2
|
Wang X, Wang X, Kou Z, Sun K, Tan Y, Chen J, He Y, Ding W, Liu H, Liang Y, Li L, Lei X. Effects of aminolevulinic acid photodynamic therapy combined with antibiotics on Mycobacterium abscessus skin infections: an in vitro and in vivo study. Photodiagnosis Photodyn Ther 2024:104371. [PMID: 39424252 DOI: 10.1016/j.pdpdt.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Mycobacterium abscessus skin infections have emerged as a major medical issue. Traditional antibiotic treatments are challenging, prolonged, and often lead to recurrence, creating an urgent need for new therapies. This study investigates the effectiveness of aminolevulinic acid photodynamic therapy (ALA-PDT) combined with antibiotics in treatmenting M. abscessus, using both in vitro and in vivo methods. METHODS We treated eight patients with M. abscessus skin infections following cosmetic surgery, using ALA-PDT (ALA concentration: 20%; red light: 80J/cm2) combined with oral or intravenous antibiotics,including clarithromycin, moxifloxacin and amikacin, to treat 8 patients with M. abscessus skin infection after medical cosmetic surgery, and assessed the treatment outcomes. Additionally, four bacterial strains (MAB-A1, MAB-A2, MAB-B1, and MAB-B2) isolated from patients were tested in vitro for ALA-PDT efficacy to determine the optimal ALA-PDT dosage. Furthermore, the strains' single colony morphology, biofilm formation, and genome characteristics of were analyzed to explore the factors influencing ALA-PDT's bactericidal effects. Finally, a combined ALA-PDT and antibiotics sterilization experiment was conducted in vitro. RESULTS Clinically, ALA-PDT combined with antibiotics showed strong efficacy in treating M. abscessus skin infections, with no recurrence observed during follow-up. In vitro, ALA-PDT effectively killed M. abscessus, although MAB-B1 and MAB-B2 required a higher ALA-PDT dose compared with MAB-A1 and MAB-A2. Compared to MAB-A1 and MAB-A2, MAB-B1 and MAB-B2 exhibited stronger biofilm formation capabilities and bacterial virulence as well as genome mutations primarily affecting fatty acid synthesis and metabolism, potentially explaining their increased ALA-PDT dosage requirement. Notably, the combination of ALA-PDT and antibiotics exerted markedly higher bactericidal effects in vitro compared with antibiotics alone. CONCLUSIONS ALA-PDT combined with antibiotics emerged as an effective treatment for M. abscessus skin infections. However, optimal dosage and antibiotic combinations should be tailored to the characteristics of specific clinical strains.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China
| | - Xiao Wang
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China
| | - Zhenyu Kou
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China
| | - Kedai Sun
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China
| | - Yang Tan
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China
| | - Jinyi Chen
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China
| | - Yang He
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China
| | - Wen Ding
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China
| | - Hong Liu
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China
| | - Yi Liang
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China
| | - Lingfei Li
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China.
| | - Xia Lei
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042,China.
| |
Collapse
|
3
|
Sreekumar A, Kumar A, Biswas R, Biswas L. Emerging and alternative strategies for the treatment of nontuberculous mycobacterial infections. Expert Rev Anti Infect Ther 2024:1-19. [PMID: 39161153 DOI: 10.1080/14787210.2024.2395003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Nontuberculous mycobacteria (NTM) infections have emerged as a significant clinical challenge due to their intrinsic multidrug resistance and the limited efficacy of existing treatments. These infections are becoming increasingly prevalent, with a need for new and effective therapeutic strategies. AREAS COVERED This review addresses several key aspects of NTM infections: i) pathogenesis and epidemiology; ii) the limitations and challenges of current treatment options; iii) emerging and alternative therapeutic strategies; iv) advanced drug delivery systems such as nanoparticles and efflux pump inhibitors; v) innovative antibacterial alternatives like antimicrobial peptides, bacteriophage therapy, and phytochemicals; and vi) other potential treatment modalities such as inhaled nitric oxide, small molecules, surgical debridement, phototherapy, and immunomodulatory therapy. EXPERT OPINION Personalized medicine, advanced drug delivery systems, and alternative therapies hold promise for the future of NTM treatment. Early and accurate identification of NTM species, enabled by improved diagnostic methods, is critical for tailoring treatment regimens. Emerging therapies show promise against drug-resistant NTM strains, but overcoming barriers like clinical trials, regulatory hurdles, and high production costs is crucial. Continued research and innovation are essential to improve treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
| | - Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Raja Biswas
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lalitha Biswas
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|