1
|
Guo DA, Yao CL, Wei WL, Zhang JQ, Bi QR, Li JY, Khan I, Bauer R. Traditional Chinese medicines against COVID-19: A global overview. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
2
|
The mechanisms and clinical application of Traditional Chinese Medicine Lianhua-Qingwen capsule. Biomed Pharmacother 2021; 142:111998. [PMID: 34385103 PMCID: PMC8352581 DOI: 10.1016/j.biopha.2021.111998] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
Lianhua-Qingwen capsule (LQC) is a commonly used Traditional Chinese Medicine (TCM) in China and has 11 herb components. The main active ingredient can target specific molecules and perform many clinic treatment roles. LQC has been authorized by National Medical Products Administration (NMPA) of China to treat severe acute respiratory syndrome (SARS) in 2002-2003, type A influenza virus HIN1 pandemic in 2009, H7N9, H3N2 and coronavirus disease-19 (COVID19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) in 2020. It is also widely used to treat common cold with wind-heat syndrome, chronic rhinosinusitis (CRS), amygdalitis and chronic obstructive pulmonary disease. This article summarizes the advanced research progress of LQC in clinical application, mechanisms and provides new clues in the clinical application of LQC.
Collapse
|
3
|
Liu Z, Casey TM, Blackburn ME, Huang X, Pham L, de Vera IMS, Carter JD, Kear-Scott JL, Veloro AM, Galiano L, Fanucci GE. Pulsed EPR characterization of HIV-1 protease conformational sampling and inhibitor-induced population shifts. Phys Chem Chem Phys 2016; 18:5819-31. [PMID: 26489725 PMCID: PMC4758878 DOI: 10.1039/c5cp04556h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function of inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed "curled/tucked", "closed", "semi-open" and "wide-open" conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function.
Collapse
Affiliation(s)
- Zhanglong Liu
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Thomas M Casey
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Mandy E Blackburn
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Xi Huang
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Linh Pham
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Ian Mitchelle S de Vera
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Jeffrey D Carter
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Jamie L Kear-Scott
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Angelo M Veloro
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Luis Galiano
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
4
|
Li G, Verheyen J, Theys K, Piampongsant S, Van Laethem K, Vandamme AM. HIV-1 Gag C-terminal amino acid substitutions emerging under selective pressure of protease inhibitors in patient populations infected with different HIV-1 subtypes. Retrovirology 2014; 11:79. [PMID: 25253273 PMCID: PMC4189171 DOI: 10.1186/s12977-014-0079-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022] Open
Abstract
HIV-1 Gag amino acid substitutions associated with protease inhibitor (PI) treatment have mainly been reported in subtype B, while information on other subtypes is scarce. Using sequences from 11613 patients infected with different HIV-1 subtypes, we evaluated the prevalence of 93 Gag amino acid substitutions and their association with genotypic PI resistance. A significant association was found for 13 Gag substitutions, including A431V in both subtype B and CRF01_AE. K415R in subtype C and S451G in subtype B were newly identified. Most PI-associated Gag substitutions are located in the flexible C-terminal domain, revealing the key role this region plays in PI resistance.
Collapse
|
5
|
Huang X, Britto MD, Kear-Scott JL, Boone CD, Rocca JR, Simmerling C, Mckenna R, Bieri M, Gooley PR, Dunn BM, Fanucci GE. The role of select subtype polymorphisms on HIV-1 protease conformational sampling and dynamics. J Biol Chem 2014; 289:17203-14. [PMID: 24742668 DOI: 10.1074/jbc.m114.571836] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
HIV-1 protease is an essential enzyme for viral particle maturation and is a target in the fight against HIV-1 infection worldwide. Several natural polymorphisms are also associated with drug resistance. Here, we utilized both pulsed electron double resonance, also called double electron-electron resonance, and NMR (15)N relaxation measurements to characterize equilibrium conformational sampling and backbone dynamics of an HIV-1 protease construct containing four specific natural polymorphisms commonly found in subtypes A, F, and CRF_01 A/E. Results show enhanced backbone dynamics, particularly in the flap region, and the persistence of a novel conformational ensemble that we hypothesize is an alternative flap orientation of a curled open state or an asymmetric configuration when interacting with inhibitors.
Collapse
Affiliation(s)
- Xi Huang
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Manuel D Britto
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Jamie L Kear-Scott
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Christopher D Boone
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - James R Rocca
- the Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Carlos Simmerling
- the Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, and
| | - Robert Mckenna
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Michael Bieri
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul R Gooley
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ben M Dunn
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Gail E Fanucci
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611,
| |
Collapse
|
6
|
de Vera IMS, Smith AN, Dancel MCA, Huang X, Dunn BM, Fanucci GE. Elucidating a relationship between conformational sampling and drug resistance in HIV-1 protease. Biochemistry 2013; 52:3278-88. [PMID: 23566104 DOI: 10.1021/bi400109d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enzyme targets in rapidly replicating systems, such as retroviruses, commonly respond to drug-selective pressure with mutations arising in the active site pocket that limit inhibitor effectiveness by introducing steric hindrance or by eliminating essential molecular interactions. However, these primary mutations are disposed to compromising pathogenic fitness. Emerging secondary mutations, which are often found outside of the binding cavity, may or can restore fitness while maintaining drug resistance. The accumulated drug pressure selected mutations could have an indirect effect in the development of resistance, such as altering protein flexibility or the dynamics of protein-ligand interactions. Here, we show that accumulation of mutations in a drug-resistant HIV-1 protease (HIV-1 PR) variant, D30N/M36I/A71V, changes the fractional occupancy of the equilibrium conformational sampling ensemble. Correlations are made among populations of the conformational states, namely, closed-like, semiopen, and open-like, with inhibition constants, as well as kinetic parameters. Mutations that stabilize a closed-like conformation correlate with enzymes of lowered activity and with higher affinity for inhibitors, which is corroborated by a further increase in the fractional occupancy of the closed state upon addition of inhibitor or substrate-mimic. Cross-resistance is found to correlate with combinations of mutations that increase the population of the open-like conformations at the expense of the closed-like state while retaining native-like occupancy of the semiopen population. These correlations suggest that at least three states are required in the conformational sampling model to establish the emergence of drug resistance in HIV-1 PR. More importantly, these results shed light on a possible mechanism whereby mutations combine to impart drug resistance while maintaining catalytic activity.
Collapse
Affiliation(s)
- Ian Mitchelle S de Vera
- Department of Chemistry, P.O. Box 117200, University of Florida , Gainesville, Florida 32611-7200, United States
| | | | | | | | | | | |
Collapse
|
7
|
Fun A, Wensing AMJ, Verheyen J, Nijhuis M. Human Immunodeficiency Virus Gag and protease: partners in resistance. Retrovirology 2012; 9:63. [PMID: 22867298 PMCID: PMC3422997 DOI: 10.1186/1742-4690-9-63] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) maturation plays an essential role in the viral life cycle by enabling the generation of mature infectious virus particles through proteolytic processing of the viral Gag and GagPol precursor proteins. An impaired polyprotein processing results in the production of non-infectious virus particles. Consequently, particle maturation is an excellent drug target as exemplified by inhibitors specifically targeting the viral protease (protease inhibitors; PIs) and the experimental class of maturation inhibitors that target the precursor Gag and GagPol polyproteins. Considering the different target sites of the two drug classes, direct cross-resistance may seem unlikely. However, coevolution of protease and its substrate Gag during PI exposure has been observed both in vivo and in vitro. This review addresses in detail all mutations in Gag that are selected under PI pressure. We evaluate how polymorphisms and mutations in Gag affect PI therapy, an aspect of PI resistance that is currently not included in standard genotypic PI resistance testing. In addition, we consider the consequences of Gag mutations for the development and positioning of future maturation inhibitors.
Collapse
Affiliation(s)
- Axel Fun
- Department of Virology, Medical Microbiology, University Medical Center Utrecht, HP G04,614, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | | | | | | |
Collapse
|
8
|
Barber TJ, Harrison L, Asboe D, Williams I, Kirk S, Gilson R, Bansi L, Pillay D, Dunn D. Frequency and patterns of protease gene resistance mutations in HIV-infected patients treated with lopinavir/ritonavir as their first protease inhibitor. J Antimicrob Chemother 2012; 67:995-1000. [PMID: 22258921 DOI: 10.1093/jac/dkr569] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Selection of protease mutations on antiretroviral therapy (ART) including a ritonavir-boosted protease inhibitor (PI) has been reported infrequently. Scarce data exist from long-term cohorts on resistance incidence or mutational patterns emerging to different PIs. METHODS We studied UK patients receiving lopinavir/ritonavir as their first PI, either while naive to ART or having previously received non-PI-based ART. Virological failure was defined as viral load ≥ 400 copies/mL after previous suppression <400 copies/mL, or failure to achieve <400 copies/mL during the first 6 months. pol sequences whilst failing lopinavir or within 30 days after stopping were analysed. Major and minor mutations (IAS-USA 2008-after exclusion of polymorphisms) were considered. Predicted susceptibility was determined using the Stanford HIVdb algorithm. RESULTS Three thousand and fifty-six patients were followed for a median (IQR) of 14 (6-30) months, of whom 811 (27%) experienced virological failure. Of these, resistance test results were available on 291 (36%). One or more protease mutations were detected in 32 (11%) patients; the most frequent were I54V (n = 12), M46I (n = 11), V82A (n = 7) and L76V (n = 3). No association with viral subtype was evident. Many patients retained virus predicted to be susceptible to lopinavir (14, 44%), tipranavir (26, 81%) and darunavir (27, 84%). CONCLUSIONS This study reflects the experience of patients in routine care. Selection of protease gene mutations by lopinavir/ritonavir occurred at a much higher rate than in clinical trials. The mutations observed showed only partial overlap with those previously identified by structural chemistry models, serial cell culture passage and genotype-phenotype analyses. There remained a low degree of predicted cross-resistance to other widely used PIs.
Collapse
Affiliation(s)
- Tristan J Barber
- Medical Research Council Clinical Trials Unit, St Stephen's Centre, Chelsea and Westminster Hospital, 125 Kingsway, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Saravanan S, Vidya M, Balakrishnan P, Kantor R, Solomon SS, Katzenstein D, Kumarasamy N, Yeptomi T, Sivamalar S, Rifkin S, Mayer KH, Solomon S. Viremia and HIV-1 drug resistance mutations among patients receiving second-line highly active antiretroviral therapy in Chennai, Southern India. Clin Infect Dis 2012; 54:995-1000. [PMID: 22323567 DOI: 10.1093/cid/cir967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A cross-sectional study among individuals receiving second-line antiretroviral treatment was conducted to report on the level of detectable viremia and the types of drug resistance mutations among those with detectable human immunodeficiency virus (HIV) type 1 plasma viral loads (PVLs). METHODS PVLs were measured using Abbott m2000rt real-time polymerase chain reaction, and genotyping was performed with the ViroSeq genotyping system, version 2.0, and ViroSeq analysis software, version 2.8. RESULTS Of 107 patient plasma specimens consecutively analyzed, 30 (28%) had undetectable PVLs (<150 copies/mL), and 77 (72%) were viremic with a median PVL of 5450 copies/mL (interquartile range, 169-1 997 967). Sequencing was done for 107 samples with PVLs >2000 copies/mL: 33 patients (73%) had 1 of the protease (PR) inhibitor mutations; 41 (91%) had nucleoside reverse-transcriptase inhibitor (NRTI) mutations; 33 (73%) had non-NRTI (NNRTI) mutations; and 30 (66.7%) had both NRTI and NNRTI mutations. Triple-class resistance to NRTIs, NNRTIs, and PR inhibitors was observed in 24 (53%) patients. Based on the mutational profiles observed, all 45 sequences were susceptible to darunavir and tipranavir, whereas 47% showed resistance to lopinavir, 58% showed resistance to atazanavir, and >60% showed resistance to saquinavir, indinavir, nelfinavir, and fosamprenavir. CONCLUSIONS The results of the study showed that the majority of patients receiving second-line antiretroviral therapy started to accumulate PR resistance mutations, and the mutation profiles suggest that darunavir might be the drug of choice for third-line regimens in India.
Collapse
|
10
|
HIV-1 protease mutations and protease inhibitor cross-resistance. Antimicrob Agents Chemother 2010; 54:4253-61. [PMID: 20660676 DOI: 10.1128/aac.00574-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of many protease inhibitor (PI)-selected mutations on the susceptibility to individual PIs are unknown. We analyzed in vitro susceptibility test results on 2,725 HIV-1 protease isolates. More than 2,400 isolates had been tested for susceptibility to fosamprenavir, indinavir, nelfinavir, and saquinavir; 2,130 isolates had been tested for susceptibility to lopinavir; 1,644 isolates had been tested for susceptibility to atazanavir; 1,265 isolates had been tested for susceptibility to tipranavir; and 642 isolates had been tested for susceptibility to darunavir. We applied least-angle regression (LARS) to the 200 most common mutations in the data set and identified a set of 46 mutations associated with decreased PI susceptibility of which 40 were not polymorphic in the eight most common HIV-1 group M subtypes. We then used least-squares regression to ascertain the relative contribution of each of these 46 mutations. The median number of mutations associated with decreased susceptibility to each PI was 28 (range, 19 to 32), and the median number of mutations associated with increased susceptibility to each PI was 2.5 (range, 1 to 8). Of the mutations with the greatest effect on PI susceptibility, I84AV was associated with decreased susceptibility to eight PIs; V32I, G48V, I54ALMSTV, V82F, and L90M were associated with decreased susceptibility to six to seven PIs; I47A, G48M, I50V, L76V, V82ST, and N88S were associated with decreased susceptibility to four to five PIs; and D30N, I50L, and V82AL were associated with decreased susceptibility to fewer than four PIs. This study underscores the greater impact of nonpolymorphic mutations compared with polymorphic mutations on decreased PI susceptibility and provides a comprehensive quantitative assessment of the effects of individual mutations on susceptibility to the eight clinically available PIs.
Collapse
|
11
|
Dunn D, Geretti AM, Green H, Fearnhill E, Pozniak A, Churchill D, Pillay D, Sabin C, Phillips A. Population Trends in the Prevalence and Patterns of Protease Resistance Related to Exposure to Unboosted and Boosted Protease Inhibitors. Antivir Ther 2008. [DOI: 10.1177/135965350801300605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background In recent years, several new drugs from the protease inhibitor (PI) class designed to treat HIV infection have become available and the use of ritonavir-boosting has increased in popularity. These changes might be expected to affect the prevalence and patterns of protease resistance in the population of patients who experience treatment failure. Methods The UK HIV Drug Resistance Database aims to capture the results of all genotypic resistance tests conducted nationally. Tests on antiretroviral therapy-experienced patients were identified through linkage with the UK Collaborative HIV Cohort Study, from which detailed clinical information on these patients, including a full antiretroviral therapy history, was obtained. Results Analyses were on the basis of 8,553 genotypic resistance tests carried out between 1998 and 2005, during which time the overall prevalence of protease resistance halved from 35% to 16%. Substantial declines were observed regardless of whether the patient had been exposed to unboosted PIs and/or boosted PIs. The frequency of protease resistance among patients who had received boosted PIs fell sharply until 2002 with a weaker trend thereafter, falling to 12% in 2005. Individual mutations L33F, M46I/L, V82A/F/T/S/L and I84V became relatively more frequent over the period of study. Conclusions The decline in protease resistance was partly due to increasing use of ritonavir-boosting. Nonetheless, the prevalence of resistance was higher than suggested by clinical trials, indicating that prolonged exposure to a boosted PI could ultimately select for major protease mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Duncan Churchill
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Deenan Pillay
- Royal Free and University College Medical School, London, UK
| | - Caroline Sabin
- Royal Free and University College Medical School, London, UK
| | - Andrew Phillips
- Royal Free and University College Medical School, London, UK
| |
Collapse
|
12
|
Shafer RW, Schapiro JM. HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev 2008; 10:67-84. [PMID: 18615118 PMCID: PMC2547476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
More than 200 mutations are associated with antiretroviral resistance to drugs belonging to six licensed antiretroviral classes. More than 50 reverse transcriptase mutations are associated with nucleoside reverse transcriptase inhibitor resistance including M184V, thymidine analog mutations, mutations associated with non-thymidine analog containing regimens, multi-nucleoside resistance mutations, and several recently identified accessory mutations. More than 40 reverse transcriptase mutations are associated with nonnucleoside reverse transcriptase inhibitor resistance including major primary and secondary mutations, non-polymorphic minor mutations, and polymorphic accessory mutations. More than 60 mutations are associated with protease inhibitor resistance including major protease, accessory protease, and protease cleavage site mutations. More than 30 integrase mutations are associated with the licensed integrase inhibitor raltegravir and the investigational inhibitor elvitegravir. More than 15 gp41 mutations are associated with the fusion inhibitor enfuvirtide. CCR5 inhibitor resistance results from mutations that promote gp120 binding to an inhibitor-bound CCR5 receptor or CXCR4 tropism; however, the genotypic correlates of these processes are not yet well characterized.
Collapse
Affiliation(s)
- Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
13
|
Factors associated with the selection of mutations conferring resistance to protease inhibitors (PIs) in PI-experienced patients displaying treatment failure on darunavir. Antimicrob Agents Chemother 2007; 52:491-6. [PMID: 18039922 DOI: 10.1128/aac.00909-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to characterize the mutations selected by darunavir (DRV) use in protease inhibitor (PI)-experienced patients and the associated factors. We analyzed treatment failure in 54 PI-experienced human immunodeficiency virus (HIV)-infected patients on a DRV- and ritonavir-containing regimen. Viral genotyping was carried out at the baseline, at between 1 and 3 months of treatment, and at between 3 and 6 months of treatment to search for the selection of mutations conferring resistance to PIs. The median baseline HIV RNA level was 4.9 log(10) copies/ml, and the median CD4 count was 87 cells/mm(3). At the baseline, the median numbers of resistance mutations were as follows: 3 DRV resistance mutations, 4 major PI resistance mutations, and 10 minor PI resistance mutations. The most common mutations that emerged at rebound included V32I (44%), I54M/L (24%), L33F (25%), I84V (21%), and L89V (12%). Multivariate analysis showed that higher baseline HIV RNA levels and smaller numbers of nucleoside reverse transcriptase inhibitor simultaneously used with DRV were associated with a higher risk of DRV resistance mutation selection. By contrast, L76V, a known DRV resistance mutation, was found to decrease the risk of selection of another DRV resistance mutation. The occurrence of virological failure while a patient was on DRV was associated with the selection of mutations that increased the level of DRV resistance without affecting susceptibility to tipranavir (TPV). In these PI-treated patients who displayed treatment failure while they were on a DRV-containing regimen, we confirmed the set of emerging mutations associated with DRV failure and identified the factors associated with the selection of these mutations. TPV susceptibility does not seem to be affected by the selection of a DRV resistance mutation.
Collapse
|