (R.P.A.)
| | - Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (A.S.); (R.P.A.)
- Institute of Animal Transplantation, Jeonbuk National University, Iksan Campus, Iksan 54596, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (A.S.); (R.P.A.)
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (A.S.); (R.P.A.)
| |
Collapse
|
6
|
Kadeřábková N, Furniss RCD, Maslova E, Eisaiankhongi L, Bernal P, Filloux A, Landeta C, Gonzalez D, McCarthy RR, Mavridou DA. Antibiotic potentiation and inhibition of cross-resistance in pathogens associated with cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551661. [PMID: 37577508 PMCID: PMC10418187 DOI: 10.1101/2023.08.02.551661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Critical Gram-negative pathogens, like Pseudomonas, Stenotrophomonas and Burkholderia, have become resistant to most antibiotics. Complex resistance profiles together with synergistic interactions between these organisms increase the likelihood of treatment failure in distinct infection settings, for example in the lungs of cystic fibrosis patients. Here, we discover that cell envelope protein homeostasis pathways underpin both antibiotic resistance and cross-protection in CF-associated bacteria. We find that inhibition of oxidative protein folding inactivates multiple species-specific resistance proteins. Using this strategy, we sensitize multi-drug resistant Pseudomonas aeruginosa to β-lactam antibiotics and demonstrate promise of new treatment avenues for the recalcitrant pathogen Stenotrophomonas maltophilia. The same approach also inhibits cross-protection between resistant S. maltophilia and susceptible P. aeruginosa, allowing eradication of both commonly co-occurring CF-associated organisms. Our results provide the basis for the development of next-generation strategies that target antibiotic resistance, while also impairing specific interbacterial interactions that enhance the severity of polymicrobial infections.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, Texas, USA
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - R. Christopher D. Furniss
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Lara Eisaiankhongi
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, 41012, Spain
| | - Alain Filloux
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Cristina Landeta
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, 78712, Texas, USA
| |
Collapse
|
7
|
Nafaee ZH, Hunyadi-Gulyás É, Gyurcsik B. Temoneira-1 β-lactamase is not a metalloenzyme, but its native metal ion binding sites allow for purification by immobilized metal ion affinity chromatography. Protein Expr Purif 2023; 201:106169. [DOI: 10.1016/j.pep.2022.106169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
8
|
Villanueva JA, Crooks AL, Nagy TA, Quintana JLJ, Dalebroux ZD, Detweiler CS. Salmonella enterica Infections Are Disrupted by Two Small Molecules That Accumulate within Phagosomes and Differentially Damage Bacterial Inner Membranes. mBio 2022; 13:e0179022. [PMID: 36135367 PMCID: PMC9601186 DOI: 10.1128/mbio.01790-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria have a robust cell envelope that excludes or expels many antimicrobial agents. However, during infection, host soluble innate immune factors permeabilize the bacterial outer membrane. We identified two small molecules that exploit outer membrane damage to access the bacterial cell. In standard microbiological media, neither compound inhibited bacterial growth nor permeabilized bacterial outer membranes. In contrast, at micromolar concentrations, JAV1 and JAV2 enabled the killing of an intracellular human pathogen, Salmonella enterica serovar Typhimurium. S. Typhimurium is a Gram-negative bacterium that resides within phagosomes of cells from the monocyte lineage. Under broth conditions that destabilized the lipopolysaccharide layer, JAV2 permeabilized the bacterial inner membrane and was rapidly bactericidal. In contrast, JAV1 activity was more subtle: JAV1 increased membrane fluidity, altered reduction potential, and required more time than JAV2 to disrupt the inner membrane barrier and kill bacteria. Both compounds interacted with glycerophospholipids from Escherichia coli total lipid extract-based liposomes. JAV1 preferentially interacted with cardiolipin and partially relied on cardiolipin production for activity, whereas JAV2 generally interacted with lipids and had modest affinity for phosphatidylglycerol. In mammalian cells, neither compound significantly altered mitochondrial membrane potential at concentrations that killed S. Typhimurium. Instead, JAV1 and JAV2 became trapped within acidic compartments, including macrophage phagosomes. Both compounds improved survival of S. Typhimurium-infected Galleria mellonella larvae. Together, these data demonstrate that JAV1 and JAV2 disrupt bacterial inner membranes by distinct mechanisms and highlight how small, lipophilic, amine-substituted molecules can exploit host soluble innate immunity to facilitate the killing of intravesicular pathogens. IMPORTANCE Innovative strategies for developing new antimicrobials are needed. Combining our knowledge of host-pathogen interactions and relevant drug characteristics has the potential to reveal new approaches to treating infection. We identified two compounds with antibacterial activity specific to infection and with limited host cell toxicity. These compounds appeared to exploit host innate immunity to access the bacterium and differentially damage the bacterial inner membrane. Further, both compounds accumulated within Salmonella-containing and other acidic vesicles, a process known as lysosomal trapping, which protects the host and harms the pathogen. The compounds also increased host survival in an insect infection model. This work highlights the ability of host innate immunity to enable small molecules to act as antibiotics and demonstrates the feasibility of antimicrobial targeting of the inner membrane. Additionally, this study features the potential use of lysosomal trapping to enhance the activities of compounds against intravesicular pathogens.
Collapse
Affiliation(s)
- Joseph A. Villanueva
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Amy L. Crooks
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Toni A. Nagy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
9
|
Rogers AR, Turner EE, Johnson DT, Ellermeier JR. Envelope Stress Activates Expression of the Twin Arginine Translocation (Tat) System in Salmonella. Microbiol Spectr 2022; 10:e0162122. [PMID: 36036643 PMCID: PMC9604234 DOI: 10.1128/spectrum.01621-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
The twin arginine translocation system (Tat) is a protein export system that is conserved in bacteria, archaea, and plants. In Gram-negative bacteria, it is required for the export of folded proteins from the cytoplasm to the periplasm. In Salmonella, there are 30 proteins that are predicted substrates of Tat, and among these are enzymes required for anaerobic respiration and peptidoglycan remodeling. We have demonstrated that some conditions that induce bacterial envelope stress activate expression of a ΔtatABC-lacZ fusion in Salmonella enterica serovar Typhimurium. Particularly, the addition of bile salts to the growth medium causes a 3-fold induction of a ΔtatABC-lacZ reporter fusion. Our data demonstrate that this induction is mediated via the phage shock protein (Psp) stress response system protein PspA. Further, we show that deletion of tatABC increases the induction of tatABC expression in bile salts. Indeed, the data suggest significant interaction between PspA and the Tat system in the regulatory response to bile salts. Although we have not identified the precise mechanism of Psp regulation of tatABC, our work shows that PspA is involved in the activation of tatABC expression by bile salts and adds another layer of complexity to the Salmonella response to envelope stress. IMPORTANCE Salmonella species cause an array of diseases in a variety of hosts. This research is significant in showing induction of the Tat system as a defense against periplasmic stress. Understanding the underlying mechanism of this regulation broadens our understanding of the Salmonella stress response, which is critical to the ability of the organism to cause infection.
Collapse
Affiliation(s)
- Alexandra R. Rogers
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Ezekeial E. Turner
- College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Deauna T. Johnson
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Jeremy R. Ellermeier
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
10
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022; 298:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the evolution of metallo-β-lactamases (MBLs) is fundamental to deciphering the mechanistic basis of resistance to carbapenems in pathogenic and opportunistic bacteria. Presently, these MBL producing pathogens are linked to high rates of morbidity and mortality worldwide. However, the study of the biochemical and biophysical features of MBLs in vitro provides an incomplete picture of their evolutionary potential, since this limited and artificial environment disregards the physiological context where evolution and selection take place. Herein, we describe recent efforts aimed to address the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins. This includes addressing the metal content of MBLs within the cell under zinc starvation conditions, and the context provided by different bacterial hosts that result in particular resistance phenotypes. Our analysis highlights recent progress bridging the gap between in vitro and in-cell studies.
Collapse
Affiliation(s)
- Carolina López
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Juliana Delmonti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
12
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
13
|
Li X, Gui R, Li J, Huang R, Shang Y, Zhao Q, Liu H, Jiang H, Shang X, Wu X, Nie X. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30434-30457. [PMID: 34161080 DOI: 10.1021/acsami.1c10309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the face of the abundant production of various types of carbapenemases, the antibacterial efficiency of imipenem, seen as "the last line of defense", is weakening. Following, the incidence of carbapenem-resistant Acinetobacter baumannii (CRAB), which can generate antibiotic-resistant biofilms, is increasing. Based on the superior antimicrobial activity of silver nanoparticles against multifarious bacterial strains compared with common antibiotics, we constructed the IPM@AgNPs-PEG-NOTA nanocomposite (silver nanoparticles were coated with SH-PEG-NOTA as well as loaded by imipenem) whose core was a silver nanoparticle to address the current challenge, and IPM@AgNPs-PEG-NOTA was able to function as a novel smart pH-sensitive nanodrug system. Synergistic bactericidal effects of silver nanoparticles and imipenem as well as drug-resistance reversal via protection of the β-ring of carbapenem due to AgNPs-PEG-NOTA were observed; thus, this nanocomposite confers multiple advantages for efficient antibacterial activity. Additionally, IPM@AgNPs-PEG-NOTA not only offers immune regulation and accelerates tissue repair to improve therapeutic efficacy in vivo but also can prevent the interaction of pathogens and hosts. Compared with free imipenem or silver nanoparticles, this platform significantly enhanced antibacterial efficiency while increasing reactive oxygen species (ROS) production and membrane damage, as well as affecting cell wall formation and metabolic pathways. According to the results of crystal violet staining, LIVE/DEAD backlight bacterial viability staining, and real-time quantitative polymerase chain reaction (RT-qPCR), this silver nanocomposite downregulated the levels of ompA expression to prevent formation of biofilms. In summary, this research demonstrated that the IPM@AgNPs-PEG-NOTA nanocomposite is a promising antibacterial agent of security, pH sensitivity, and high efficiency in reversing resistance and synergistically combatting carbapenem-resistant A. baumannii. In the future, various embellishments and selected loads for silver nanoparticles will be the focus of research in the domains of medicine and nanotechnology.
Collapse
Affiliation(s)
- Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Yinghui Shang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Haiye Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xueling Shang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xin Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
- Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha 410000, Hunan, China
| |
Collapse
|
14
|
The Carbapenemase BKC-1 from Klebsiella pneumoniae Is Adapted for Translocation by Both the Tat and Sec Translocons. mBio 2021; 12:e0130221. [PMID: 34154411 PMCID: PMC8262980 DOI: 10.1128/mbio.01302-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes surrounding the periplasm and peptidoglycan layer. β-Lactam antibiotics target the periplasmic penicillin-binding proteins that synthesize peptidoglycan, resulting in cell death. The primary means by which bacterial species resist the effects of β-lactam drugs is to populate the periplasmic space with β-lactamases. Resistance to β-lactam drugs is spread by lateral transfer of genes encoding β-lactamases from one species of bacteria to another. However, the resistance phenotype depends in turn on these “alien” protein sequences being recognized and exported across the cytoplasmic membrane by either the Sec or Tat protein translocation machinery of the new bacterial host. Here, we examine BKC-1, a carbapenemase from an unknown bacterial source that has been identified in a single clinical isolate of Klebsiella pneumoniae. BKC-1 was shown to be located in the periplasm, and functional in both K. pneumoniae and Escherichia coli. Sequence analysis revealed the presence of an unusual signal peptide with a twin arginine motif and a duplicated hydrophobic region. Biochemical assays showed this signal peptide directs BKC-1 for translocation by both Sec and Tat translocons. This is one of the few descriptions of a periplasmic protein that is functionally translocated by both export pathways in the same organism, and we suggest it represents a snapshot of evolution for a β-lactamase adapting to functionality in a new host.
Collapse
|
15
|
M Brauer A, R Rogers A, R Ellermeier J. Twin-arginine translocation (Tat) mutants in Salmonella enterica serovar Typhimurium have increased susceptibility to cell wall targeting antibiotics. FEMS MICROBES 2021; 2:xtab004. [PMID: 34250488 PMCID: PMC8262268 DOI: 10.1093/femsmc/xtab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 11/15/2022] Open
Abstract
The twin-arginine translocation (Tat) system is a protein secretion system that is conserved in bacteria, archaea and plants. In Gram-negative bacteria, it is required for the export of folded proteins from the cytoplasm to the periplasm. There are 30 experimentally verified Tat substrates in Salmonella, including hydrogenase subunits, enzymes required for anaerobic respiration and enzymes involved in peptidoglycan remodeling during cell division. Multiple studies have demonstrated the susceptibility of tat mutants to antimicrobial compounds such as SDS and bile; however, in this work, we use growth curves and viable plate counts to demonstrate that cell wall targeting antibiotics (penicillins, carbapenems, cephalosporins and fosfomycin) have increased killing against a Δtat strain. Further, we demonstrate that this increased killing is primarily due to defects in translocation of critical Tat substrates: MepK, AmiA, AmiC and SufI. Finally, we show that a ΔhyaAB ΔhybABC ΔhydBC strain has an altered ΔΨ that impacts proper secretion of critical Tat substrates in aerobic growth conditions.
Collapse
Affiliation(s)
- Adrienne M Brauer
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
| | - Alexandra R Rogers
- Department of Microbiology and Immunology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| | - Jeremy R Ellermeier
- Department of Microbiology and Immunology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| |
Collapse
|
16
|
Willms IM, Grote M, Kocatürk M, Singhoff L, Kraft AA, Bolz SH, Nacke H. Novel Soil-Derived Beta-Lactam, Chloramphenicol, Fosfomycin and Trimethoprim Resistance Genes Revealed by Functional Metagenomics. Antibiotics (Basel) 2021; 10:antibiotics10040378. [PMID: 33916668 PMCID: PMC8066302 DOI: 10.3390/antibiotics10040378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance genes (ARGs) in soil are considered to represent one of the largest environmental resistomes on our planet. As these genes can potentially be disseminated among microorganisms via horizontal gene transfer (HGT) and in some cases are acquired by clinical pathogens, knowledge about their diversity, mobility and encoded resistance spectra gained increasing public attention. This knowledge offers opportunities with respect to improved risk prediction and development of strategies to tackle antibiotic resistance, and might help to direct the design of novel antibiotics, before further resistances reach hospital settings or the animal sector. Here, metagenomic libraries, which comprise genes of cultivated microorganisms, but, importantly, also those carried by the uncultured microbial majority, were screened for novel ARGs from forest and grassland soils. We detected three new beta-lactam, a so far unknown chloramphenicol, a novel fosfomycin, as well as three previously undiscovered trimethoprim resistance genes. These ARGs were derived from phylogenetically diverse soil bacteria and predicted to encode antibiotic inactivation, antibiotic efflux, or alternative variants of target enzymes. Moreover, deduced gene products show a minimum identity of ~21% to reference database entries and confer high-level resistance. This highlights the vast potential of functional metagenomics for the discovery of novel ARGs from soil ecosystems.
Collapse
|
17
|
Electrochromic shift supports the membrane destabilization model of Tat-mediated transport and shows ion leakage during Sec transport. Proc Natl Acad Sci U S A 2021; 118:2018122118. [PMID: 33723047 DOI: 10.1073/pnas.2018122118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism and pore architecture of the Tat complex during transport of folded substrates remain a mystery, partly due to rapid dissociation after translocation. In contrast, the proteinaceous SecY pore is a persistent structure that needs only to undergo conformational shifts between "closed" and "opened" states when translocating unfolded substrate chains. Where the proteinaceous pore model describes the SecY pore well, the toroidal pore model better accounts for the high-energy barrier that must be overcome when transporting a folded substrate through the hydrophobic bilayer in Tat transport. Membrane conductance behavior can, in principle, be used to distinguish between toroidal and proteinaceous pores, as illustrated in the examination of many antimicrobial peptides as well as mitochondrial Bax and Bid. Here, we measure the electrochromic shift (ECS) decay as a proxy for conductance in isolated thylakoids, both during protein transport and with constitutively assembled translocons. We find that membranes with the constitutively assembled Tat complex and those undergoing Tat transport display conductance characteristics similar to those of resting membranes. Membranes undergoing Sec transport and those with the substrate-engaged SecY pore result in significantly more rapid electric field decay. The responsiveness of the ECS signal in membranes with active SecY recalls the steep relationship between applied voltage and conductance in a proteinaceous pore, while the nonaccelerated electric field decay with both Tat transport and the constitutive Tat complex under the same electric field is consistent with the behavior of a toroidal pore.
Collapse
|
18
|
Klasek L, Inoue K, Theg SM. Chloroplast Chaperonin-Mediated Targeting of a Thylakoid Membrane Protein. THE PLANT CELL 2020; 32:3884-3901. [PMID: 33093145 PMCID: PMC7721336 DOI: 10.1105/tpc.20.00309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/11/2020] [Accepted: 10/21/2020] [Indexed: 05/08/2023]
Abstract
Posttranslational protein targeting requires chaperone assistance to direct insertion-competent proteins to integration pathways. Chloroplasts integrate nearly all thylakoid transmembrane proteins posttranslationally, but mechanisms in the stroma that assist their insertion remain largely undefined. Here, we investigated how the chloroplast chaperonin (Cpn60) facilitated the thylakoid integration of Plastidic type I signal peptidase 1 (Plsp1) using in vitro targeting assays. Cpn60 bound Plsp1 in the stroma. In isolated chloroplasts, the membrane integration of imported Plsp1 correlated with its dissociation from Cpn60. When the Plsp1 residues that interacted with Cpn60 were removed, Plsp1 did not integrate into the membrane. These results suggested Cpn60 was an intermediate in thylakoid targeting of Plsp1. In isolated thylakoids, the integration of Plsp1 decreased when Cpn60 was present in excess of cpSecA1, the stromal motor of the cpSec1 translocon that inserts unfolded Plsp1 into the thylakoid. An excess of cpSecA1 favored integration. Introducing Cpn60's obligate substrate RbcL displaced Cpn60-bound Plsp1; then, the released Plsp1 exhibited increased accessibility to cpSec1. These in vitro targeting experiments support a model in which Cpn60 captures and then releases insertion-competent Plsp1, whereas cpSecA1 recognizes free Plsp1 for integration. Thylakoid transmembrane proteins in the stroma can interact with Cpn60 to shield themselves from the aqueous environment.
Collapse
Affiliation(s)
- Laura Klasek
- Department of Plant Biology, University of California Davis, Davis, California 95616
| | - Kentaro Inoue
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Steven M Theg
- Department of Plant Biology, University of California Davis, Davis, California 95616
| |
Collapse
|
19
|
Fu Y, Zhang L, Wang G, Lin Y, Ramanathan S, Yang G, Lin W, Lin X. The LysR-Type Transcriptional Regulator YeeY Plays Important Roles in the Regulatory of Furazolidone Resistance in Aeromonas hydrophila. Front Microbiol 2020; 11:577376. [PMID: 33013815 PMCID: PMC7509050 DOI: 10.3389/fmicb.2020.577376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Aeromonas hydrophila is an aquatic pathogen of freshwater fish. The emergence of widespread antimicrobial-resistance strains of this pathogen has caused increasing rates of fish infections. Our previous research reported that A. hydrophila yeeY, a LysR-type transcriptional regulator (LTTR), negatively regulated furazolidone (FZ) resistance. Although, it’s intrinsic regulatory mechanism is still unclear. In this study, a data-independent acquisition (DIA) quantitative proteomics method was used to compare the differentially expressed proteins (DEPs) between the ΔyeeY and wild-type strain under FZ treatment. When compared to the control, a total of 594 DEPs were identified in ΔyeeY. Among which, 293 and 301 proteins were substantially increased and decreased in abundance, respectively. Bioinformatics analysis showed that several biological pathways such as the secretion system and protein transport were mainly involved in FZ resistance. Subsequently, the antibiotics susceptibility assays of several gene deletion strains identified from the proteomics results showed that YeeY may regulate some important genes such as cysD, AHA_2766, AHA_3195, and AHA_4275, which affects the FZ resistance in A. hydrophila. Furthermore, 34 antimicrobial resistance genes (ARGs) from the bacterial drug resistance gene database (CARD) were found to be directly or indirectly regulated by YeeY. A subsequent assay of several ARGs mutants showed that ΔAHA_3222 increased the susceptibility of A. hydrophila to FZ, while ΔcysN and ΔAHA_3753 decreased the susceptibility rate. Finally, the chromatin immunoprecipitation (ChIP) PCR and an electrophoretic mobility shift assay (EMSA) have revealed that the genes such as AHA_3222 and AHA_4275 were directly and transcriptionally regulated by YeeY. Taken together, our findings demonstrated that YeeY may participate in antimicrobial resistance of A. hydrophila to FZ, which provides a new target for the development of novel antimicrobial agents in the future.
Collapse
Affiliation(s)
- Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Srinivasan Ramanathan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guidi Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Ferric Citrate Regulator FecR Is Translocated across the Bacterial Inner Membrane via a Unique Twin-Arginine Transport-Dependent Mechanism. J Bacteriol 2020; 202:JB.00541-19. [PMID: 32015149 PMCID: PMC7148137 DOI: 10.1128/jb.00541-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
In Escherichia coli, citrate-mediated iron transport is a key nonheme pathway for the acquisition of iron. Binding of ferric citrate to the outer membrane protein FecA induces a signal cascade that ultimately activates the cytoplasmic sigma factor FecI, resulting in transcription of the fecABCDE ferric citrate transport genes. Central to this process is signal transduction mediated by the inner membrane protein FecR. FecR spans the inner membrane through a single transmembrane helix, which is flanked by cytoplasm- and periplasm-orientated moieties at the N and C termini. The transmembrane helix of FecR resembles a twin-arginine signal sequence, and the substitution of the paired arginine residues of the consensus motif decouples the FecR-FecI signal cascade, rendering the cells unable to activate transcription of the fec operon when grown on ferric citrate. Furthermore, the fusion of beta-lactamase C-terminal to the FecR transmembrane helix results in translocation of the C-terminal domain that is dependent on the twin-arginine translocation (Tat) system. Our findings demonstrate that FecR belongs to a select group of bitopic inner membrane proteins that contain an internal twin-arginine signal sequence.IMPORTANCE Iron is essential for nearly all living organisms due to its role in metabolic processes and as a cofactor for many enzymes. The FecRI signal transduction pathway regulates citrate-mediated iron import in many Gram-negative bacteria, including Escherichia coli The interactions of FecR with the outer membrane protein FecA and cytoplasmic anti-sigma factor FecI have been extensively studied. However, the mechanism by which FecR inserts into the membrane has not previously been reported. In this study, we demonstrate that the targeting of FecR to the cytoplasmic membrane is dependent on the Tat system. As such, FecR represents a new class of bitopic Tat-dependent membrane proteins with an internal twin-arginine signal sequence.
Collapse
|
21
|
Toewiwat N, Whangsuk W, Ploypradith P, Mongkolsuk S, Loprasert S. Cefoperazone induces esterase B expression by EstR and esterase B enhances cefoperazone activity at the periplasm. Int J Med Microbiol 2020; 310:151396. [PMID: 32005588 DOI: 10.1016/j.ijmm.2020.151396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/27/2019] [Accepted: 12/29/2019] [Indexed: 11/17/2022] Open
Abstract
The occurrence of antibiotic resistance bacteria has become a major threat to public health. We have recently discovered a transcriptional activator that belongs to MarR family, EstR, and an esterase B (EstB) with a newly proposed de-arenethiolase activity from Sphingobium sp. SM42. De-arenethiolase activity involves the removal of the small aromatic side chain of cephalosporin antibiotics as an excellent leaving group by the enzymatic CS bond cleavage. Here, we report the regulation of estB through EstR as an activator in response to a third generation cephalosporin, cefoperazone, antibiotic. Cefoperazone induced the expression of estB in wild type Sphingobium sp., but not in the estR knockout strain, and the induction was restored in the complemented strain. Moreover, we revealed the importance of EstB localization in periplasm. Since EsB has the ability to inactivate selected β-lactam antibiotics in vitro, it is possible that the enzyme works at the periplasmic space of Gram negative bacteria similar to β-lactamases. EstB was genetically engineered by incorporating NlpA binding motif, or OmpA signal sequence, or SpyTag-SpyCatcher to the estB gene to mobilize it to different compartments of periplasm; inner membrane, outer membrane, and periplasmic space, respectively. Surprisingly, we found that Sphingobium sp. SM42 and E. coli expressing EstB at the periplasm were more sensitive to cefoperazone. The possible drug enhancement mechanism by enzyme was proposed. This work might lead to a novel strategy to tackle antibiotic resistance problem.
Collapse
Affiliation(s)
- Neal Toewiwat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Wirongrong Whangsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Poonsakdi Ploypradith
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok, 10400, Thailand
| | - Skorn Mongkolsuk
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand; Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok, 10400, Thailand
| | - Suvit Loprasert
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand; Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok, 10400, Thailand.
| |
Collapse
|
22
|
Biofilms facilitate cheating and social exploitation of β-lactam resistance in Escherichia coli. NPJ Biofilms Microbiomes 2019; 5:36. [PMID: 31814991 PMCID: PMC6884583 DOI: 10.1038/s41522-019-0109-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/30/2019] [Indexed: 11/27/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli commonly resist β-lactam antibiotics using plasmid-encoded β-lactamase enzymes. Bacterial strains that express β-lactamases have been found to detoxify liquid cultures and thus to protect genetically susceptible strains, constituting a clear laboratory example of social protection. These results are not necessarily general; on solid media, for instance, the rapid bactericidal action of β-lactams largely prevents social protection. Here, we tested the hypothesis that the greater tolerance of biofilm bacteria for β-lactams would facilitate social interactions. We used a recently isolated E. coli strain, capable of strong biofilm formation, to compare how cooperation and exploitation in colony biofilms and broth culture drives the dynamics of a non-conjugative plasmid encoding a clinically important β-lactamase. Susceptible cells in biofilms were tolerant of ampicillin—high doses and several days of exposure were required to kill them. In support of our hypothesis, we found robust social protection of susceptible E. coli in biofilms, despite fine-scale physical separation of resistant and susceptible cells and lower rates of production of extracellular β-lactamase. In contrast, social interactions in broth were restricted to a relatively narrow range of ampicillin doses. Our results show that β-lactam selection pressure on Gram-negative biofilms leads to cooperative resistance characterized by a low equilibrium frequency of resistance plasmids, sufficient to protect all cells.
Collapse
|
23
|
Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat Commun 2019; 10:3617. [PMID: 31399590 PMCID: PMC6689000 DOI: 10.1038/s41467-019-11615-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
The worldwide dissemination of metallo-β-lactamases (MBLs), mediating resistance to carbapenem antibiotics, is a major public health problem. The extent of dissemination of MBLs such as VIM-2, SPM-1 and NDM among Gram-negative pathogens cannot be explained solely based on the associated mobile genetic elements or the resistance phenotype. Here, we report that MBL host range is determined by the impact of MBL expression on bacterial fitness. The signal peptide sequence of MBLs dictates their adaptability to each host. In uncommon hosts, inefficient processing of MBLs leads to accumulation of toxic intermediates that compromises bacterial growth. This fitness cost explains the exclusion of VIM-2 and SPM-1 from Escherichia coli and Acinetobacter baumannii, and their confinement to Pseudomonas aeruginosa. By contrast, NDMs are expressed without any apparent fitness cost in different bacteria, and are secreted into outer membrane vesicles. We propose that the successful dissemination and adaptation of MBLs to different bacterial hosts depend on protein determinants that enable host adaptability and carbapenem resistance. Metallo-β-lactamases (MBLs) confer resistance to carbapenem antibiotics. Here, López et al. show that the host range of MBLs depends on the efficiency of MBL signal peptide processing and secretion into outer membrane vesicles, which affects bacterial fitness.
Collapse
|
24
|
Srivastava SK, King KS, AbuSara NF, Malayny CJ, Piercey BM, Wilson JA, Tahlan K. In vivo functional analysis of a class A β-lactamase-related protein essential for clavulanic acid biosynthesis in Streptomyces clavuligerus. PLoS One 2019; 14:e0215960. [PMID: 31013337 PMCID: PMC6478378 DOI: 10.1371/journal.pone.0215960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022] Open
Abstract
In Streptomyces clavuligerus, the gene cluster involved in the biosynthesis of the clinically used β-lactamase inhibitor clavulanic acid contains a gene (orf12 or cpe) encoding a protein with a C-terminal class A β-lactamase-like domain. The cpe gene is essential for clavulanic acid production, and the recent crystal structure of its product (Cpe) was shown to also contain an N-terminal isomerase/cyclase-like domain, but the function of the protein remains unknown. In the current study, we show that Cpe is a cytoplasmic protein and that both its N- and C-terminal domains are required for in vivo clavulanic acid production in S. clavuligerus. Our results along with those from previous studies allude towards a biosynthetic role for Cpe during the later stages of clavulanic acid production in S. clavuligerus. Amino acids from Cpe essential for biosynthesis were also identified, including one (Lys89) from the recently described N-terminal isomerase-like domain of unknown function. Homologues of Cpe from other clavulanic acid-producing Streptomyces spp. were shown to be functionally equivalent to the S. clavuligerus protein, whereas those from non-producers containing clavulanic acid-like gene clusters were not. The suggested in vivo involvement of an isomerase-like domain recruited by an ancestral β-lactamase related protein, supports a previous hypothesis that Cpe could be involved in a step requiring the opening and modification of the clavulanic acid core during its biosynthesis from 5S precursors.
Collapse
Affiliation(s)
| | - Kelcey S. King
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Nader F. AbuSara
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Chelsea J. Malayny
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Brandon M. Piercey
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Jaime A. Wilson
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
- * E-mail:
| |
Collapse
|
25
|
Shanmugam SK, Backes N, Chen Y, Belardo A, Phillips GJ, Dalbey RE. New Insights into Amino-Terminal Translocation as Revealed by the Use of YidC and Sec Depletion Strains. J Mol Biol 2019; 431:1025-1037. [DOI: 10.1016/j.jmb.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 02/03/2023]
|
26
|
Lagoutte P, Lugari A, Elie C, Potisopon S, Donnat S, Mignon C, Mariano N, Troesch A, Werle B, Stadthagen G. Combination of ribosome display and next generation sequencing as a powerful method for identification of affibody binders against β-lactamase CTX-M15. N Biotechnol 2019; 50:60-69. [PMID: 30634000 DOI: 10.1016/j.nbt.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/15/2023]
Abstract
CTX-M15 is one of the most widespread, extended spectrum β-lactamases, a major determinant of antibiotic resistance representing urgent public health threats, among enterobacterial strains infecting humans and animals. Here we describe the selection of binders to CTX-M15 from a combinatorial affibody library displayed on ribosomes. Upon three increasingly selective ribosome display iterations, selected variants were identified by next generation sequencing (NGS). Nine affibody variants with high relative abundance bearing QRP and QLH amino acid motifs at residues 9-11 were produced and characterized in terms of stability, affinity and specificity. All affibodies were correctly folded, with affinities ranging from 0.04 to 2 μM towards CTX-M15, and successfully recognized CTX-M15 in bacterial lysates, culture supernatants and on whole bacteria. It was further demonstrated that the binding of affibody molecules to CTX-M15 modulated the enzyme's kinetic parameters. This work provides an approach using ribosome display coupled to NGS for the rapid generation of protein ligands of interest in diagnostic and research applications.
Collapse
Affiliation(s)
| | - Adrien Lugari
- BIOASTER, 40 Avenue Tony Garnier, 69007 Lyon, France
| | - Céline Elie
- BIOASTER, 40 Avenue Tony Garnier, 69007 Lyon, France
| | | | | | | | | | - Alain Troesch
- BIOASTER, 40 Avenue Tony Garnier, 69007 Lyon, France
| | - Bettina Werle
- BIOASTER, 40 Avenue Tony Garnier, 69007 Lyon, France.
| | | |
Collapse
|
27
|
Rennig M, Martinez V, Mirzadeh K, Dunas F, Röjsäter B, Daley DO, Nørholm MHH. TARSyn: Tunable Antibiotic Resistance Devices Enabling Bacterial Synthetic Evolution and Protein Production. ACS Synth Biol 2018; 7:432-442. [PMID: 29257878 DOI: 10.1021/acssynbio.7b00200] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Evolution can be harnessed to optimize synthetic biology designs. A prominent example is recombinant protein production-a dominating theme in biotechnology for more than three decades. Typically, a protein coding sequence (cds) is recombined with genetic elements, such as promoters, ribosome binding sites and terminators, which control expression in a cell factory. A major bottleneck during production is translational initiation. Previously we identified more effective translation initiation regions (TIRs) by creating sequence libraries and then selecting for a TIR that drives high-level expression-an example of synthetic evolution. However, manual screening limits the ability to assay expression levels of all putative sequences in the libraries. Here we have solved this bottleneck by designing a collection of translational coupling devices based on a RNA secondary structure. Exchange of different sequence elements in this device allows for different coupling efficiencies, therefore giving the devices a tunable nature. Sandwiching these devices between the cds and an antibiotic selection marker that functions over a broad dynamic range of antibiotic concentrations adds to the tunability and allows expression levels in large clone libraries to be probed using a simple cell survival assay on the respective antibiotic. The power of the approach is demonstrated by substantially increasing production of two commercially interesting proteins, a Nanobody and an Affibody. The method is a simple and inexpensive alternative to advanced screening techniques that can be carried out in any laboratory.
Collapse
Affiliation(s)
- Maja Rennig
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Virginia Martinez
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kiavash Mirzadeh
- Center
for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
- CloneOpt AB, 19468 Upplands Väsby, Sweden
| | | | | | - Daniel O. Daley
- Center
for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
- CloneOpt AB, 19468 Upplands Väsby, Sweden
| | - Morten H. H. Nørholm
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- CloneOpt AB, 19468 Upplands Väsby, Sweden
| |
Collapse
|
28
|
Bland MJ, Ducos-Galand M, Val ME, Mazel D. An att site-based recombination reporter system for genome engineering and synthetic DNA assembly. BMC Biotechnol 2017; 17:62. [PMID: 28705159 PMCID: PMC5512741 DOI: 10.1186/s12896-017-0382-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/09/2017] [Indexed: 11/25/2022] Open
Abstract
Background Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the β-lactamase resistance coding sequence (bla). Results The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. Conclusions The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.
Collapse
Affiliation(s)
- Michael J Bland
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France
| | - Magaly Ducos-Galand
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France
| | - Marie-Eve Val
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France. .,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France.
| |
Collapse
|
29
|
Mendes JS, Santiago AS, Toledo MAS, Horta MAC, de Souza AA, Tasic L, de Souza AP. In vitro Determination of Extracellular Proteins from Xylella fastidiosa. Front Microbiol 2016; 7:2090. [PMID: 28082960 PMCID: PMC5183587 DOI: 10.3389/fmicb.2016.02090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022] Open
Abstract
The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3-30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components.
Collapse
Affiliation(s)
- Juliano S. Mendes
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - André S. Santiago
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Marcelo A. S. Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Maria A. C. Horta
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | | | - Ljubica Tasic
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de CampinasCampinas, Brazil
| | - Anete P. de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| |
Collapse
|
30
|
Chiu CH, Liu YH, Wang YC, Lee YT, Kuo SC, Chen TL, Lin JC, Wang FD. In vitroactivity of SecA inhibitors in combination with carbapenems against carbapenem-hydrolysing class D β-lactamase-producingAcinetobacter baumannii. J Antimicrob Chemother 2016; 71:3441-3448. [DOI: 10.1093/jac/dkw331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/16/2016] [Indexed: 01/24/2023] Open
|
31
|
Monteferrante CG, Sultan S, Ten Kate MT, Dekker LJM, Sparbier K, Peer M, Kostzrewa M, Luider TM, Goessens WHF, Burgers PC. Evaluation of different pretreatment protocols to detect accurately clinical carbapenemase-producing Enterobacteriaceae by MALDI-TOF. J Antimicrob Chemother 2016; 71:2856-67. [PMID: 27287232 DOI: 10.1093/jac/dkw208] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/04/2016] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES Carbapenemase-resistant bacteria are increasingly spreading worldwide causing public concern due to their ability to elude antimicrobial treatment. Early identification of these bacteria is therefore of high importance. Here, we describe the development of a simple and robust protocol for the detection of carbapenemase activity in clinical isolates of Enterobacteriaceae, suitable for routine and clinical applications. METHODS The final protocol involves cellular lysis and enzyme extraction from a defined amount of bacterial cells followed by the addition of a benchmark drug (e.g. the carbapenem antibiotic imipenem or ertapenem). Carbapenem inactivation is mediated by enzymatic hydrolysis (cleavage) of the β-lactam common structural motif, which can be detected using MALDI-TOF MS. RESULTS A total of 260 strains were studied (208 carbapenemase producers and 52 non-carbapenemase producers) resulting in 100% sensitivity and 100% specificity for the KPC, NDM and OXA-48-like PCR-confirmed positive isolates using imipenem as benchmark. Differences between the benchmark (indicator) antibiotics imipenem and ertapenem, buffer constituents and sample preparation methods have been investigated. Carbapenemase activity was further characterized by performing specific inhibitor experiments. Intraday and interday reproducibility (coefficient of variation) of the observed hydrolysis results were 15% and 30%, respectively. A comparative study of our extraction method and a recently published method using whole bacterial cells is presented and differences are discussed. CONCLUSIONS Using this method, an existing carbapenemase activity can be directly read from the mass spectrum as a ratio of hydrolysed product and substrate, setting an important step towards routine application in clinical laboratories.
Collapse
Affiliation(s)
- Carmine G Monteferrante
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sadaf Sultan
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marian T Ten Kate
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lennard J M Dekker
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Theo M Luider
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wil H F Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
32
|
Li D, Zeng S, He M, Gu AZ. Water Disinfection Byproducts Induce Antibiotic Resistance-Role of Environmental Pollutants in Resistance Phenomena. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3193-201. [PMID: 26928861 PMCID: PMC6321747 DOI: 10.1021/acs.est.5b05113] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The spread of antibiotic resistance represents a global threat to public health, and has been traditionally attributed to extensive antibiotic uses in clinical and agricultural applications. As a result, researchers have mostly focused on clinically relevant high-level resistance enriched by antibiotics above the minimal inhibitory concentrations (MICs). Here, we report that two common water disinfection byproducts (chlorite and iodoacetic acid) had antibiotic-like effects that led to the evolution of resistant E. coli strains under both high (near MICs) and low (sub-MIC) exposure concentrations. The subinhibitory concentrations of DBPs selected strains with resistance higher than those evolved under above-MIC exposure concentrations. In addition, whole-genome analysis revealed distinct mutations in small sets of genes known to be involved in multiple drug and drug-specific resistance, as well as in genes not yet identified to play role in antibiotic resistance. The number and identities of genetic mutations were distinct for either the high versus low sub-MIC concentrations exposure scenarios. This study provides evidence and mechanistic insight into the sub-MIC selection of antibiotic resistance by antibiotic-like environmental pollutants such as disinfection byproducts in water, which may be important contributors to the spread of global antibiotic resistance. The results from this study open an intriguing and profound question on the roles of large amount and various environmental contaminants play in selecting and spreading the antibiotics resistance in the environment.
Collapse
Affiliation(s)
- Dan Li
- Environmental Simulation and Pollution Control (ESPC) State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Siyu Zeng
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miao He
- Environmental Simulation and Pollution Control (ESPC) State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - April Z. Gu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
33
|
Boyarskiy S, Davis López S, Kong N, Tullman-Ercek D. Transcriptional feedback regulation of efflux protein expression for increased tolerance to and production of n-butanol. Metab Eng 2015; 33:130-137. [PMID: 26656942 DOI: 10.1016/j.ymben.2015.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 01/11/2023]
Abstract
Microorganisms can be engineered to produce a variety of biofuels and commodity chemicals. The accumulation of these products, however, is often toxic to the cells and subsequently lowers production yields. Efflux pumps are a natural mechanism for alleviating toxicity through secretion of the product; unfortunately, pump overexpression also often inhibits growth. Tuning expression levels with inducible promoters is time-consuming and the reliance on small-molecule inducers is cost-prohibitive in industry. We design an expression regulation system utilizing a native Escherichia coli stress promoter, PgntK, to provide negative feedback to regulate transporter expression levels. We test the promoter in the context of the efflux pump AcrB and its butanol-secreting variant, AcrBv2. PgntK-driven AcrBv2 confers increased tolerance to n-butanol and increased titers of n-butanol in production. Furthermore, the system is responsive to stress from toxic overexpression of other membrane-associated proteins. Our results suggest a use for feedback regulation networks in membrane protein expression.
Collapse
Affiliation(s)
- Sergey Boyarskiy
- Joint Graduate Group in Bioengineering at UC Berkeley and UCSF, 306 Stanley Hall, Berkeley, CA 94720, United States
| | - Stephanie Davis López
- Department of Chemistry, University of California Berkeley, 201 Gilman Hall, Berkeley, CA 94720, United States
| | - Niwen Kong
- Department of Molecular and Cell Biology, University of California Berkeley, 142 LSA #3200, Berkeley, CA 94720, United States
| | - Danielle Tullman-Ercek
- Joint Graduate Group in Bioengineering at UC Berkeley and UCSF, 306 Stanley Hall, Berkeley, CA 94720, United States; Department of Chemistry, University of California Berkeley, 201 Gilman Hall, Berkeley, CA 94720, United States; Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, CA 94720, United States.
| |
Collapse
|
34
|
Acinetobacter baumannii Extracellular OXA-58 Is Primarily and Selectively Released via Outer Membrane Vesicles after Sec-Dependent Periplasmic Translocation. Antimicrob Agents Chemother 2015; 59:7346-54. [PMID: 26369971 DOI: 10.1128/aac.01343-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAb) shelter cohabiting carbapenem-susceptible bacteria from carbapenem killing via extracellular release of carbapenem-hydrolyzing class D β-lactamases, including OXA-58. However, the mechanism of the extracellular release of OXA-58 has not been elucidated. In silico analysis predicted OXA-58 to be translocated to the periplasm via the Sec system. Using cell fractionation and Western blotting, OXA-58 with the signal peptide and C terminus deleted was not detected in the periplasmic and extracellular fractions. Overexpression of enhanced green fluorescent protein fused to the OXA-58 signal peptide led to its periplasmic translocation but not extracellular release, suggesting that OXA-58 is selectively released. The majority of the extracellular OXA-58 was associated with outer membrane vesicles (OMVs). The OMV-associated OXA-58 was detected only in a strain overexpressing OXA-58. The presence of OXA-58 in OMVs was confirmed by a carbapenem inactivation bioassay, proteomic analysis, and transmission electron microscopy. Imipenem treatment increased OMV formation and caused cell lysis, resulting in an increase in the OMV-associated and OMV-independent release of extracellular OXA-58. OMV-independent OXA-58 hydrolyzed nitrocefin more rapidly than OMV-associated OXA-58 but was more susceptible to proteinase K degradation. Rose bengal, an SecA inhibitor, inhibited the periplasmic translocation and OMV-associated release of OXA-58 and abolished the sheltering effect of CRAb. This study demonstrated that the majority of the extracellular OXA-58 is selectively released via OMVs after Sec-dependent periplasmic translocation. Addition of imipenem increased both OMV-associated and OMV-independent OXA-58, which may have different biological roles. SecA inhibitor could abolish the carbapenem-sheltering effect of CRAb.
Collapse
|
35
|
Devos S, Van Oudenhove L, Stremersch S, Van Putte W, De Rycke R, Van Driessche G, Vitse J, Raemdonck K, Devreese B. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front Microbiol 2015; 6:298. [PMID: 25926824 PMCID: PMC4396451 DOI: 10.3389/fmicb.2015.00298] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 02/05/2023] Open
Abstract
Outer membrane vesicles (OMVs) are small nanoscale structures that are secreted by bacteria and that can carry nucleic acids, proteins, and small metabolites. They can mediate intracellular communication and play a role in virulence. In this study, we show that treatment with the β-lactam antibiotic imipenem leads to a dramatic increase in the secretion of outer membrane vesicles in the nosocomial pathogen Stenotrophomonas maltophilia. Proteomic analysis of their protein content demonstrated that the OMVs contain the chromosomal encoded L1 metallo-β-lactamase and L2 serine-β-lactamase. Moreover, the secreted OMVs contain large amounts of two Ax21 homologs, i.e., outer membrane proteins known to be involved in virulence and biofilm formation. We show that OMV secretion and the levels of Ax21 in the OMVs are dependent on the quorum sensing diffusible signal system (DSF). More specific, we demonstrate that the S. maltophilia DSF cis-Δ2-11-methyl-dodecenoic acid and, to a lesser extent, the Burkholderia cenocepacia DSF cis-Δ2-dodecenoic acid, stimulate OMV secretion. By a targeted proteomic analysis, we confirmed that DSF-induced OMVs contain large amounts of the Ax21 homologs, but not the β-lactamases. This work illustrates that both quorum sensing and disturbance of the peptidoglycan biosynthesis provoke the release of OMVs and that OMV content is context dependent.
Collapse
Affiliation(s)
- Simon Devos
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Laurence Van Oudenhove
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Stephan Stremersch
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University Ghent, Belgium
| | - Wouter Van Putte
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Inflammation Research Center, Ghent University Ghent, Belgium ; Inflammation Research Center, Flemish Institute for Biotechnology (VIB) Ghent, Belgium
| | - Gonzalez Van Driessche
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Jolien Vitse
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Koen Raemdonck
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University Ghent, Belgium
| | - Bart Devreese
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| |
Collapse
|
36
|
Dolores JS, Agarwal S, Egerer M, Satchell KJF. Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol 2015; 95:590-604. [PMID: 25427654 DOI: 10.1111/mmi.12879] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 12/17/2022]
Abstract
The Vibrio cholerae MARTXVc toxin delivers three effector domains to eukaryotic cells. To study toxin delivery and function of individual domains, the rtxA gene was modified to encode toxin with an in-frame beta-lactamase (Bla) fusion. The hybrid RtxA::Bla toxin was Type I secreted from bacteria; and then Bla was translocated into eukaryotic cells and delivered by autoprocessing, demonstrating that the MARTXVc toxin is capable of heterologous protein transfer. Strains that produce hybrid RtxA::Bla toxins that carry one effector domain in addition to Bla were found to more efficiently translocate Bla. In cell biological assays, the actin cross-linking domain (ACD) and Rho-inactivation domain (RID) are found to cross-link actin and inactivate RhoA, respectively, when other effector domains are absent, with toxin autoprocessing required for high efficiency. The previously unstudied alpha-beta hydrolase domain (ABH) is shown here to activate CDC42, although the effect is ameliorated when RID is also present. Despite all effector domains acting on cytoskeleton assembly, the ACD was sufficient to rapidly inhibit macrophage phagocytosis. Both the ACD and RID independently disrupted polarized epithelial tight junction integrity. The sufficiency of ACD but strong selection for retention of RID and ABH suggests these two domains may primarily function by modulating cell signaling.
Collapse
Affiliation(s)
- Jazel S Dolores
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | | | |
Collapse
|
37
|
Feiler C, Fisher AC, Boock JT, Marrichi MJ, Wright L, Schmidpeter PAM, Blankenfeldt W, Pavelka M, DeLisa MP. Directed evolution of Mycobacterium tuberculosis β-lactamase reveals gatekeeper residue that regulates antibiotic resistance and catalytic efficiency. PLoS One 2013; 8:e73123. [PMID: 24023821 PMCID: PMC3762836 DOI: 10.1371/journal.pone.0073123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Directed evolution can be a powerful tool for revealing the mutational pathways that lead to more resistant bacterial strains. In this study, we focused on the bacterium Mycobacterium tuberculosis, which is resistant to members of the β-lactam class of antibiotics and thus continues to pose a major public health threat. Resistance of this organism is the result of a chromosomally encoded, extended spectrum class A β-lactamase, BlaC, that is constitutively produced. Here, combinatorial enzyme libraries were selected on ampicillin to identify mutations that increased resistance of bacteria to β-lactams. After just a single round of mutagenesis and selection, BlaC mutants were evolved that conferred 5-fold greater antibiotic resistance to cells and enhanced the catalytic efficiency of BlaC by 3-fold compared to the wild-type enzyme. All isolated mutants carried a mutation at position 105 (e.g., I105F) that appears to widen access to the active site by 3.6 Å while also stabilizing the reorganized topology. In light of these findings, we propose that I105 is a ‘gatekeeper’ residue of the active site that regulates substrate hydrolysis by BlaC. Moreover, our results suggest that directed evolution can provide insight into the development of highly drug resistant microorganisms.
Collapse
Affiliation(s)
- Christian Feiler
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Adam C. Fisher
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jason T. Boock
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Matthew J. Marrichi
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Lori Wright
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Philipp A. M. Schmidpeter
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Bayreuth, Germany
| | - Wulf Blankenfeldt
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Bayreuth, Germany
| | - Martin Pavelka
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Matthew P. DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Schriefer EM, Hoffmann-Thoms S, Schmid FX, Schmid A, Heesemann J. Yersinia enterocolitica and Photorhabdus asymbiotica β-lactamases BlaA are exported by the twin-arginine translocation pathway. Int J Med Microbiol 2012; 303:16-24. [PMID: 23276548 DOI: 10.1016/j.ijmm.2012.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 01/09/2023] Open
Abstract
In general, β-lactamases of medically important Gram-negative bacteria are Sec-dependently translocated into the periplasm. In contrast, β-lactamases of Mycobacteria spp. (BlaC, BlaS) and the Gram-negative environmental bacteria Stenotrophomonas maltophilia (L2) and Xanthomonas campestris (Bla(XCC-1)) have been reported to be secreted by the twin-arginine translocation (Tat) system. Yersinia enterocolitica carries 2 distinct β-lactamase genes (blaA and blaB) encoding BlaA(Ye) and the AmpC-like β-lactamase BlaB, respectively. By using the software PRED-TAT for prediction and discrimination of Sec from Tat signal peptides, we identified a functional Tat signal sequence for Yersinia BlaA(Ye). The Tat-dependent translocation of BlaA(Ye) could be clearly demonstrated by using a Y. enterocolitica tatC-mutant and cell fractionation. Moreover, we could demonstrate a unique unusual temperature-dependent activity profile of BlaA(Ye) ranging from 15 to 60 °C and a high 'melting temperature' (T(M)=44.3°) in comparison to the related Sec-dependent β-lactamase TEM-1 (20-50°C, T(M)=34.9 °C). Strikingly, the blaA gene of Y. enterocolitica is present in diverse environmental Yersinia spp. and a blaA homolog gene could be identified in the closely related Photorhabdus asymbiotica (BlaA(Pa); 69% identity to BlaA(Ye)). For BlaA(Pa) of P. asymbiotica, we could also demonstrate Tat-dependent secretion. These results suggest that Yersinia BlaA-related β-lactamases may be the prototype of a large Tat-dependent β-lactamase family, which originated from environmental bacteria.
Collapse
Affiliation(s)
- Eva-Maria Schriefer
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University of Munich, D-80336 Munich, Germany
| | | | | | | | | |
Collapse
|
39
|
Cougnoux A, Gibold L, Robin F, Dubois D, Pradel N, Darfeuille-Michaud A, Dalmasso G, Delmas J, Bonnet R. Analysis of structure-function relationships in the colibactin-maturating enzyme ClbP. J Mol Biol 2012; 424:203-14. [PMID: 23041299 DOI: 10.1016/j.jmb.2012.09.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/12/2022]
Abstract
pks genomic island of Escherichia coli is involved in the synthesis of the non-ribosomal peptide-type genotoxin colibactin, which has been suggesting as affecting the host immune response and having an impact on cancer development. The pks-encoded enzyme ClbP is an atypical peptidase that contributes to the synthesis of colibactin. In this work, we identified key features of ClbP. Bacterial fractionation and Western-blot analysis revealed the docking of ClbP to the bacterial inner membrane via a C-terminal domain harboring three predicted transmembrane helices. Whereas only one helix was necessary for the location in the inner membrane, the complete sequence of the C-terminal domain was necessary for ClbP bioactivity. In addition, the N-terminal sequence of ClbP allowed the SRP/Sec/YidC- and MreB-dependent translocation of the enzymatic domain in the periplasmic compartment, a feature also essential for ClbP bioactivity. Finally, the comparison of ClbP structure with that of the paralogs FmtA-like and AmpC revealed at an extremity of the catalytic groove a negative electrostatic potential surface characteristic of ClbP. Site-directed mutagenesis experiments identified in this zone two aspartic residues that were important for ClbP bioactivity. Overall, these results suggest a model for precolibactin activation by ClbP and pave a way for the design of inhibitors targeting colibactin production.
Collapse
Affiliation(s)
- Antony Cougnoux
- M2iSH, INSERM U1071, INRA USC2018, Clermont Université, Université d'Auvergne, 63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Van Oudenhove L, De Vriendt K, Van Beeumen J, Mercuri PS, Devreese B. Differential proteomic analysis of the response of Stenotrophomonas maltophilia to imipenem. Appl Microbiol Biotechnol 2012; 95:717-33. [DOI: 10.1007/s00253-012-4167-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 11/28/2022]
|
41
|
Contribution of Phe-7 to Tat-dependent export of β-lactamase in Xanthomonas campestris. Antimicrob Agents Chemother 2012; 56:3597-602. [PMID: 22526303 DOI: 10.1128/aac.06031-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of Xanthomonas campestris pv. campestris isolated in Taiwan are commonly resistant to ampicillin owing to the constitutive expression of a chromosomally encoded β-lactamase that is secreted into the periplasm. In this study, we found that levels of β-lactamase vary among X. campestris pv. campestris strains, a difference that can be attributed to amino acid substitutions at least at positions 7 and 206, with the former having the major impact. Bioinformatic and PCR analyses indicated that X. campestris pv. campestris possesses tatABC genes and that the signal peptide of X. campestris pv. campestris pre-Bla contains the typical twin-arginine motif (N-R-R-Q-F-L at amino acid residues 3 to 8 in strain X. campestris pv. campestris strain 11), suggesting that Bla is secreted via the Tat pathway. To assess the importance of Phe(7) in the efficient export of X. campestris pv. campestris Bla, we prepared mutant constructs containing amino acid substitutions and monitored their expression by measuring enzyme activity and detecting Bla protein by Western blotting. The results indicate that replacement of Phe(7) with Leu severely inhibited Bla export whereas replacement with Pro almost abolished it. Although a change to Arg caused moderate inhibition of export, replacement with Tyr had no effect. These results suggest that for efficient export of Bla by X. campestris pv. campestris, the aromatic-aromatic interactions and stability of protein structure around the twin-arginine motif are important, since only proteins that can attain a folded state in the cytoplasm are competent for export via the Tat pathway.
Collapse
|
42
|
Abstract
Stenotrophomonas maltophilia is an emerging multidrug-resistant global opportunistic pathogen. The increasing incidence of nosocomial and community-acquired S. maltophilia infections is of particular concern for immunocompromised individuals, as this bacterial pathogen is associated with a significant fatality/case ratio. S. maltophilia is an environmental bacterium found in aqueous habitats, including plant rhizospheres, animals, foods, and water sources. Infections of S. maltophilia can occur in a range of organs and tissues; the organism is commonly found in respiratory tract infections. This review summarizes the current literature and presents S. maltophilia as an organism with various molecular mechanisms used for colonization and infection. S. maltophilia can be recovered from polymicrobial infections, most notably from the respiratory tract of cystic fibrosis patients, as a cocolonizer with Pseudomonas aeruginosa. Recent evidence of cell-cell communication between these pathogens has implications for the development of novel pharmacological therapies. Animal models of S. maltophilia infection have provided useful information about the type of host immune response induced by this opportunistic pathogen. Current and emerging treatments for patients infected with S. maltophilia are discussed.
Collapse
Affiliation(s)
- Joanna S Brooke
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA.
| |
Collapse
|
43
|
Lee SJ, Han YH, Kim YO, Nam BH, Kong HJ. Novel GFP expression using a short N-terminal polypeptide through the defined twin-arginine translocation (Tat) pathway. Mol Cells 2011; 32:349-58. [PMID: 22038594 PMCID: PMC3887645 DOI: 10.1007/s10059-011-0088-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/01/2011] [Accepted: 07/12/2011] [Indexed: 11/29/2022] Open
Abstract
Escherichia coli is frequently used as a convenient host organism for soluble recombinant protein expression. However, additional strategies are needed for proteins with complex folding characteristics. Here, we suggested that the acidic, neutral, and alkaline isoelectric point (pI) range curves correspond to the channels of the E. coli type-II cytoplasmic membrane translocation (periplasmic translocation) pathways of twin-arginine translocation (Tat), Yid, and general secretory pathway (Sec), respectively, for unfolded and folded target proteins by examining the characteristic pI values of the N-termini of the signal sequences or the leader sequences, matching with the known diameter of the translocation channels, and analyzing the N-terminal pI value of the signal sequences of the Tat substrates. To confirm these proposed translocation pathways, we investigated the soluble expression of the folded green fluorescent protein (GFP) with short N-terminal polypeptides exhibiting pI and hydrophilicity separately or collectively. This, in turn, revealed the existence of an anchor function with a specific directionality based on the N-terminal pI value (termed as N-terminal pI-specific directionality) and distinguished the presence of the E. coli type-II cytoplasmic membrane translocation pathways of Tat, Yid, and Sec for the unfolded and folded target proteins. We concluded that the pI value and hydrophilicity of the short N-terminal polypeptide, and the total translational efficiency of the target proteins based on the ΔGRNA value of the N-terminal coding regions are important factors for promoting more efficient translocation (secretion) through the largest diameter of the Tat channel. These results show that the short N-terminal polypeptide could substitute for the Tat signal sequence with improved efficiency.
Collapse
Affiliation(s)
- Sang Jun Lee
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-902, Korea.
| | | | | | | | | |
Collapse
|
44
|
Secretion of GOB metallo-beta-lactamase in Escherichia coli depends strictly on the cooperation between the cytoplasmic DnaK chaperone system and the Sec machinery: completion of folding and Zn(II) ion acquisition occur in the bacterial periplasm. Antimicrob Agents Chemother 2009; 53:2908-17. [PMID: 19433552 DOI: 10.1128/aac.01637-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallo-beta-lactamases (MbetaLs) are zinc-dependent enzymes produced by many clinically relevant gram-negative pathogens that can hydrolyze most beta-lactam antibiotics. MbetaLs are synthesized in the bacterial cytoplasm as precursors and are secreted into the periplasm. Here, we report that the biogenesis process of the recently characterized MbetaL GOB-18 demands cooperation between a main chaperone system of the bacterial cytoplasm, DnaK, and the Sec secretion machinery. Using the expression of the complete gob-18 gene from the gram-negative opportunistic pathogen Elizabethkingia meningoseptica in Escherichia coli as a model system, we found that the precursor of this metalloenzyme is secreted by the Sec pathway and reduces cell susceptibility to different beta-lactam antibiotics. Moreover, acting with different J proteins such as cytoplasmic DnaJ and membrane-associated DjlA as cochaperones, DnaK plays an essential role in the cytoplasmic transit of the GOB-18 precursor to the Sec translocon. Our studies also revealed a less relevant role, that of assisting in GOB-18 secretion, for trigger factor, while no significant functions were found for other main cytoplasmic chaperones such as SecB or GroEL/ES. The overall findings indicate that the biogenesis of GOB-18 involves cytoplasmic interaction of the precursor protein mainly with DnaK, secretion by the Sec system, and final folding and incorporation of Zn(II) ions into the bacterial periplasm.
Collapse
|