1
|
Wang L, Lu X, Xing Z, Teng X, Wang S, Liu T, Zheng L, Wang X, Qu J. Macrogenomics Reveals Effects on Marine Microbial Communities during Oplegnathus punctatus Enclosure Farming. BIOLOGY 2024; 13:618. [PMID: 39194557 DOI: 10.3390/biology13080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
(1) Background: Laizhou Bay is an important aquaculture area in the north of China. Oplegnathus punctatus is one of the species with high economic benefits. In recent years, the water environment of Laizhou Bay has reached a mild eutrophication level, while microorganisms are an important group between the environment and species. In this study, we evaluated alterations in environmental elements, microbial populations, and antibiotic resistance genes (ARGs) along with their interconnections during Oplegnathus punctatus net culture. (2) Methods: A total of 142 samples from various water layers were gathered for metagenome assembly analysis. Mariculture increases the abundance of microorganisms in this culture area and makes the microbial community structure more complex. The change had more significant effects on sediment than on seawater. (3) Results: Certain populations of cyanobacteria and Candidatus Micrarchaecta in seawater, and Actinobacteria and Thaumarchaeota in sediments showed high abundance in the mariculture area. Antibiotic resistance genes in sediments were more sensitive to various environmental factors, especially oxygen solubility and salinity. (4) Conclusions: These findings highlight the complex and dynamic nature of microorganism-environment-ARG interactions, characterized by regional specificity and providing insights for a more rational use of marine resources.
Collapse
Affiliation(s)
- Lijun Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xiaofei Lu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Zhikai Xing
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xindong Teng
- Qingdao International Travel Healthcare Center, Qingdao 266071, China
| | - Shuang Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Tianyi Liu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Li Zheng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Xumin Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Jiangyong Qu
- College of Life Science, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Dong CL, Wu T, Dong Y, Qu QW, Chen XY, Li YH. Exogenous methionine contributes to reversing the resistance of Streptococcus suis to macrolides. Microbiol Spectr 2024; 12:e0280323. [PMID: 38230928 PMCID: PMC10923279 DOI: 10.1128/spectrum.02803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Streptococcus suis (S. suis) has been increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Multidrug-resistant Streptococcus suis is becoming increasingly prevalent, and novel strategies to treat bacterial infections caused by these organisms are desperately needed. In the present study, an untargeted metabolomics analysis showed that the significant decrease in methionine content and the methionine biosynthetic pathway were significantly affected by the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis in drug-resistant S. suis. The addition of L-methionine restored the bactericidal activity of macrolides, doxycycline, and ciprofloxacin on S. suis in vivo and in vitro. Further studies showed that the exogenous addition of methionine affects methionine metabolism by reducing S-adenosylmethionine synthetase activity and the contents of S-adenosylmethionine, S-adenosyl homocysteine, and S-ribose homocysteine. Methionine can decrease the total methylation level and methylesterase activity in multidrug resistant S. suis. The drug transport proteins and efflux pump genes were significantly downregulated in S. suis by exogenous L-methionine. Moreover, the exogenous addition of methionine can reduce the survival of S. suis by affecting oxidative stress and metal starvation in bacteria. Thus, L-methionine may influence the development of resistance in S. suis through methyl metabolism and metal starvation. This study provides a new perspective on the mitigation of drug resistance in S. suis.IMPORTANCEBacterial antibiotic resistance has become a severe threat to human and animal health. Increasing the efficacy of existing antibiotics is a promising strategy against antibiotic resistance. Here, we report that L-methionine enhances the efficacy of macrolides, doxycycline, and ciprofloxacin antibiotics in killing Streptococcus suis, including multidrug-resistant pathogens. We investigated the mechanism of action of exogenous methionine supplementation in restoring macrolides in Streptococcus suis and the role of the methionine cycle pathway on methylation levels, efflux pump genes, oxidative stress, and metal starvation in Streptococcus suis. It provides a theoretical basis for the rational use of macrolides in clinical practice and also identifies a possible target for restoring drug resistance in Streptococcus suis.
Collapse
Affiliation(s)
- Chun-Liu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Tong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yue Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qian-Wei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue-Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Retapamulin: Current Status and Future Perspectives. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
: Retapamulin is one of the antibiotics recently developed semi-synthetically to inhibit protein synthesis in a specific manner different from other antibiotics. This pleuromutilin derivative shows magnificent anti-bacterial activity in Gram-positive pathogens, especially Staphylococcus aureus and Streptococcus pyogenes, and now it is available in ointment formulations (1%) for clinical use with negligible side effects. Despite the low potential for resistance development, antimicrobial susceptibility rates are significantly high. This is especially important when the prevalence of mupirocin-resistant strains is increasing, and the need for new alternatives is urgent. Unfortunately, due to its oxidation by cytochrome p450, this drug cannot be used systemically. However, another pleuromutilin derivative with systemic use, lefamulin, was approved in August 2019 by the US Food and Drug Administration. In addition to pharmacokinetic features, financial issues are also barriers to consider in the progress of new antimicrobials. In this review, we attempt to take a brief look at the derivatives usable in humans and explore their structures, action mode, metabolism, possible ways of resistance, resistance rates, and their clinical use to explain and highlight the valuable points of these antibiotics.
Collapse
|
4
|
A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00682-19. [PMID: 31871033 DOI: 10.1128/jb.00682-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
The intrinsic resistance of Pseudomonas aeruginosa to many antibiotics limits treatment options for pseudomonal infections. P. aeruginosa's outer membrane is highly impermeable and decreases antibiotic entry into the cell. We used an unbiased high-throughput approach to examine mechanisms underlying outer membrane-mediated antibiotic exclusion. Insertion sequencing (INSeq) identified genes that altered fitness in the presence of linezolid, rifampin, and vancomycin, antibiotics to which P. aeruginosa is intrinsically resistant. We reasoned that resistance to at least one of these antibiotics would depend on outer membrane barrier function, as previously demonstrated in Escherichia coli and Vibrio cholerae This approach demonstrated a critical role of the outer membrane barrier in vancomycin fitness, while efflux pumps were primary contributors to fitness in the presence of linezolid and rifampin. Disruption of flagellar assembly or function was sufficient to confer a fitness advantage to bacteria exposed to vancomycin. These findings clearly show that loss of flagellar function alone can confer a fitness advantage in the presence of an antibiotic.IMPORTANCE The cell envelopes of Gram-negative bacteria render them intrinsically resistant to many classes of antibiotics. We used insertion sequencing to identify genes whose disruption altered the fitness of a highly antibiotic-resistant pathogen, Pseudomonas aeruginosa, in the presence of antibiotics usually excluded by the cell envelope. This screen identified gene products involved in outer membrane biogenesis and homeostasis, respiration, and efflux as important contributors to fitness. An unanticipated fitness cost of flagellar assembly and function in the presence of the glycopeptide antibiotic vancomycin was further characterized. These findings have clinical relevance for individuals with cystic fibrosis who are infected with P. aeruginosa and undergo treatment with vancomycin for a concurrent Staphylococcus aureus infection.
Collapse
|
5
|
A putative mechanism underlying secondary metabolite overproduction by Streptomyces strains with a 23S rRNA mutation conferring erythromycin resistance. Appl Microbiol Biotechnol 2020; 104:2193-2203. [PMID: 31925486 DOI: 10.1007/s00253-019-10288-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Mutations in rrn encoding ribosomal RNA (rRNA) and rRNA modification often confer resistance to ribosome-targeting antibiotics by altering the site of their interaction with the small (30S) and large (50S) subunits of the bacterial ribosome. The highly conserved central loop of domain V of 23S rRNA (nucleotides 2042-2628 in Escherichia coli; the exact position varies by species) of the 50S subunit, which is implicated in peptidyl transferase activity, is known to be important in macrolide interactions and resistance. In this study, we identified an A2302T mutation in the rrnA-23S rRNA gene and an A2281G mutation in the rrnC-23S rRNA gene that were responsible for resistance to erythromycin in the model actinomycete Streptomyces coelicolor A3(2) and its close relative Streptomyces lividans 66, respectively. Interestingly, genetic and phenotypic characterization of the erythromycin-resistant mutants indicated a possibility that under coexistence of the 23S rRNA mutation and mutations in other genes, S. coelicolor A3(2) and S. lividans 66 can produce abundant amounts of the pigmented antibiotics actinorhodin and undecylprodigiosin depending on the combinations of mutations. Herein, we report the unique phenomenon occurring by unexpected characteristics of the 23S rRNA mutations that can affect the emergence of additional mutations probably with an upswing in spontaneous mutations and enrichment in their variations in Streptomyces strains. Further, we discuss a putative mechanism underlying secondary metabolite overproduction by Streptomyces strains with a 23S rRNA mutation conferring erythromycin resistance.
Collapse
|
6
|
Jian J, Chen L, Xie Z, Zhang M. Dissemination of cfr-mediated linezolid resistance among Staphylococcus species isolated from a teaching hospital in Beijing, China. J Int Med Res 2018; 46:3884-3889. [PMID: 29962305 PMCID: PMC6136016 DOI: 10.1177/0300060518781636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective The aim of the present study was to report the dissemination of
cfr and fexA genes mediated by
linezolid resistance among Staphylococcus species. Methods Three methicillin-resistant staphylococci that were collected from a teaching
hospital in Beijing were identified as linezolid-resistant. These three
staphylococci were Staphylococcus aureus, S.
haemolyticus, and S. cohnii. Mutations in
domain V of 23S ribosomal RNA, ribosomal proteins, and the cfr,
fexA, and optrA genes were analysed. Results The three isolates had no mutations of 23S ribosomal RNA, but showed
mutations in the cfr and fexA genes.
Mutations in the gene for ribosomal protein L3, which resulted in the amino
acid exchanges Gly108Glu, Ser158Phe, and Asp159Tyr, were identified in
S. cohnii X4535. Conclusions This is the first report of the cfr gene in clinical
linezolid-resistant methicillin-resistant S. aureus
isolated from Beijing. L3 mutations coupled with the cfr
and fexA genes may act synergistically. Potential
transmissibility of this agent, even without prior exposure to linezolid,
may have serious epidemiological repercussions.
Collapse
Affiliation(s)
- Jiyong Jian
- 1 Clinical Laboratory of Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,2 Peking University Ninth School of Clinical Medicine, Beijing, China.,3 Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Liang Chen
- 1 Clinical Laboratory of Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,2 Peking University Ninth School of Clinical Medicine, Beijing, China.,3 Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Zeqiang Xie
- 1 Clinical Laboratory of Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,2 Peking University Ninth School of Clinical Medicine, Beijing, China.,3 Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- 1 Clinical Laboratory of Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,2 Peking University Ninth School of Clinical Medicine, Beijing, China.,3 Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|