1
|
Takei-Masuda N, Iida M, Ohyama M, Kaneda K, Ueda K, Tabata Y. Structure-activity relationship studies of ME1111, a novel antifungal agent for topical treatment of onychomycosis. J Antibiot (Tokyo) 2024:10.1038/s41429-024-00789-1. [PMID: 39543334 DOI: 10.1038/s41429-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Onychomycosis is a prevalent disease in many areas of the world, affecting approximately 5.5% of the global population. Among several subtypes of onychomycosis, distal-lateral-subungual onychomycosis is the most common, and topical onychomycosis agents effective against this pathogenesis require properties such as high nail penetration and low affinity for keratin, the main component of the nail. To develop novel and highly effective antifungal agents with such properties, we first established an efficient ex vivo evaluation method using bovine hoof slices and human nails, and then used this method to screen an in-house compound library. Using this strategy, we identified 1, a structure with a phenyl-pyrazole skeleton. In subsequent analyses, we investigated the structure-activity relationship of 1, permitting the identification of 28 (Development Code ME1111).
Collapse
Affiliation(s)
| | - Maiko Iida
- Meiji Seika Pharma Co. Ltd, Chuo-ku, Tokyo, Japan
| | | | - Kaori Kaneda
- Meiji Seika Pharma Co. Ltd, Chuo-ku, Tokyo, Japan
| | - Kenji Ueda
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Yuji Tabata
- Meiji Seika Pharma Co. Ltd, Chuo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Elabbasi A, Kadry A, Joseph W, Elewski B, Ghannoum M. Transungual Penetration and Antifungal Activity of Prescription and Over-the-Counter Topical Antifungals: Ex Vivo Comparison. Dermatol Ther (Heidelb) 2024; 14:2495-2507. [PMID: 39133361 PMCID: PMC11393267 DOI: 10.1007/s13555-024-01237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION Topical antifungals for toenail onychomycosis must penetrate the nail to deliver an inhibitory concentration of free drug to the site of infection. In two ex vivo experiments, we tested the ability of topical antifungals to inhibit growth of Trichophyton rubrum and Trichophyton mentagrophytes, the most common causative fungi in toenail onychomycosis. METHODS Seven topical antifungals were tested: three U.S. Food and Drug Administration-approved products indicated for onychomycosis (ciclopirox 8% lacquer; efinaconazole 10% solution; tavaborole 5% solution) and four over-the-counter (OTC) products for fungal infections (tolnaftate 1% and/or undecylenic acid 25% solutions). The ability to inhibit fungal growth was tested in the presence and absence of keratin. Products were applied either to human cadaverous nails or keratin-free cellulose disks prior to placement on an agar plate (radius: 85 mm) seeded with a clinical isolate of T. rubrum or T. mentagrophytes. After incubation, the zone of inhibition (ZI), defined as the radius of the area of no fungal growth, was recorded. RESULTS In the nail penetration assay, average ZIs for efinaconazole (T. rubrum: 82.1 mm; T. mentagrophytes: 63.8 mm) were significantly greater than those for tavaborole (63.5 mm; 39.1 mm), ciclopirox (7.4 mm; 3.6 mm) and all OTC products (range: 10.5-34.2 mm against both species; all P < 0.001). In the cellulose disk diffusion assay, efinaconazole and tavaborole demonstrated maximal antifungal activity against both species (ZIs = 85 mm); average ZIs against T. rubrum and T. mentagrophytes were smaller for ciclopirox (59.0 and 55.7 mm, respectively) and OTC products (range: 31.2-57.8 mm and 25.7-47.7 mm, respectively). CONCLUSIONS Among all antifungals tested, the ability to penetrate human toenails to inhibit growth of both T. rubrum and T. mentagrophytes was greatest for efinaconazole, followed by tavaborole. These results indicate superior transungual penetration of efinaconazole compared to the other antifungals, suggesting lower keratin binding in the nail.
Collapse
Affiliation(s)
- Ali Elabbasi
- Case Western Reserve University, Cleveland, OH, USA
| | - Ahmed Kadry
- Case Western Reserve University, Cleveland, OH, USA
| | - Warren Joseph
- Arizona College of Podiatric Medicine, Midwestern University, Glendale, AZ, USA
| | - Boni Elewski
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Mahmoud Ghannoum
- Case Western Reserve University, Cleveland, OH, USA.
- Director, Center for Medical Mycology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Wearn 311, Cleveland, OH, 44106-5028, USA.
| |
Collapse
|
3
|
Takei-Masuda N, Nagira Y, Kubota-Ishida N, Chikada T, Tabata Y, Maebashi K. Antidermatophyte activity and PK/PD of ME1111 in a guinea pig model of tinea corporis. J Antibiot (Tokyo) 2024; 77:533-539. [PMID: 38769156 DOI: 10.1038/s41429-024-00738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Onychomycosis, a superficial fungal infection of the nails, is prevalent in many areas of the world. Topical agents for onychomycosis need to reach the subungual layer and nail bed to exert antifungal activity in the presence of keratin, the major component of the nail. It is difficult to evaluate the efficacy and pharmacodynamics of topical agents for onychomycosis in a non-clinical evaluation system. No consistent animal model has yet been established to predict the efficacy of topical agents for onychomycosis. In this study, we evaluated the pharmacokinetics and pharmacodynamics of ME1111 in a guinea pig model of tinea corporis designed to predict the efficacy of topical medication for onychomycosis in the vicinity of the nail bed. Trichophyton mentagrophytes TIMM1189 was infected on the back skin of guinea pigs, and ME1111 solution (5%, 10%, or 15%) was administered topically, once daily for 14 consecutive days. Following the completion of dosing, segments of skin from the site of infection were excised and cultured. The concentration of ME1111 in the back skin of guinea pigs increased with formulation concentration and correlated with mycological efficacy. We revealed the concentration required for ME1111 to be effective at the site of infection. Further analysis is needed to predict the efficacy of topical agents for onychomycosis by analyzing the relationship between PK/PD around the nail bed and factors such as subungual penetration and permeability.
Collapse
Affiliation(s)
| | - Yu Nagira
- Meiji Seika Pharma Co., Ltd., Tokyo, Japan
| | | | | | | | | |
Collapse
|
4
|
Novel and Investigational Treatments for Onychomycosis. J Fungi (Basel) 2022; 8:jof8101079. [PMID: 36294644 PMCID: PMC9604567 DOI: 10.3390/jof8101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Onychomycosis is a common nail disease caused by fungi. The primary pathogens are dermatophytes; however, yeasts, non-dermatophyte moulds, and mixed fungal populations may also contribute to the development of a recalcitrant condition, usually accompanied by difficulties in everyday life and severe emotional stress. Treatment failure and relapse of the infection are the most frequent problems, though new issues have become the new challenges in the therapeutic approach to onychomycosis. Resistance to antifungals, an increasing number of comorbidities, and polydrug use among the ageing population are imperatives that impose a shift to safer drugs. Topical antifungals are considered less toxic and minimally interact with other drugs. The development of new topical drugs for onychomycosis is driven by the unmet need for effective agents with prolonged post-treatment disease-free time and a lack of systemic impact on the patients’ health. Efinaconazole, Tavaborole, and Luliconazole have been added to physicians’ weaponry during the last decade, though launched on the market of a limited number of countries. The pipeline is either developing new products (e.g., ME-1111 and NP213) with an appealing combination of pharmacokinetic, efficacy, and safety properties or reformulating old, well-known drugs (Terbinafine and Amphotericin B) by using new excipients as penetration enhancers.
Collapse
|
5
|
Masumoto A, Takagi M, Sugiura K, Matsuda Y, Nakamura S, Tatsumi Y. A novel method for predicting the efficacy of topical drugs on onychomycosis: a comparison of efinaconazole and luliconazole. J Mycol Med 2022; 32:101259. [DOI: 10.1016/j.mycmed.2022.101259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 11/15/2022]
|
6
|
Vibrational Properties of Benzoxaboroles and Their Interactions with Candida albicans’ LeuRS. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Benzoxaboroles have emerged over the past decade mainly due to their growing medicinal importance. Regarding the wide application of IR spectroscopy in the pharmaceutical industry, the vibrational properties of over a dozen of benzoxaboroles were described, based on results of DFT calculations as well as IR and Raman spectra measurements. Investigated series of compounds included the currently available antifungal drug (Tavaborole, AN2690) as well as its derivatives. An intense and well-isolated band corresponding to the B-OH group stretching vibrations was present in all experimental IR spectra in the range of 1446–1414 cm−1 and can be considered as characteristic for benzoxaboroles. The vibrational properties of benzoxaboroles are shown to be affected by the formation of intramolecular as well as intermolecular hydrogen bonds, which should also influence the interactions of benzoxaboroles with biomolecules and impact on their biological functions. Docking studies of the benzoxaboroles’ adenosine monophosphate (AMP) spiroboronates into the Candida albicans leucyl-RS synthetase binding pocket showed that the introduction of an amine substituent has a strong influence on their binding. The determined values of inhibition constants manifest high potential of some of the investigated molecules as possible inhibitors of that enzyme.
Collapse
|
7
|
Wieczorek D, Kaczorowska E, Wiśniewska M, Madura ID, Leśniak M, Lipok J, Adamczyk-Woźniak A. Synthesis and Influence of 3-Amino Benzoxaboroles Structure on Their Activity against Candida albicans. Molecules 2020; 25:E5999. [PMID: 33352986 PMCID: PMC7766895 DOI: 10.3390/molecules25245999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Benzoxaboroles emerged recently as molecules of high medicinal potential with Kerydin® (Tavaborole) and Eucrisa® (Crisaborole) currently in clinical practice as antifungal and anti-inflammatory drugs, respectively. Over a dozen of 3-amino benzoxaboroles, including Tavaborole's derivatives, have been synthetized and characterized in terms of their activity against Candida albicans as a model pathogenic fungus. The studied compounds broaden considerably the structural diversity of reported benzoxaboroles, enabling determination of the influence of the introduction of a heterocyclic amine, a fluorine substituent as well as the formyl group on antifungal activity of those compounds. The determined zones of the growth inhibition of examined microorganism indicate high diffusion of majority of the studied compounds within the applied media as well as their reasonable activity. The Minimum Inhibitory Concentration (MIC) values show that the introduction of an amine substituent in position "3" of the benzoxaborole heterocyclic ring results in a considerable drop in activity in comparison with Tavaborole (AN2690) as well as unsubstituted benzoxaborole (AN2679). In all studied cases the presence of a fluorine substituent at position para to the boron atom results in lower MIC values (higher activity). Interestingly, introduction of a fluorine substituent in the more distant piperazine phenyl ring does not influence MIC values. As determined by X-ray studies, introduction of a formyl group in proximity of the boron atom results in a considerable change of the boronic group geometry. The presence of a formyl group next to the benzoxaborole unit is also detrimental for activity against Candida albicans.
Collapse
Affiliation(s)
- Dorota Wieczorek
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland; (D.W.); (J.L.)
| | - Ewa Kaczorowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Marta Wiśniewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Izabela D. Madura
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Magdalena Leśniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Jacek Lipok
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland; (D.W.); (J.L.)
| | - Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| |
Collapse
|
8
|
Aggarwal R, Targhotra M, Sahoo P, Chauhan MK. Onychomycosis: Novel strategies for treatment. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Tampucci S, Terreni E, Zucchetti E, Burgalassi S, Chetoni P, Monti D. Formulations Based on Natural Ingredients for the Treatment of Nail Diseases. Curr Pharm Des 2020; 26:556-565. [DOI: 10.2174/1381612826666200122150248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022]
Abstract
Nail is a strong and resistant structure, characterized by a low permeability to foreign molecules. Nails
can be subjected to many diseases, among which fungal infections (e.g. onchomycosis) are the most common and
responsible for nail structure alteration. Many formulations have been produced for the delivery of active ingredients
to treat nail disorders, based on newly synthesized active molecules or containing chemical enhancers or
chemically-modified polymers able to improve the drug transungual penetration. To avoid permanent alterations
of the nail structure due to the use of chemical compounds or organic solvent-based formulation, researchers have
developed novel formulations focusing on the use of new natural-based compounds. The purpose of this review is
to provide information on the outcoming of natural ingredients-based formulations that have been developed in
the last years as potential alternative to chemical-based formulations.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniela Monti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Davies-Strickleton H, Cook J, Hannam S, Bennett R, Gibbs A, Edwards D, Ridden C, Ridden J, Cook D. Assessment of the nail penetration of antifungal agents, with different physico-chemical properties. PLoS One 2020; 15:e0229414. [PMID: 32107486 PMCID: PMC7046211 DOI: 10.1371/journal.pone.0229414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022] Open
Abstract
Onychomycosis, or fungal nail infection, is a common fungal infection largely caused by dermatophyte fungi, such as Trichophyton rubrum or Trichophyton mentagrophytes, which affects a significant number of people. Treatment is either through oral antifungal medicines, which are efficacious but have significant safety concerns, or with topical antifungal treatments that require long treatment regimens and have only limited efficacy. Thus, an efficacious topical therapy remains an unmet medical need. Among the barriers to topical delivery through the nail are the physico-chemical properties of the antifungal drugs. Here, we explore the ability of a range of antifungal compounds with different hydrophilicities to penetrate the nail. Human nail discs were clamped within static diffusion (Franz) cells and dosed with equimolar concentrations of antifungal drugs. Using LC-MS/MS we quantified the amount of drug that passed through the nail disc and that which remained associated with the nail. Our data identified increased drug flux through the nail for the more hydrophilic compounds (caffeine as a hydrophilic control and fluconazole, with LogP -0.07 and 0.5, respectively), while less hydrophilic efinaconazole, amorolfine and terbinafine (LogP 2.7, 5.6 and 5.9 respectively) had much lower flux through the nail. On the other hand, hydrophilicity alone did not account for the amount of drug associated with/bound to the nail itself. While there are other factors that are likely to combine to dictate nail penetration, this work supports earlier studies that implicate compound hydrophilicity as a critical factor for nail penetration.
Collapse
Affiliation(s)
| | - Julie Cook
- Blueberry Therapeutics Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - Sally Hannam
- Alderley Analytical Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - Rhys Bennett
- Alderley Analytical Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - Alan Gibbs
- Alderley Analytical Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - David Edwards
- Blueberry Therapeutics Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - Christine Ridden
- Blueberry Therapeutics Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - John Ridden
- Blueberry Therapeutics Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
| | - David Cook
- Blueberry Therapeutics Limited, Alderley Park, Alderley Edge, Cheshire, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Lipner SR. Pharmacotherapy for onychomycosis: new and emerging treatments. Expert Opin Pharmacother 2019; 20:725-735. [DOI: 10.1080/14656566.2019.1571039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shari R. Lipner
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Brown M, Turner R, Wevrett SR. Use of in vitro performance models in the assessment of drug delivery across the human nail for nail disorders. Expert Opin Drug Deliv 2018; 15:983-989. [DOI: 10.1080/17425247.2018.1518425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Lipner SR, Scher RK. Onychomycosis: Treatment and prevention of recurrence. J Am Acad Dermatol 2018; 80:853-867. [PMID: 29959962 DOI: 10.1016/j.jaad.2018.05.1260] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 11/16/2022]
Abstract
Onychomycosis is a fungal nail infection caused by dermatophytes, nondermatophytes, and yeast, and is the most common nail disorder seen in clinical practice. It is an important problem because it may cause local pain, paresthesias, difficulties performing activities of daily living, and impair social interactions. The epidemiology, risk factors, and clinical presentation and diagnosis of onychomycosis were discussed in the first article in this continuing medical education series. In this article, we review the prognosis and response to onychomycosis treatment, medications for onychomycosis that have been approved by the US Food and Drug Administration, and off-label therapies and devices. Methods to prevent onychomycosis recurrences and emerging therapies are also described.
Collapse
Affiliation(s)
- Shari R Lipner
- Department of Dermatology, Weill Cornell Medicine, New York, New York.
| | - Richard K Scher
- Department of Dermatology, Weill Cornell Medicine, New York, New York
| |
Collapse
|