1
|
Silva LDC, Rocha OB, Portis IG, Santos TG, Freitas e Silva KS, dos Santos Filho RF, Cunha S, Alonso A, Soares CMDA, Pereira M. Proteomic Profiling of Paracoccidioides brasiliensis in Response to Phenacylideneoxindol Derivative: Unveiling Molecular Targets and Pathways. J Fungi (Basel) 2023; 9:854. [PMID: 37623625 PMCID: PMC10455990 DOI: 10.3390/jof9080854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The treatment of paracoccidioidomycosis (PCM) is a challenge, and the discovery of new antifungal compounds is crucial. The phenacylideneoxindoles exhibited promising antifungal activity against Paracoccidioides spp., but their mode of action remains unknown. METHODS Through proteomic analysis, we investigated the effects of (E)-3-(2-oxo-2-phenylethylidene)indolin-2-one on P. brasiliensis. In addition, we investigated the metabolic alterations of P. brasiliensis in response to the compound. Furthermore, the effects of the compound on the membrane, ethanol production, and reactive oxygen species (ROS) production were verified. RESULTS We identified differentially regulated proteins that revealed significant metabolic reorganization, including an increase in ethanol production, suggesting the activation of alcoholic fermentation and alterations in the rigidity of fungal cell membrane with an increase of the ergosterol content and formation of ROS. CONCLUSIONS These findings enhance our understanding of the mode of action and response of P. brasiliensis to the investigated promising antifungal compound, emphasizing its potential as a candidate for the treatment of PCM.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | - Olivia Basso Rocha
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | - Igor Godinho Portis
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | - Thaynara Gonzaga Santos
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | - Kleber Santiago Freitas e Silva
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | | | - Silvio Cunha
- Institute of Chemistry, Universidade Federal da Bahia, Salvador 40170-970, Brazil; (R.F.d.S.F.); (S.C.)
| | - Antônio Alonso
- Institute of Physics, Universidade Federal de Goiás, Goiânia 74690-900, Brazil;
| | - Célia Maria de Almeida Soares
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | - Maristela Pereira
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| |
Collapse
|
2
|
Silva LC, Dos Santos Filho RF, de Oliveira AA, Martins FT, Cunha S, de Almeida Soares CM, Pereira M. 3-phenacylideneoxindoles as a new class of antifungal compounds against Paracoccidioides spp. Future Microbiol 2023; 18:93-105. [PMID: 36661071 DOI: 10.2217/fmb-2022-0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aims: Considering the need to identify new compounds with antifungal action, the activity of five 3-phenacylideneoxindoles compounds was evaluated. Materials & methods: The compounds were synthesized, and their antifungal activity was elucidated through minimum inhibitory concentration tests and interaction assay with other antifungals. Potential targets of compounds were predicted in silico. Results: 3-phenacylideneoxindoles compounds inhibited fungal growth with minimum inhibitory concentration and minimum fungicidal concentration ranging from 3.05 to 12.26 μM. The compounds demonstrated high selectivity index and presented a synergistic effect with itraconazole. In silico prediction revealed the pentafunctional AROM polypeptide, enolase, superoxide dismutase, catalase and kinases as proteins targets of the compound 4a. Conclusion: The results demonstrate that 3-phenacylideneoxindoles is a potential new class of antifungal compounds for paracoccidioidomycosis treatment.
Collapse
Affiliation(s)
- Lívia C Silva
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | | | - Amanda A de Oliveira
- Institute of Tropical Pathology & Public Health, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Felipe T Martins
- Chemistry institute, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Silvio Cunha
- Chemistry institute, Federal University of Bahia, Salvador, Bahia, 40170-115, Brazil
| | | | - Maristela Pereira
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| |
Collapse
|
3
|
Rocha OB, Freitas E Silva KS, de Carvalho Junior MAB, Moraes D, Alonso A, Alonso L, do Carmo Silva L, Soares CMA, Pereira M. Proteomic alterations in Paracoccidioides brasiliensis caused by exposure to curcumin. J Proteomics 2022; 266:104683. [PMID: 35835316 DOI: 10.1016/j.jprot.2022.104683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
Paracoccidioides spp. are the etiological agent of paracoccidioidomycosis, a disease that causes skin lesions and affect the lungs and other organs. The current management of the disease is long and has several side effects that often lead the patient to give up the treatment, sequelae and even death. The search for new forms of treatment that minimize these drawbacks is very important. Thus, natural compounds are targets of great interest. Curcumin is one of the main components of the tubers of Curcuma longa, presenting medicinal effects well described in the literature, including the antifungal effect on Paracocidioides brasiliensis. Nevertheless, the mechanisms related to the antifungal effect of such compound are still unknown, so the objective of the present research is to understand what changes occur in the metabolism of P. brasiliensis after exposure to curcumin and to identify the main targets of the compound. Proteomic analysis as based on nanoUPLC-MS analysis and the functional classification of the identified proteins. The main metabolic processes that were being regulated were biologically validated through assays such as fluorescence microscopy, EPR and phagocytosis. Proteomic analysis revealed that curcumin regulates several metabolic processes of the fungus, including important pathways for energy production, such as the glycolytic pathway, beta oxidation and the glyoxylate cycle. Protein synthesis was down-regulated in fungi exposed to curcumin. The electron transport chain and the tricarboxylic acid cycle were also down-regulated, indicating that both the mitochondrial membrane and the mitochondrial activity were compromised. Plasma membrane and cell wall structure were altered following exposure to the compound. The fungus' ability to survive the phagocytosis process by alveolar macrophages was reduced. Thus, curcumin interferes with several metabolic pathways in the fungus that causes paracoccidioidomycosis. BIOLOGICAL SIGNIFICANCE: The challenges presented by the current treatment of paracoccidioidomycosis often contributing to patients' withdrawal from treatment, leading to sequelae or even death. Thus, the search for new treatment options against this disease is growing. The discovery that curcumin is active against Paracoccidioides was previously reported by our study group. Here, we clarify how the compound acts on the fungus causing its growth inhibition and decreased viability. Understanding the mechanisms of action of curcumin on P. brasiliensis elucidates how we can seek new alternatives and which metabolic pathways and molecular targets we should focus on in this incessant search to bring the patient a treatment with fewer adverse effects.
Collapse
Affiliation(s)
- Olivia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | - Dayane Moraes
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Antônio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Laís Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Celia Maria Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
4
|
|
5
|
Rodrigues AM, Kubitschek-Barreira PH, Pinheiro BG, Teixeira-Ferreira A, Hahn RC, de Camargo ZP. Immunoproteomic Analysis Reveals Novel Candidate Antigens for the Diagnosis of Paracoccidioidomycosis Due to Paracoccidioides lutzii. J Fungi (Basel) 2020; 6:jof6040357. [PMID: 33322269 PMCID: PMC7770604 DOI: 10.3390/jof6040357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic infection caused by the fungal pathogen Paracoccidioides brasiliensis and related species. Whole-genome sequencing and stage-specific proteomic analysis of Paracoccidioides offer the opportunity to profile humoral immune responses against P. lutzii and P. brasiliensis s. str. infection using innovative screening approaches. Here, an immunoproteomic approach was used to identify PCM-associated antigens that elicit immune responses by combining 2-D electrophoresis of P. lutzii and P. brasiliensis proteomes, immunological detection using a gold-standard serum, and mass spectrometry analysis. A total of 16 and 25 highly immunoreactive proteins were identified in P. lutzii and P. brasiliensis, respectively, and 29 were shown to be the novel antigens for Paracoccidioides species, including seven uncharacterized proteins. Among the panel of proteins identified, most are involved in metabolic pathways, carbon metabolism, and biosynthesis of secondary metabolites in both immunoproteomes. Remarkably, six isoforms of the surface-associated enolase in the range of 54 kDa were identified as the major antigens in human PCM due to P. lutzii. These novel immunoproteomes of Paracoccidioides will be employed to develop a sensitive and affordable point-of-care diagnostic assay and an effective vaccine to identify infected hosts and prevent infection and development of human PCM. These findings provide a unique opportunity for the refinement of diagnostic tools of this important neglected systemic mycosis, which is usually associated with poverty.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| | - Paula Helena Kubitschek-Barreira
- Department of Cellular Biology, Roberto Alcantara Gomes Institute of Biology, Rio de Janeiro State University (UERJ), Rio de Janeiro 20511010, Brazil;
| | - Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
| | - André Teixeira-Ferreira
- Toxinology Laboratory, Department of Physiology and Pharmacodynamics, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 78060900, Brazil;
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| |
Collapse
|
6
|
do Carmo Silva L, de Oliveira AA, de Souza DR, Barbosa KLB, Freitas e Silva KS, Carvalho Júnior MAB, Rocha OB, Lima RM, Santos TG, Soares CMDA, Pereira M. Overview of Antifungal Drugs against Paracoccidioidomycosis: How Do We Start, Where Are We, and Where Are We Going? J Fungi (Basel) 2020; 6:jof6040300. [PMID: 33228010 PMCID: PMC7712482 DOI: 10.3390/jof6040300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules. Researchers have concentrated efforts on the identification of new compounds using numerous tools and targeting important proteins from Paracoccidioides, with the emphasis on enzymatic pathways absent in humans. This review aims to discuss the aspects related to the identification of compounds, methodologies, and perspectives when proposing new antifungal agents against PCM.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Dienny Rodrigues de Souza
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Katheryne Lohany Barros Barbosa
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Marcos Antonio Batista Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Raisa Melo Lima
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Thaynara Gonzaga Santos
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| |
Collapse
|
7
|
Freitas e Silva KS, C. Silva L, Gonçales RA, Neves BJ, Soares CM, Pereira M. Setting New Routes for Antifungal Drug Discovery Against Pathogenic Fungi. Curr Pharm Des 2020; 26:1509-1520. [DOI: 10.2174/1381612826666200317125956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 01/08/2023]
Abstract
:Fungal diseases are life-threatening to human health and responsible for millions of deaths around the world. Fungal pathogens lead to a high number of morbidity and mortality. Current antifungal treatment comprises drugs, such as azoles, echinocandins, and polyenes and the cure is not guaranteed. In addition, such drugs are related to severe side effects and the treatment lasts for an extended period. Thus, setting new routes for the discovery of effective and safe antifungal drugs should be a priority within the health care system. The discovery of alternative and efficient antifungal drugs showing fewer side effects is time-consuming and remains a challenge. Natural products can be a source of antifungals and used in combinatorial therapy. The most important natural products are antifungal peptides, antifungal lectins, antifungal plants, and fungi secondary metabolites. Several proteins, enzymes, and metabolic pathways could be targets for the discovery of efficient inhibitor compounds and recently, heat shock proteins, calcineurin, salinomycin, the trehalose biosynthetic pathway, and the glyoxylate cycle have been investigated in several fungal species. HSP protein inhibitors and echinocandins have been shown to have a fungicidal effect against azole-resistant fungi strains. Transcriptomic and proteomic approaches have advanced antifungal drug discovery and pointed to new important specific-pathogen targets. Certain enzymes, such as those from the glyoxylate cycle, have been a target of antifungal compounds in several fungi species. Natural and synthetic compounds inhibited the activity of such enzymes and reduced the ability of fungal cells to transit from mycelium to yeast, proving to be promisor antifungal agents. Finally, computational biology has developed effective approaches, setting new routes for early antifungal drug discovery since normal approaches take several years from discovery to clinical use. Thus, the development of new antifungal strategies might reduce the therapeutic time and increase the quality of life of patients.
Collapse
Affiliation(s)
- Kleber S. Freitas e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lívia C. Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Relber A. Gonçales
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno J. Neves
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-510, Brazil
| | - Célia M.A. Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
8
|
da Silva LS, Barbosa UR, Silva LDC, Soares CMA, Pereira M, da Silva RA. Identification of a new antifungal compound against isocitrate lyase of Paracoccidioides brasiliensis. Future Microbiol 2019; 14:1589-1606. [DOI: 10.2217/fmb-2019-0166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To perform virtual screening of compounds based on natural products targeting isocitrate lyase of Paracoccidioides brasiliensis. Materials & methods: Homology modeling and molecular dynamics simulations were applied in order to obtain conformational models for virtual screening. The selected hits were tested in vitro against enzymatic activity of ICL of the dimorphic fungus P. brasiliensis and growth of the Paracoccidioides spp. The cytotoxicity and selectivity index of the compounds were defined. Results & conclusion: Carboxamide, lactone and β-carboline moieties were identified as interesting chemical groups for the design of new antifungal compounds. The compounds inhibited ICL of the dimorphic fungus P. brasiliensis activity. The compound 4559339 presented minimum inhibitory concentration of 7.3 μg/ml in P. brasiliensis with fungicidal effect at this concentration. Thus, a new potential antifungal against P. brasiliensis is proposed.
Collapse
Affiliation(s)
- Luciane S da Silva
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
| | - Uessiley R Barbosa
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
- UNIFIMES, Centro Universitário de Mineiros, Mineiros, Goiás, 75833-130, Brazil
| | - Lívia do C Silva
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Célia MA Soares
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Maristela Pereira
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Roosevelt A da Silva
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
| |
Collapse
|