1
|
Kanellopoulos SG, Snelders E. Moving beyond multi-triazole to multi-fungicide resistance: Broader selection of drug resistance in the human fungal pathogen Aspergillus fumigatus. PLoS Pathog 2025; 21:e1012851. [PMID: 39928648 PMCID: PMC11809870 DOI: 10.1371/journal.ppat.1012851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025] Open
Affiliation(s)
| | - Eveline Snelders
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
3
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
4
|
Celia-Sanchez BN, Mangum B, Gómez Londoño LF, Wang C, Shuman B, Brewer MT, Momany M. Pan-azole- and multi-fungicide-resistant Aspergillus fumigatus is widespread in the United States. Appl Environ Microbiol 2024; 90:e0178223. [PMID: 38557086 PMCID: PMC11022549 DOI: 10.1128/aem.01782-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Aspergillus fumigatus is an important global fungal pathogen of humans. Azole drugs are among the most effective treatments for A. fumigatus infection. Azoles are also widely used in agriculture as fungicides against fungal pathogens of crops. Azole-resistant A. fumigatus has been increasing in Europe and Asia for two decades where clinical resistance is thought to be driven by agricultural use of azole fungicides. The most prevalent mechanisms of azole resistance in A. fumigatus are tandem repeats (TR) in the cyp51A promoter coupled with mutations in the coding region which result in resistance to multiple azole drugs (pan-azole resistance). Azole-resistant A. fumigatus has been isolated from patients in the United States (U.S.), but little is known about its environmental distribution. To better understand the distribution of azole-resistant A. fumigatus in the U.S., we collected isolates from agricultural sites in eight states and tested 202 isolates for sensitivity to azoles. We found azole-resistant A. fumigatus in agricultural environments in seven states showing that it is widespread in the U.S. We sequenced environmental isolates representing the range of U.S. sample sites and compared them with publicly available environmental worldwide isolates in phylogenetic, principal component, and ADMIXTURE analyses. We found worldwide isolates fell into three clades, and TR-based pan-azole resistance was largely in a single clade that was strongly associated with resistance to multiple agricultural fungicides. We also found high levels of gene flow indicating recombination between clades highlighting the potential for azole-resistance to continue spreading in the U.S.IMPORTANCEAspergillus fumigatus is a fungal pathogen of humans that causes over 250,000 invasive infections each year. It is found in soils, plant debris, and compost. Azoles are the first line of defense antifungal drugs against A. fumigatus. Azoles are also used as agricultural fungicides to combat other fungi that attack plants. Azole-resistant A. fumigatus has been a problem in Europe and Asia for 20 years and has recently been reported in patients in the United States (U.S.). Until this study, we did not know much about azole-resistant A. fumigatus in agricultural settings in the U.S. In this study, we isolated azole-resistant A. fumigatus from multiple states and compared it to isolates from around the world. We show that A. fumigatus which is resistant to azoles and to other strictly agricultural fungicides is widespread in the U.S.
Collapse
Affiliation(s)
| | - B. Mangum
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | | | - C. Wang
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - B. Shuman
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - M. T. Brewer
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - M. Momany
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Lockhart SR, Chowdhary A, Gold JAW. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat Rev Microbiol 2023; 21:818-832. [PMID: 37648790 PMCID: PMC10859884 DOI: 10.1038/s41579-023-00960-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
During recent decades, the emergence of pathogenic fungi has posed an increasing public health threat, particularly given the limited number of antifungal drugs available to treat invasive infections. In this Review, we discuss the global emergence and spread of three emerging antifungal-resistant fungi: Candida auris, driven by global health-care transmission and possibly facilitated by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the under-regulated use of over-the-counter high-potency corticosteroid-containing antifungal creams. The diversity of the fungi themselves and the drivers of their emergence make it clear that we cannot predict what might emerge next. Therefore, vigilance is critical to monitoring fungal emergence, as well as the rise in overall antifungal resistance.
Collapse
Affiliation(s)
- Shawn R Lockhart
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
6
|
Schürch S, Gindro K, Schnee S, Dubuis PH, Codina JM, Wilhelm M, Riat A, Lamoth F, Sanglard D. Occurrence of Aspergillus fumigatus azole resistance in soils from Switzerland. Med Mycol 2023; 61:myad110. [PMID: 37930839 PMCID: PMC10653585 DOI: 10.1093/mmy/myad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Aspergillus fumigatus is a fungal species causing diverse diseases in humans. The use of azoles for treatments of A. fumigatus diseases has resulted in azole resistance. Azoles are also widely used in the environment for crop protection, which resulted in azole resistance. Resistance is primarily due to mutations in cyp51A, which encodes the target protein for azoles. Here we addressed the occurrence of azole resistance in soils from a vast part of Switzerland. We aimed to associate the use of azoles in the environment with the occurrence of azole resistance. We targeted sample sites from different agricultural environments as well as sites with no agricultural practice (natural sites and urban sites). Starting from 327 sites, 113 A. fumigatus isolates were recovered (2019-2021), among which 19 were azole-resistant (15 with TR34/L98H and four with TR46/Y121F/T289A resistance mutations in cyp51A). Our results show that azole resistance was not associated with a specific agricultural practice. Azoles could be chemically detected in investigated soils, however, their presence was not associated with the occurrence of azole-resistant isolates. Interestingly, genetic markers of resistance to other fungicides were detected but only in azole-resistant isolates, thus reinforcing the notion that A. fumigatus cross-resistance to fungicides has an environmental origin. In conclusion, this study reveals the spreading of azole resistance in A. fumigatus from the environment in Switzerland. The proximity of agricultural areas to urban centers may facilitate the transmission of resistant strains to at-risk populations. Thus, vigilant surveillance is required to maintain effective treatment options for aspergillosis.
Collapse
Affiliation(s)
- Stéphanie Schürch
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Katia Gindro
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Sylvain Schnee
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Pierre-Henri Dubuis
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Josep Massana Codina
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Matthieu Wilhelm
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Arnaud Riat
- Service of Infectious Diseases and Service of Laboratory Medicine, Geneva University Hospitals and Geneva University, 1205 Geneva, Switzerland
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
7
|
Peláez-García de la Rasilla T, Mato-López Á, Pablos-Puertas CE, González-Huerta AJ, Gómez-López A, Mellado E, Amich J. Potential Implication of Azole Persistence in the Treatment Failure of Two Haematological Patients Infected with Aspergillus fumigatus. J Fungi (Basel) 2023; 9:805. [PMID: 37623576 PMCID: PMC10455522 DOI: 10.3390/jof9080805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Invasive aspergillosis (IA) is a major cause of morbidity and mortality in patients receiving allogeneic haematopoieticcell transplantation. The deep immunosuppression and a variety of potential additional complications developed in these patients result in IA reaching mortality rates of around 50-60%. This mortality is even higher when the patients are infected with azole-resistant isolates, demonstrating that, despite the complexity of management, adequate azole treatment can have a beneficial effect. It is therefore paramount to understand the reasons why antifungal treatment of IA infections caused by azole-susceptible isolates is often unsuccessful. In this respect, there are already various factors known to be important for treatment efficacy, for instance the drug concentrations achieved in the blood, which are thus often monitored. We hypothesize that antifungal persistence may be another important factor to consider. In this study we present two case reports of haematological patients who developed proven IA and suffered treatment failure, despite having been infected with susceptible isolates, receiving correct antifungal treatment and reaching therapeutic levels of the azole. Microbiological analysis of the recovered infective isolates showed that the patients were infected with multiple strains, several of which were persisters to voriconazole and/or isavuconazole. Therefore, we propose that azole persistence may have contributed to therapeutic failure in these patients and that this phenomenon should be considered in future studies.
Collapse
Affiliation(s)
- Teresa Peláez-García de la Rasilla
- Microbiology Department, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Asturias, Spain
- Institute for Health Research in the Principality of Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
| | - Clara E. Pablos-Puertas
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
| | - Ana Julia González-Huerta
- Hematology-Stem Cell Transplantation Unit, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Asturias, Spain
| | - Alicia Gómez-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jorge Amich
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M139NT, UK
| |
Collapse
|
8
|
Scott J, Valero C, Mato-López Á, Donaldson IJ, Roldán A, Chown H, Van Rhijn N, Lobo-Vega R, Gago S, Furukawa T, Morogovsky A, Ben Ami R, Bowyer P, Osherov N, Fontaine T, Goldman GH, Mellado E, Bromley M, Amich J. Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiol Spectr 2023; 11:e0477022. [PMID: 36912663 PMCID: PMC10100717 DOI: 10.1128/spectrum.04770-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Ian J. Donaldson
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alejandra Roldán
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebeca Lobo-Vega
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alma Morogovsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben Ami
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
9
|
Resistance of Black Aspergilli Species from Grape Vineyards to SDHI, QoI, DMI, and Phenylpyrrole Fungicides. J Fungi (Basel) 2023; 9:jof9020221. [PMID: 36836335 PMCID: PMC9961879 DOI: 10.3390/jof9020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Fungicide applications constitute a management practice that reduces the size of fungal populations and by acting as a genetic drift factor, may affect pathogen evolution. In a previous study, we showed that the farming system influenced the population structure of the Aspergillus section Nigri species in Greek vineyards. The current study aimed to test the hypothesis that the differences in the population structure may be associated with the selection of fungicide-resistant strains within the black aspergilli populations. To achieve this, we determined the sensitivity of 102, 151, 19, and 22 for the A. uvarum, A. tubingensis, A. niger, and A. carbonarious isolates, respectively, originating either from conventionally-treated or organic vineyards to the fungicides fluxapyroxad-SDHIs, pyraclostrobin-QoIs, tebuconazole-DMIs, and fludioxonil-phenylpyrroles. The results showed widespread resistance to all four fungicides tested in the A. uvarum isolates originating mostly from conventional vineyards. In contrast, all the A. tubingensis isolates tested were sensitive to pyraclostrobin, while moderate frequencies of only lowly resistant isolates were identified for tebuconazole, fludioxonil, and fluxapyroxad. Sequencing analysis of the corresponding fungicide target encoding genes revealed the presence of H270Y, H65Q/S66P, and G143A mutations in the sdhB, sdhD, and cytb genes of A. uvarum resistant isolates, respectively. No mutations in the Cyp51A and Cyp51B genes were detected in either the A. uvarum or A. tubingensis isolates exhibiting high or low resistance levels to DMIs, suggesting that other resistance mechanisms are responsible for the observed phenotype. Our results support the initial hypothesis for the contribution of fungicide resistance in the black aspergilli population structure in conventional and organic vineyards, while this is the first report of A. uvarum resistance to SDHIs and the first documentation of H270Y or H65Q/S66P mutations in sdhB, sdhD, and of the G143A mutation in the cytb gene of this fungal species.
Collapse
|
10
|
Langfeldt A, Gold JAW, Chiller T. Emerging Fungal Infections: from the Fields to the Clinic, Resistant Aspergillus fumigatus and Dermatophyte Species: a One Health Perspective on an Urgent Public Health Problem. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 9:46-51. [PMID: 36188157 PMCID: PMC9512973 DOI: 10.1007/s40588-022-00181-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/27/2022]
Abstract
Purpose of Review For this review, we use a One Health approach to examine two globally emerging public health threats related to antifungal drug resistance: triazole-resistant Aspergillus fumigatus infections, which can cause a life-threatening illness in immunocompromised hosts, and antifungal-resistant dermatophytosis, which is an aggressive skin infection caused by dermatophyte molds. We describe the state of current scientific knowledge and outline necessary public health actions to address each issue. Recent Findings Recent evidence has identified the agricultural use of triazole fungicides as an important driver of triazole-resistant A. fumigatus infections. Antifungal-resistant dermatophyte infections are likely driven by the inappropriate use of antifungal drugs and antibacterial and corticosteroid creams. Summary This review highlights the need for a One Health approach to address emerging antifungal resistant infections, emphasizing judicious antifungal use to preserve available treatments; strengthened laboratory capacity to identify antifungal resistance; and improved human, animal, and environmental surveillance to detect emerging resistance, monitor trends, and evaluate the effectiveness of efforts to decrease spread.
Collapse
Affiliation(s)
- Antonia Langfeldt
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Tom Chiller
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
11
|
Sun B, Zhu G, Xie X, Chai A, Li L, Fan T, Li B, Yanxia S. Rapidly Increasing Boscalid Resistance in Corynespora cassiicola in China. PHYTOPATHOLOGY 2022; 112:1659-1666. [PMID: 35080436 DOI: 10.1094/phyto-12-21-0503-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Corynespora leaf spot caused by Corynespora cassiicola is an important foliar disease in cucumber. Succinate dehydrogenase inhibitors are the main fungicides used to control this disease. With the application of succinate dehydrogenase inhibitors (SDHIs) in the field, boscalid-resistant isolates have been continuously detected in the field. Resistance monitoring programs were performed to investigate the frequency and genotypes of resistant isolates. In our resistance monitoring, the frequency of resistant isolates rapidly increased from 9.68 to 85.88% in 2005 to 2020. Nine genotypes conferring SDHI resistance were found in resistant isolates, with different levels of resistance to SDHIs: B-H278R, B-H278L, B-H278Y, B-I280V, C-N75S, C-S73P, D-D95E, D-H105R, and D-G109V. The first sdh mutation was detected in Hebei Province in China, conferring an amino acid substitution at codon 278 in the sdhB subunit from histidine to tyrosine (B-H278Y), and it was the dominant resistance genotype in 2014 to 2015. Subsequently, other genotypes were gradually detected in the field, and the dominant mutations varied across years and across regions. The newest genotype (B-H278L) conferring SDHI resistance was found in 2020. To the best of our knowledge, this is the first report of C. cassiicola in cucumber. To date, multiple resistance to SDHIs, quinone outside inhibitors, benzimidazole fungicides, and dicarboximide fungicides have been detected, accounting for 75.64% of SDHI-resistant isolates. Therefore, the above four fungicides must be strictly restricted, and further monitoring work in other provinces with more isolates should be performed in the future.
Collapse
Affiliation(s)
- Bingxue Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangxue Zhu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tengfei Fan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Yanxia
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Kang SE, Sumabat LG, Melie T, Mangum B, Momany M, Brewer MT. Evidence for the agricultural origin of resistance to multiple antimicrobials in Aspergillus fumigatus, a fungal pathogen of humans. G3 (BETHESDA, MD.) 2022; 12:jkab427. [PMID: 34897421 PMCID: PMC9210323 DOI: 10.1093/g3journal/jkab427] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022]
Abstract
Pathogen resistance to clinical antimicrobial agents is an urgent problem. The fungus Aspergillus fumigatus causes 300,000 life-threatening infections in susceptible humans annually. Azoles, which are widely used in both clinical and agricultural settings, are currently the most effective treatment, but resistance to clinical azoles is emerging worldwide. Here, we report the isolation and analysis of azole-sensitive and azole-resistant A. fumigatus from agricultural environments in the southeastern United States (USA) and show that the USA pan-azole-resistant isolates form a clade with pan-azole-resistant isolates from the United Kingdom, the Netherlands, and India. We show that several pan-azole-resistant isolates from agricultural settings in the USA and India also carry alleles with mutations conferring resistance to agricultural fungicides from the benzimidazole (MBC) and quinone outside inhibitor (QoI) classes. We further show that pan-azole-resistant A. fumigatus isolates from patients in clinical settings in the USA, India, and the Netherlands also carry alleles conferring resistance to MBC and QoI agricultural fungicides. The presence of markers for resistance to agricultural-use fungicides in clinical A. fumigatus isolates is strong evidence for an agricultural origin of pan-azole resistance in patients. The presence of multiple fungicide-resistance alleles in agricultural and clinical isolates further suggests that the unique genetics of the pan-azole-resistant clade enables the evolution and/or persistence of antimicrobial resistance mutations leading to the establishment of multifungicide-resistant isolates.
Collapse
Affiliation(s)
- S Earl Kang
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA 30602, USA
| | - Leilani G Sumabat
- Fungal Biology Group and Plant Pathology Department, University of Georgia, Athens, GA 30602, USA
| | - Tina Melie
- Fungal Biology Group and Plant Pathology Department, University of Georgia, Athens, GA 30602, USA
| | - Brandon Mangum
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA 30602, USA
- Fungal Biology Group and Plant Pathology Department, University of Georgia, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA 30602, USA
| | - Marin T Brewer
- Fungal Biology Group and Plant Pathology Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Doughty KJ, Sierotzki H, Semar M, Goertz A. Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots. Microorganisms 2021; 9:2439. [PMID: 34946041 PMCID: PMC8704312 DOI: 10.3390/microorganisms9122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant "ARAf" (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a "hotspot" for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered "coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.
Collapse
Affiliation(s)
- Kevin J. Doughty
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| | - Helge Sierotzki
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland;
| | - Martin Semar
- BASF SE, Speyerer Strasse 2, 67117 Limburgerhof, Germany;
| | - Andreas Goertz
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| |
Collapse
|
14
|
Fraaije BA, Atkins SL, Santos RF, Hanley SJ, West JS, Lucas JA. Epidemiological Studies of Pan-Azole Resistant Aspergillus fumigatus Populations Sampled during Tulip Cultivation Show Clonal Expansion with Acquisition of Multi-Fungicide Resistance as Potential Driver. Microorganisms 2021; 9:2379. [PMID: 34835504 PMCID: PMC8618125 DOI: 10.3390/microorganisms9112379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Pan-azole resistant isolates are found in clinical and environmental Aspergillus fumigatus (Af) populations. Azole resistance can evolve in both settings, with Af directly targeted by antifungals in patients and, in the environment, Af unintendedly exposed to fungicides used for material preservation and plant disease control. Resistance to non-azole fungicides, including methyl benzimidazole carbamates (MBCs), quinone outside inhibitors (QoIs) and succinate dehydrogenase inhibitors (SDHIs), has recently been reported. These fungicide groups are not used in medicine but can play an important role in the further spread of pan-azole resistant genotypes. We investigated the multi-fungicide resistance status and the genetic diversity of Af populations sampled from tulip field soils, tulip peel waste and flower compost heaps using fungicide sensitivity testing and a range of genotyping tools, including STRAf typing and sequencing of fungicide resistant alleles. Two major clones were present in the tulip bulb population. Comparisons with clinical isolates and literature data revealed that several common clonal lineages of TR34/L98H and TR46/Y121F/T289A strains that have expanded successfully in the environment have also acquired resistance to MBC, QoI and/or SDHI fungicides. Strains carrying multiple fungicide resistant alleles have a competitive advantage in environments where residues of multiple fungicides belonging to different modes of action are present.
Collapse
Affiliation(s)
- Bart A. Fraaije
- NIAB, Cambridge CB3 0LE, UK;
- Rothamsted Research, Harpenden AL5 2Q, UK; (S.J.H.); (J.S.W.); (J.A.L.)
| | | | - Ricardo F. Santos
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Steven J. Hanley
- Rothamsted Research, Harpenden AL5 2Q, UK; (S.J.H.); (J.S.W.); (J.A.L.)
| | - Jonathan S. West
- Rothamsted Research, Harpenden AL5 2Q, UK; (S.J.H.); (J.S.W.); (J.A.L.)
| | - John A. Lucas
- Rothamsted Research, Harpenden AL5 2Q, UK; (S.J.H.); (J.S.W.); (J.A.L.)
| |
Collapse
|