1
|
Tatsuno I, Isaka M, Hasegawa T. Association of CovRS Two-Component Regulatory System with NADase Induction by Clindamycin Treatment in Streptococcus pyogenes. Jpn J Infect Dis 2024; 77:247-252. [PMID: 38556301 DOI: 10.7883/yoken.jjid.2023.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Administration of high-dose clindamycin (CLI) and penicillin is recommended for the treatment of streptococcal toxic shock syndrome (STSS). However, CLI-resistant strains have been identified worldwide. In this study, some CLI-resistant strains demonstrated increased extracellular activity of the NAD-glycohydrolase (NADase) exotoxin following CLI treatment. These results support our previous conclusion that CLI-susceptible and CLI-resistant Streptococcus pyogenes strains exhibit CLI-dependent NADase induction. Furthermore, we investigated the mechanism of this phenomenon using 13 types of two-component sensor knockout strains derived from the CLI-susceptible strain 1529 that has a CLI-dependent NADase induction phenotype. Among the knockout strains, only 1529ΔcovS lost the phenotype. Additionally, 1529ΔspeB, 1529Δmga, and 1529Δrgg retained the CLI-dependent NADase induction phenotype. These findings indicate that CovS is related to this phenotype in a SpeB-independent manner.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Masanori Isaka
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
2
|
Zou Z, Singh P, Pinkner JS, Obernuefemann CLP, Xu W, Nye TM, Dodson KW, Almqvist F, Hultgren SJ, Caparon MG. Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds treat Streptococcus pyogenes skin and soft tissue infection. SCIENCE ADVANCES 2024; 10:eadn7979. [PMID: 39093975 PMCID: PMC11296344 DOI: 10.1126/sciadv.adn7979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that has antimicrobial activities against a broad spectrum of Gram-positive pathogens. Here, we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens, and accelerated rates of wound healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.
Collapse
Affiliation(s)
- Zongsen Zou
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Xu
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor M. Nye
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen W. Dodson
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Scott J. Hultgren
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael G. Caparon
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Yokota K, Kawakami K. Efficacy and side-effect profile of tedizolid in the treatment of streptococcal toxic shock syndrome due to clindamycin-resistant Streptococcus pyogenes: A case report. J Infect Chemother 2024; 30:785-788. [PMID: 38185364 DOI: 10.1016/j.jiac.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Oxazolidinones, such as tedizolid and linezolid, are bacteriostatic antibiotics that inhibit protein synthesis. Based on the findings from animal studies and their mechanism of action, these antibiotics are considered for managing toxic shock caused by clindamycin-resistant Group A Streptococcus (GAS; Streptococcus pyogenes). However, clinical reports on their usage in such cases are limited. Herein, we report a case of a 67-year-old woman with chronic myeloid leukemia who presented with fever, facial swelling, and myalgia. She was diagnosed with cellulitis and empirically treated with meropenem. Blood culture later revealed GAS, and she was diagnosed with streptococcal toxic shock syndrome. The antibiotic regimen was adjusted based on sensitivity results, with clindamycin initially replaced by linezolid and later switched to tedizolid owing to concerns about potential bone marrow suppression. Her condition improved, and she was discharged 15 days after admission. Therefore, tedizolid may be a safer option for managing toxic shock syndrome in patients with comorbidities that include thrombocytopenia.
Collapse
Affiliation(s)
- Kyoko Yokota
- Department of Infectious Diseases, Kagawa Prefectural Central Hospital, 1-2-1 Asahi-machi, Takamatsu, Kagawa, 760-8557, Japan.
| | - Kimihiro Kawakami
- Departments of Hematology, Kagawa Prefectural Central Hospital, 1-2-1 Asahi-machi, Takamatsu, Kagawa, 760-8557, Japan
| |
Collapse
|
4
|
Zou Z, Obernuefemann CLP, Singh P, Pinkner JS, Xu W, Nye TM, Dodson KW, Almqvist F, Hultgren SJ, Caparon MG. Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds treat Streptococcus pyogenes skin and soft tissue infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573960. [PMID: 38260261 PMCID: PMC10802287 DOI: 10.1101/2024.01.02.573960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that have antimicrobial activities against a broad-spectrum of Gram-positive pathogens. Here we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens and accelerated rates of wound-healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.
Collapse
Affiliation(s)
- Zongsen Zou
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Chloe L P Obernuefemann
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Jerome S Pinkner
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Wei Xu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Taylor M Nye
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Karen W Dodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | | | - Scott J Hultgren
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael G Caparon
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
5
|
General Phenotype of NADase Induction by CLI Treatment in Streptococcus pyogenes. Int J Microbiol 2022; 2022:4767765. [DOI: 10.1155/2022/4767765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
The administration of high-dose clindamycin (CLI) along with penicillin is recommended for the treatment of streptococcal toxic-shock syndrome (STSS). However, we previously reported that a “subinhibitory dose” of CLI induced the expression of the NAD-glycohydrolase (NADase) exotoxin in an emm1-type Streptococcus pyogenes 1529 strain isolated from an STSS patient. In this study, we examine NADase induction by CLI treatment using an extracellular NADase activity assay instead of the previous two-dimensional gel electrophoresis assay. The examination revealed that CLI administration can induce NADase expression in a dose-dependent manner. We analyzed 23 CLI-susceptible strains (5 emm1 strains, 6 emm3 strains, 3 emm4 strains, 1 emm6 strain, 3 emm12 strains, 1 emm28 strain, and 4 emm89 strains), and 19 of the 23 strains showed similar NADase induction phenotypes to that shown in strain 1529. These results indicate that NADase induction by CLI treatment is not restricted to specific strains and it could be a standard phenotype among CLI-susceptible S. pyogenes strains. We also analyzed four CLI-resistant strains. All four strains showed increased extracellular NADase activities at high concentrations of CLI that did not inhibit bacterial growth. These results indicated that the subinhibitory dose of CLI was not the critical factor for NADase induction.
Collapse
|
6
|
Association between adjunct clindamycin and in-hospital mortality in patients with necrotizing soft tissue infection due to group A Streptococcus: a nationwide cohort study. Eur J Clin Microbiol Infect Dis 2021; 41:263-270. [PMID: 34755257 DOI: 10.1007/s10096-021-04376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Necrotizing soft tissue infection (NSTI) due to group A Streptococcus (GAS) is a severe life-threatening microbial infection. The administration of adjunct clindamycin has been recommended in the treatment of NSTIs due to GAS. However, robust evidence regarding the clinical benefits of adjunct clindamycin in NSTI patients remains controversial. We aimed to investigate the association between early administration of adjunct clindamycin and in-hospital mortality in patients with NSTI attributed to GAS. The present study was a nationwide retrospective cohort study, using the Japanese Diagnosis Procedure Combination inpatient database focusing on the period between 2010 and 2018. Data was extracted on patients diagnosed with NSTI due to GAS. We compared patients who were administered clindamycin on the day of admission (clindamycin group) with those who were not (control group). A propensity score overlap weighting method was adopted to adjust the unbalanced backgrounds. The primary endpoint was in-hospital mortality and survival at 90 days after admission. We identified 404 eligible patients during the study period. After adjustment, patients in the clindamycin group were not significantly associated with reduced in-hospital mortality (19.2% vs. 17.5%; odds ratio, 1.11; 95% confidence interval, 0.59-2.09; p = 0.74) or improved survival at 90 days after admission (hazard ratio, 0.92; 95% confidence interval, 0.51-1.68; p = 0.80). In this retrospective study, early adjunct clindamycin does not appear to improve survival. Therefore, the present study questions the benefits of clindamycin as an adjunct to broad spectrum antibiotics in patients with NSTI due to GAS.
Collapse
|
7
|
Effect of Phosphatase Activity of the Control of Virulence Sensor (CovS) on Clindamycin-Mediated Streptolysin O Production in Group A Streptococcus. Infect Immun 2019; 87:IAI.00583-19. [PMID: 31527126 DOI: 10.1128/iai.00583-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 01/28/2023] Open
Abstract
Severe manifestations of group A Streptococcus (GAS) infections are associated with massive tissue destruction and high mortality. Clindamycin (CLI), a bacterial protein synthesis inhibitor, is recommended for treating patients with severe invasive GAS infection. Nonetheless, the subinhibitory concentration of CLI induces the production of GAS virulent exoproteins, such as streptolysin O (SLO) and NADase, which would enhance bacterial virulence and invasiveness. A better understanding of the molecular mechanism of how CLI triggers GAS virulence factor expression will be critical to develop appropriate therapeutic approaches. The present study shows that CLI activates SLO and NADase expressions in the emm1-type CLI-susceptible wild-type strain but not in covS or control of virulence sensor (CovS) phosphatase-inactivated mutants. Supplementation with Mg2+, which is a CovS phosphatase inhibitor, inhibits the CLI-mediated SLO upregulation in a dose-dependent manner in CLI-susceptible and CLI-resistant strains. These results not only reveal that the phosphorylation of response regulator CovR is essential for responding to CLI stimuli, but also suggest that inhibiting the phosphatase activity of CovS could be a potential strategy for the treatment of invasive GAS infection with CLI.
Collapse
|
8
|
Andreoni F, Zürcher C, Tarnutzer A, Schilcher K, Neff A, Keller N, Marques Maggio E, Poyart C, Schuepbach RA, Zinkernagel AS. Clindamycin Affects Group A Streptococcus Virulence Factors and Improves Clinical Outcome. J Infect Dis 2017; 215:269-277. [PMID: 27247345 DOI: 10.1093/infdis/jiw229] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
Group A Streptococcus (GAS) has acquired an arsenal of virulence factors, promoting life-threatening invasive infections such as necrotizing fasciitis. Current therapeutic regimens for necrotizing fasciitis include surgical debridement and treatment with cell wall-active antibiotics. Addition of clindamycin (CLI) is recommended, although clinical evidence is lacking. Reflecting the current clinical dilemma, an observational study showed that only 63% of the patients with severe invasive GAS infection received CLI. This work thus aimed to address whether CLI improves necrotizing fasciitis outcome by modulating virulence factors of CLI-susceptible and CLI-resistant GAS in vitro and in vivo. Treatment with CLI reduced extracellular DNase Sda1 and streptolysin O (SLO) activity in vivo, whereas subinhibitory CLI concentrations induced expression and activity of SLO, DNase, and Streptococcus pyogenes cell envelope protease in vitro. Our in vivo results suggest that CLI should be administered as soon as possible to patients with necrotizing fasciitis, while our in vitro studies emphasize that a high dosage of CLI is essential.
Collapse
Affiliation(s)
| | | | | | | | - Andrina Neff
- Division of Infectious Diseases and Hospital Epidemiology
| | - Nadia Keller
- Division of Infectious Diseases and Hospital Epidemiology
| | | | - Claire Poyart
- Centre national de référence des Streptocoques, INSERM 1016, Université Paris Descartes, France
| | - Reto A Schuepbach
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Switzerland
| | | |
Collapse
|
9
|
Zhang Y, Okada R, Isaka M, Tatsuno I, Isobe KI, Hasegawa T. Analysis of the roles of NrdR and DnaB from Streptococcus pyogenes in response to host defense. APMIS 2014; 123:252-9. [PMID: 25469586 DOI: 10.1111/apm.12340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
Toxic shock syndrome caused by Streptococcus pyogenes (S. pyogenes) is a re-emerging infectious disease. Many virulence-associated proteins play important roles in its pathogenesis and the production of these proteins is controlled by many regulatory factors. CovS is one of the most important two-component sensor proteins in S. pyogenes, and it has been analyzed extensively. Our recent analyses revealed the existence of a transposon between covS and nrdR in several strains, and we speculated that this insertion has some importance. Hence, we examined the significances of the NrdR stand-alone regulator and DnaB, which is encoded by the gene located immediately downstream of nrdR in S. pyogenes infection. We established an nrdR-only knockout strain, and both nrdR and partial dnaB knockout strain. These established knockout strains exhibited a deteriorated response to H2 O2 exposure. nrdR and partial dnaB knockout strain was more easily killed by human polynuclear blood cells, but the nrdR-only knockout strain had no significant difference compared to wild type in contrast to the combined knockout strain. In addition, the mouse infection model experiment illustrated that nrdR and partial dnaB knockout strain, but not the nrdR-only knockout strain, was less virulent compared with the parental strain. These results suggest that DnaB is involved in response to host defense.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Wong SS, Yuen KY. Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem. Emerg Microbes Infect 2012; 1:e2. [PMID: 26038416 PMCID: PMC3630912 DOI: 10.1038/emi.2012.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/16/2012] [Indexed: 11/09/2022]
Abstract
Explosive outbreaks of infectious diseases occasionally occur without immediately obvious epidemiological or microbiological explanations. Plague, cholera and Streptococcus pyogenes infection are some of the epidemic-prone bacterial infections. Besides epidemiological and conventional microbiological methods, the next-generation gene sequencing technology permits prompt detection of genomic and transcriptomic profiles associated with invasive phenotypes. Horizontal gene transfer due to mobile genetic elements carrying virulence factors and antimicrobial resistance, or mutations associated with the two component CovRS operon are important bacterial factors conferring survival advantage or invasiveness. The high incidence of scarlet fever in children less than 10 years old suggests that the lack of protective immunity is an important host factor. A high population density, overcrowded living environment and a low yearly rainfall are environmental factors contributing to outbreak development. Inappropriate antibiotic use is not only ineffective for treatment, but may actually drive an epidemic caused by drug-resistant strains and worsen patient outcomes by increasing the bacterial density at the site of infection and inducing toxin production. Surveillance of severe S. pyogenes infection is important because it can complicate concurrent chickenpox and influenza. Concomitant outbreaks of these two latter infections with a highly virulent and drug-resistant S. pyogenes strain can be disastrous.
Collapse
Affiliation(s)
- Samson Sy Wong
- Department of Microbiology, Research Centre for Infection and Immunology, Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Research Centre for Infection and Immunology, Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| |
Collapse
|
11
|
Tse H, Bao JYJ, Davies MR, Maamary P, Tsoi HW, Tong AHY, Ho TCC, Lin CH, Gillen CM, Barnett TC, Chen JHK, Lee M, Yam WC, Wong CK, Ong CLY, Chan YW, Wu CW, Ng T, Lim WWL, Tsang THF, Tse CWS, Dougan G, Walker MJ, Lok S, Yuen KY. Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J Infect Dis 2012; 206:341-51. [PMID: 22615319 DOI: 10.1093/infdis/jis362] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A scarlet fever outbreak occurred in Hong Kong in 2011. The majority of cases resulted in the isolation of Streptococcus pyogenes emm12 with multiple antibiotic resistances. Phylogenetic analysis of 22 emm12 scarlet fever outbreak isolates, 7 temporally and geographically matched emm12 non-scarlet fever isolates, and 18 emm12 strains isolated during 2005-2010 indicated the outbreak was multiclonal. Genome sequencing of 2 nonclonal scarlet fever isolates (HKU16 and HKU30), coupled with diagnostic polymerase chain reaction assays, identified 2 mobile genetic elements distributed across the major lineages: a 64.9-kb integrative and conjugative element encoding tetracycline and macrolide resistance and a 46.4-kb prophage encoding superantigens SSA and SpeC and the DNase Spd1. Phenotypic comparison of HKU16 and HKU30 with the S. pyogenes M1T1 strain 5448 revealed that HKU16 displays increased adherence to HEp-2 human epithelial cells, whereas HKU16, HKU30, and 5448 exhibit equivalent resistance to neutrophils and virulence in a humanized plasminogen murine model. However, in contrast to M1T1, the virulence of HKU16 and HKU30 was not associated with covRS mutation. The multiclonal nature of the emm12 scarlet fever isolates suggests that factors such as mobile genetic elements, environmental factors, and host immune status may have contributed to the 2011 scarlet fever outbreak.
Collapse
Affiliation(s)
- Herman Tse
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Le choc toxinique streptococcique. ANNALES FRANCAISES DE MEDECINE D URGENCE 2012. [DOI: 10.1007/s13341-011-0150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Minami M, Ichikawa M, Ohta M, Hasegawa T. The cell envelope-associated protein, LytR, regulates the cysteine protease SpeB in Streptococcus pyogenes. APMIS 2011; 120:417-26. [PMID: 22515297 DOI: 10.1111/j.1600-0463.2011.02847.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The LytR family of cell envelope-associated transcriptional attenuators in bacteria has been brought into focus of scientific interest on the expression of various virulence factors, as well as bacterial cell envelope maintenance. However, this protein of Streptococcus pyogenes has been only described as cell surface-associated protein, and its function is completely unknown. We created lytR mutant strains from two independent S. pyogenes strains to analyze the function of LytR. The protease assay in culture supernatant showed that lytR mutant had the higher cysteine protease activity than wild-type. Two-dimensional gel electrophoresis and western blotting analysis revealed that the amount of cysteine protease, SpeB in lytR mutant was more compared with that in wild-type. The level of speB mRNA in lytR mutant also increased compared with that of wild-type. The membrane integrity and potential in lytR mutant also were decreased compared with that of wild-type. Murine infection model showed that less survival was detected in mice inoculated with lytR mutant than that with wild-type, and the size of wound lesion of mice with lytR mutant was larger than that with wild-type. Our data suggest that the lytR regulates the expression of SpeB in S. pyogenes with relation to membrane integrity.
Collapse
Affiliation(s)
- Masaaki Minami
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Japan.
| | | | | | | |
Collapse
|
14
|
Ichikawa M, Minami M, Isaka M, Tatsuno I, Hasegawa T. Analysis of two-component sensor proteins involved in the response to acid stimuli in Streptococcus pyogenes. MICROBIOLOGY-SGM 2011; 157:3187-3194. [PMID: 21873405 DOI: 10.1099/mic.0.050534-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The virulence of Streptococcus pyogenes depends on proteins that are produced by this bacterium. The production of virulence proteins depends on environmental factors, and two-component regulatory systems are considered to be involved in sensing these factors. One of the environmental factors is acid stimuli. We established knockout strains in all speculated two-component regulatory sensor proteins of the M1 clinical strain of S. pyogenes and examined their relevance to acid stimuli. The parental strain and its derived knockout strains were cultured in a medium adjusted to pH 7.6 or 6.0, and their growth in broth was compared. The spy1622 sensor knockout strain showed significant growth reduction compared with the parental strain in broth at pH 6.0, suggesting that the Spy1622 two-component sensor protein is involved in sensing acid stimuli. To further examine the role of the Spy1622 two-component sensor protein in virulence, blood bactericidal assays and mouse infection model experiments were performed. We found that the spy1622 knockout strain was less virulent than the parental strain, which suggests that the Spy1622 two-component sensor protein could play an important role in virulence.
Collapse
Affiliation(s)
- Mariko Ichikawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Masaaki Minami
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Masanori Isaka
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
15
|
Protective effect of hainosankyuto, a traditional Japanese medicine, on Streptococcus pyogenes infection in murine model. PLoS One 2011; 6:e22188. [PMID: 21799792 PMCID: PMC3142142 DOI: 10.1371/journal.pone.0022188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/19/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Streptococcus pyogenes (S. pyogenes) causes various serious diseases including necrotizing fasciitis and streptococcal toxic shock syndrome. One serious problem observed recently with S. pyogenes therapy is attenuation of the antibiotic effect, especially penicillin treatment failure and macrolide resistance. Hainosankyuto, a traditional Japanese medicine based on ancient Chinese medicine, has been used for treatment of infectious purulent diseases in Japan. In this study, we investigated the protective and therapeutic efficacy of Hainosankyuto against S. pyogenes-skin infection. METHODOLOGY/PRINCIPAL FINDINGS A broth microdilution method revealed that Hainosankyuto did not show a direct anti-bacterial effect against S. pyogenes. Force-feeding Hainosankyuto to infected mice for 4 consecutive days increased the survival rate and reduced the size of local skin lesions compared with mice fed PBS. Although we did not find the significant recovery of survival rate in Hainosankyuto administration only after S. pyogenes infection, the sizes of ulcer lesion were significant smaller after Hainosankyuto administration compared with mice fed PBS. No difference was observed in the anti-bacterial effect of Hainosankyuto between macrolide-susceptible and -resistant strains. Blood bactericidal assay showed that the survival rate of S. pyogenes using the blood from Hainosankyuto-treated mice was lower than that using the blood from untreated mice. We also found increased levels of IL-12, IFN-γ and a decreased level of TNF-α in the serum of S. pyogenes-infected mice treated with Hainosankyuto. Mouse peritoneal macrophage from Hainosankyuto-treated mice had significant phagocytic activity and increased mRNA levels of IL-12, IFN-γ and decreased mRNA level of TNF-α compared with control macrophage. CONCLUSIONS/SIGNIFICANCE Hainosankyuto increased survival rate after S. pyogenes infection and up-regulated both blood bactericidal activity and macrophage phagocytic activity through modulation of inflammatory cytokines. Our data also suggest Hainosankyuto may be useful for the treatment of S. pyogenes infection more prophylactically than therapeutically.
Collapse
|
16
|
Counteractive balancing of transcriptome expression involving CodY and CovRS in Streptococcus pyogenes. J Bacteriol 2011; 193:4153-65. [PMID: 21705595 DOI: 10.1128/jb.00061-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]) responds to environmental changes in a manner that results in an adaptive regulation of the transcriptome. The objective of the present study was to understand how two global transcriptional regulators, CodY and CovRS, coordinate the transcriptional network in S. pyogenes. Results from expression microarray data and quantitative reverse transcription-PCR (qRT-PCR) showed that the global regulator CodY controls the expression of about 250 genes, or about 17% of the genome of strain NZ131. Additionally, the codY gene was shown to be negatively autoregulated, with its protein binding directly to the promoter region with a CodY binding site. In further studies, the influence of codY, covRS, and codY-covRS mutations on gene expression was analyzed in growth phase-dependent conditions using C medium, reported to mimic nutritional abundance and famine conditions similar to those found during host GAS infection. Additional biological experiments of several virulence phenotypes, including pilin production, biofilm formation, and NAD glycohydrolase activity, demonstrated the role that both CodY and CovRS play in their regulation. Correlation analysis of the overall data revealed that, in exponentially growing cells, CodY and CovRS act in opposite directions, with CodY stimulating and CovRS repressing a substantial fraction of the core genome, including many virulence factors. This is the first report of counteractive balancing of transcriptome expression by global transcription regulators and provides important insight into how GAS modulates gene expression by integrating important extracellular and intracellular information.
Collapse
|
17
|
Dmitriev AV, Chaussee MS. The Streptococcus pyogenes proteome: maps, virulence factors and vaccine candidates. Future Microbiol 2011; 5:1539-51. [PMID: 21073313 DOI: 10.2217/fmb.10.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Streptococcus pyogenes is an important cause of human morbidity and mortality worldwide. A wealth of genomic information related to this pathogen has facilitated exploration of the proteome, particularly in response to environmental conditions thought to mimic various aspects of pathogenesis. Proteomic approaches are also used to identify immunoreactive proteins for vaccine development and to identify proteins that may induce autoimmunity. These studies have revealed new mechanisms involved in regulating the S. pyogenes proteome, which has opened up new avenues in the study of S. pyogenes pathogenesis. This article describes the methods used, and progress being made towards characterizing the S. pyogenes proteome, including studies seeking to identify potential vaccine candidates.
Collapse
Affiliation(s)
- Alexander V Dmitriev
- Department of Molecular Microbiology, Institute of Experimental Medicine. acad. Pavlov str., 12, Saint-Petersburg, 197376, Russia
| | | |
Collapse
|