1
|
Brdová D, Ruml T, Viktorová J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist Updat 2024; 77:101147. [PMID: 39236354 DOI: 10.1016/j.drup.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Staphylococcus aureus, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by S. aureus against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which S. aureus evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, etc. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by S. aureus. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for S. aureus infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.
Collapse
Affiliation(s)
- Daniela Brdová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| |
Collapse
|
2
|
Koh AJJ, Hussein M, Thombare V, Crawford S, Li J, Velkov T. Synergistic potential of Leu 10-teixobactin and cefepime against multidrug-resistant Staphylococcus aureus. BMC Microbiol 2024; 24:442. [PMID: 39472779 PMCID: PMC11520699 DOI: 10.1186/s12866-024-03577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a significant Gram-positive opportunistic pathogen behind many debilitating infections. β-lactam antibiotics are conventionally prescribed for treating S. aureus infections. However, the adaptability of S. aureus in evolving resistance to multiple β-lactams contributed to the persistence and spread of infections, exemplified in the emergence of methicillin-resistant S. aureus (MRSA). In the present study, we investigated the efficacies of the synthetic teixobactin analogue, Leu10-teixobactin, combined with the penicillinase-resistant cephalosporin cefepime against MRSA strains. The Leu10-teixobactin and cefepime combination exerted synergism against most strains tested in broth microdilution assay. Time-kill profiles showed that both Leu10-teixobactin and cefepime predominantly exhibited synergistic activity, with > 2.0-log10CFU decrease compared to monotherapy at 24 h. Moreover, biofilm assays revealed a significant inhibition of biofilm production in ATCC™43300 cells treated with sub-MICs of Leu10-teixobactin and cefepime. Subsequent electron microscopy studies showed more extensive damage with the combination therapy compared to monotherapies, including aberrant bacterial morphology, vesicle formation and substantial lysis, indicating combined damage to the cell wall. Quantitative real-time PCR revealed marked perturbation of genes mecA, sarA, atlA, and icaA, substantiating the apparent mode of combined antibacterial action of both antibiotics against peptidoglycan synthesis and initial biofilm production. Hence, the study highlights the prospective utility of the Leu10-teixobactin-cefepime combination in treating MRSA infections via β-lactam potentiation.
Collapse
Affiliation(s)
- Augustine Jing Jie Koh
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Maytham Hussein
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Varsha Thombare
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Simon Crawford
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
3
|
Wang L, Xie Z, Ruan W, Lan F, Qin Q, Tu Y, Zhu W, Zhao J, Zheng P. In silico method and bioactivity evaluation to discover novel antimicrobial agents targeting FtsZ protein: Machine learning, virtual screening and antibacterial mechanism study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03276-4. [PMID: 39043879 DOI: 10.1007/s00210-024-03276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
This research paper utilizes a fused-in-silico approach alongside bioactivity evaluation to identify active FtsZ inhibitors for drug discovery. Initially, ROC-guided machine learning was employed to obtain almost 13182 compounds from three libraries. After conducting virtual screening to assess the affinity of 2621 acquired compounds, cluster analysis and bonding model analysis led to the discovery of five hit compounds. Additionally, antibacterial activity assays and time-killing kinetics revealed that T3995 could eliminate Staphylococcus aureus ATCC6538 and Bacillus subtilis ATCC9732, with MIC values of 32 and 2 μg/mL. Further morphology and FtsZ polymerization assays indicated that T3995 could be an antimicrobial inhibitor by targeting FtsZ protein. Moreover, hemolytic toxicity evaluation demonstrated that T3995 is safe at or below 16 ug/mL concentration. Additionally, bonding model analysis explained how the compound T3995 can display antimicrobial activity by targeting the FtsZ protein. In conclusion, this study presents a promising FtsZ inhibitor that was discovered through a fused computer method and bioactivity evaluation.
Collapse
Affiliation(s)
- Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China.
| | - Zhouling Xie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Wei Ruan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Feixiang Lan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Qi Qin
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Yuanbiao Tu
- Cancer Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Jing Zhao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China.
| |
Collapse
|
4
|
Altarawneh H, Alhomra T, Alharbi M, Fan Y, Derrick JP, Xia G. Synergistic bactericidal activity of a novel dual β-lactam combination against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2024; 79:1677-1682. [PMID: 38831599 PMCID: PMC11215534 DOI: 10.1093/jac/dkae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
OBJECTIVES MRSA is a major cause of hospital-acquired and community-acquired infections. Treatment options for MRSA are limited because of the rapid development of β-lactam resistance. Combining antibiotics offers an affordable, time-saving, viable and efficient approach for developing novel antimicrobial therapies. Both amoxicillin and cefdinir are oral β-lactams with indications for a wide range of bacterial infections and mild side effects. This study aimed to investigate the in vitro and in vivo efficacy of combining these two β-lactams against MRSA strains. METHODS Fourteen representative prevalent MRSA strains with diverse sequence types (STs) were tested with a combination of amoxicillin and cefdinir, using chequerboard and time-kill assays. The Galleria mellonella larvae infection model was used to evaluate the in vivo efficacy of this dual combination against the community-acquired MRSA (CA-MRSA) strain USA300 and the hospital-acquired MRSA (HA-MRSA) strain COL. RESULTS The chequerboard assay revealed a synergistic activity of the dual amoxicillin/cefdinir combination against all tested MRSA strains, with fractional inhibitory concentration index (FICI) values below 0.5 and at least a 4-fold reduction in the MICs of both antibiotics. Time-kill assays demonstrated synergistic bactericidal activity of this dual combination against the MRSA strain USA300 and strain COL. Moreover, in vivo studies showed that the administration of amoxicillin/cefdinir combination to G. mellonella larvae infected with MRSA strains significantly improved the survival rate up to 82%, which was comparable to the efficacy of vancomycin. CONCLUSIONS In vitro and in vivo studies indicate that the dual combination of amoxicillin/cefdinir demonstrates a synergistic bactericidal efficacy against MRSA strains of various STs. Further research is needed to explore its potential as a treatment option for MRSA infections.
Collapse
Affiliation(s)
- Hala Altarawneh
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Turki Alhomra
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mohanned Alharbi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Yaxin Fan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jeremy P Derrick
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Guoqing Xia
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Xie Z, Ruan W, Guo J, Li Y, Zhou S, Zhao J, Wan L, Xu S, Tang Q, Zheng P, Wang L, Zhu W. T5S1607 identified as a antibacterial FtsZ inhibitor:Virtual screening combined with bioactivity evaluation for the drug discovery. Comput Biol Chem 2024; 108:108006. [PMID: 38142532 DOI: 10.1016/j.compbiolchem.2023.108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Due to antibiotic overuse, many bacteria have developed resistance, creating an urgent need for novel antimicrobial agents. It has been established that the filamentous temperature-sensitive mutant Z (FtsZ) of the bacterial cell division protein is an effective and promising antibacterial target. In this study, the optimal proteins were assessed by early recognition ability and the processed compound libraries were virtually screened using Vina. This effort resulted in the identification of 14 potentially active antimicrobial compounds. Among them, the compound T5S1607 demonstrated remarkable antibacterial efficacy against Bacillus subtilis ATCC9732 (MIC = 1 μg/mL) and Staphylococcus aureus ATC5C6538 (MIC = 4 μg/mL). Furthermore, in vitro experiments demonstrated that the selected compound T5S1607 rapidly killed bacteria and induced FtsZ protein aggregation, preventing bacterial division and leading to bacterial death. Additionally, cell toxicity and hemolysis experiments indicate that compound T5S1607 exhibits minimal toxicity to LO2 cells and shows no significant hemolytic effects on mammalian cells in vitro at the MIC concentration range. All the results indicate that compound T5S1607 is a promising antibacterial agent and a potential FtsZ inhibitor. In conclusion, this work successfully discovered FtsZ inhibitors with good activity through the virtual screening drug discovery process.
Collapse
Affiliation(s)
- Zhouling Xie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Wei Ruan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Jiaojiao Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Yan Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Siqi Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Jing Zhao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Li Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
6
|
Pereira AFM, Sani AA, Zapata TB, de Sousa DSM, Rossini BC, dos Santos LD, Rall VLM, Riccardi CDS, Fernandes Júnior A. Synergistic Antibacterial Efficacy of Melittin in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA). Microorganisms 2023; 11:2868. [PMID: 38138012 PMCID: PMC10745785 DOI: 10.3390/microorganisms11122868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) often cause infections with high mortality rates. Antimicrobial peptides are a source of molecules for developing antimicrobials; one such peptide is melittin, a fraction from the venom of the Apis mellifera bee. This study aimed to evaluate the antibacterial and antibiofilm activities of melittin and its association with oxacillin (mel+oxa) against MRSA isolates, and to investigate the mechanisms of action of the treatments on MRSA. Minimum inhibitory concentrations (MICs) were determined, and synergistic effects of melittin with oxacillin and cephalothin were assessed. Antibiofilm and cytotoxic activities, as well as their impact on the cell membrane, were evaluated for melittin, oxacillin, and mel+oxa. Proteomics evaluated the effects of the treatments on MRSA. Melittin mean MICs for MRSA was 4.7 μg/mL and 12 μg/mL for oxacillin. Mel+oxa exhibited synergistic effects, reducing biofilm formation, and causing leakage of proteins, nucleic acids, potassium, and phosphate ions, indicating action on cell membrane. Melittin and mel+oxa, at MIC values, did not induce hemolysis and apoptosis in HaCaT cells. The treatments resulted in differential expression of proteins associated with protein synthesis and energy metabolism. Mel+oxa demonstrated antibacterial activity against MRSA, suggesting a potential as a candidate for the development of new antibacterial agents against MRSA.
Collapse
Affiliation(s)
- Ana Flávia Marques Pereira
- The Center for the Study of Venoms and Venomous Animals of UNESP (CEVAP), São Paulo State University (UNESP), Botucatu 18619-002, São Paulo, Brazil;
| | - Alessandra Aguirra Sani
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Tatiane Baptista Zapata
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Débora Silva Marques de Sousa
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Bruno César Rossini
- Institute of Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, São Paulo, Brazil; (B.C.R.); (L.D.d.S.)
| | - Lucilene Delazari dos Santos
- Institute of Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, São Paulo, Brazil; (B.C.R.); (L.D.d.S.)
- Graduate Program in Tropical Diseases and Graduate Program in Research and Development (Medical Biotechnology), Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, São Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Carla dos Santos Riccardi
- Department of Bioprocesses and Biotechnology, Faculty of Agricultural Sciences (FCA), São Paulo State University (UNESP), Botucatu 18610-034, São Paulo, Brazil;
| | - Ary Fernandes Júnior
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| |
Collapse
|
7
|
Bryan E, Ferrer-González E, Sagong HY, Fujita J, Mark L, Kaul M, LaVoie EJ, Matsumura H, Pilch DS. Structural and Antibacterial Characterization of a New Benzamide FtsZ Inhibitor with Superior Bactericidal Activity and In Vivo Efficacy Against Multidrug-Resistant Staphylococcus aureus. ACS Chem Biol 2023; 18:629-642. [PMID: 36854145 PMCID: PMC10274580 DOI: 10.1021/acschembio.2c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant (MDR) bacterial pathogen of acute clinical significance. Resistance to current standard-of-care antibiotics, such as vancomycin and linezolid, among nosocomial and community-acquired MRSA clinical isolates is on the rise. This threat to global public health highlights the need to develop new antibiotics for the treatment of MRSA infections. Here, we describe a new benzamide FtsZ inhibitor (TXH9179) with superior antistaphylococcal activity relative to earlier-generation benzamides like PC190723 and TXA707. TXH9179 was found to be 4-fold more potent than TXA707 against a library of 55 methicillin-sensitive S. aureus (MSSA) and MRSA clinical isolates, including MRSA isolates resistant to vancomycin and linezolid. TXH9179 was also associated with a lower frequency of resistance relative to TXA707 in all but one of the MSSA and MRSA isolates examined, with the observed resistance being due to mutations in the ftsZ gene. TXH9179 induced changes in MRSA cell morphology, cell division, and FtsZ localization are fully consistent with its actions as a FtsZ inhibitor. Crystallographic studies demonstrate the direct interaction of TXH9179 with S. aureus FtsZ (SaFtsZ), while delineating the key molecular contacts that drive complex formation. TXH9179 was not associated with any mammalian cytotoxicity, even at a concentration 10-fold greater than that producing antistaphylococcal activity. In serum, the carboxamide prodrug of TXH9179 (TXH1033) is rapidly hydrolyzed to TXH9179 by serum acetylcholinesterases. Significantly, both intravenously and orally administered TXH1033 exhibited enhanced in vivo efficacy relative to the carboxamide prodrug of TXA707 (TXA709) in treating a mouse model of systemic (peritonitis) MRSA infection. Viewed as a whole, our results highlight TXH9179 as a promising new benzamide FtsZ inhibitor worthy of further development.
Collapse
Affiliation(s)
- Eric Bryan
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| | - Edgar Ferrer-González
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| | - Hye Yeon Sagong
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, New Jersey 08852, United States
| | - Junso Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lilly Mark
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, New Jersey 08852, United States
| | - Malvika Kaul
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| | - Edmond J LaVoie
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Shiga 525-8577, Japan
| | - Daniel S Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| |
Collapse
|
8
|
Khairullah AR, Sudjarwo SA, Effendi MH, Ramandinianto SC, Gelolodo MA, Widodo A, Riwu KHP, Kurniawati DA. Review of pork and pork products as a source for transmission of methicillin-resistant Staphylococcus aureus. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.167-177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic bacterium that can cause infection in animals and humans. Recently, MRSA from food-producing or farm animals has been identified as livestock-associated MRSA (LA-MRSA). The spread of LA-MRSA is particularly found in pork and pork products because LA-MRSA has been widely known to infect pigs. The most common type of LA-MRSA identified in pork and pork products is the clonal complex LA-MRSA 398 (LA-MRSA CC398). The MRSA strains on the surface of pork carcasses can be spread during the handling and processing of pork and pork products through human hands, cutting tools, and any surface that comes into direct contact with pork. Food infection is the main risk of MRSA in pork and pork products consumed by humans. Antibiotics to treat food infection cases due to MRSA infection include vancomycin and tigecycline. The spread of MRSA in pork and pork products is preventable by appropriately cooking and cooling the pork and pork products at temperatures above 60°C and below 5°C, respectively. It is also necessary to take other preventive measures, such as having a clean meat processing area and disinfecting the equipment used for processing pork and pork products. This review aimed to explain epidemiology, transmission, risk factors, diagnosis, public health consequences, treatment of food poisoning, and preventing the spread of MRSA in pork and pork products.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sancaka Cashyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Aega Gelolodo
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
9
|
Combination with a FtsZ inhibitor potentiates the in vivo efficacy of oxacillin against methicillin-resistant Staphylococcus aureus. Med Chem Res 2022; 31:1705-1715. [PMID: 37065467 PMCID: PMC10104549 DOI: 10.1007/s00044-022-02960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Oxacillin is a first-line antibiotic for the treatment of methicillin-sensitive Staphylococcus aureus (MSSA) infections but is ineffective against methicillin-resistant S. aureus (MRSA) due to resistance. Here we present results showing that co-administering oxacillin with the FtsZ-targeting prodrug TXA709 renders oxacillin efficacious against MRSA. The combination of oxacillin and the active product of TXA709 (TXA707) is associated with synergistic bactericidal activity against clinical isolates of MRSA that are resistant to current standard-of-care antibiotics. We show that MRSA cells treated with oxacillin in combination with TXA707 exhibit morphological characteristics and PBP2 mislocalization behavior similar to that exhibited by MSSA cells treated with oxacillin alone. Co-administration with TXA709 renders oxacillin efficacious in mouse models of both systemic and tissue infection with MRSA, with this efficacy being observed at human-equivalent doses of oxacillin well below that recommended for daily adult use. Pharmacokinetic evaluations in mice reveal that co-administration with TXA709 also increases total exposure to oxacillin. Viewed as a whole, our results highlight the clinical potential of repurposing oxacillin to treat MRSA infections through combination with a FtsZ inhibitor.
Collapse
|
10
|
Monteiro KLC, Silva ON, Dos Santos Nascimento IJ, Mendonça Júnior FJB, Aquino PGV, da Silva-Júnior EF, de Aquino TM. Medicinal Chemistry of Inhibitors Targeting Resistant Bacteria. Curr Top Med Chem 2022; 22:1983-2028. [PMID: 35319372 DOI: 10.2174/1568026622666220321124452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Osmar Nascimento Silva
- Faculty of Pharmacy, University Center of Anápolis, Unievangélica, 75083-515, Anápolis, Goiás, Brazil
| | - Igor José Dos Santos Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | | | | | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
11
|
Chai WC, Whittall JJ, Polyak SW, Foo K, Li X, Dutschke CJ, Ogunniyi AD, Ma S, Sykes MJ, Semple SJ, Venter H. Cinnamaldehyde derivatives act as antimicrobial agents against Acinetobacter baumannii through the inhibition of cell division. Front Microbiol 2022; 13:967949. [PMID: 36106080 PMCID: PMC9465178 DOI: 10.3389/fmicb.2022.967949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a pathogen with high intrinsic antimicrobial resistance while multidrug resistant (MDR) and extensively drug resistant (XDR) strains of this pathogen are emerging. Treatment options for infections by these strains are very limited, hence new therapies are urgently needed. The bacterial cell division protein, FtsZ, is a promising drug target for the development of novel antimicrobial agents. We have previously reported limited activity of cinnamaldehyde analogs against Escherichia coli. In this study, we have determined the antimicrobial activity of six cinnamaldehyde analogs for antimicrobial activity against A. baumannii. Microscopic analysis was performed to determine if the compounds inhibit cell division. The on-target effect of the compounds was assessed by analyzing their effect on polymerization and on the GTPase activity of purified FtsZ from A. baumannii. In silico docking was used to assess the binding of cinnamaldehyde analogs. Finally, in vivo and in vitro safety assays were performed. All six compounds displayed antibacterial activity against the critical priority pathogen A. baumannii, with 4-bromophenyl-substituted 4 displaying the most potent antimicrobial activity (MIC 32 μg/mL). Bioactivity was significantly increased in the presence of an efflux pump inhibitor for A. baumannii ATCC 19606 (up to 32-fold) and significantly, for extensively drug resistant UW 5075 (greater than 4-fold), suggesting that efflux contributes to the intrinsic resistance of A. baumannii against these agents. The compounds inhibited cell division in A. baumannii as observed by the elongated phenotype and targeted the FtsZ protein as seen from the inhibition of polymerization and GTPase activity. In silico docking predicted that the compounds bind in the interdomain cleft adjacent to the H7 core helix. Di-chlorinated 6 was devoid of hemolytic activity and cytotoxicity against mammalian cells in vitro, as well as adverse activity in a Caenorhabditis elegans nematode model in vivo. Together, these findings present halogenated analogs 4 and 6 as promising candidates for further development as antimicrobial agents aimed at combating A. baumannii. This is also the first report of FtsZ-targeting compounds with activity against an XDR A. baumannii strain.
Collapse
Affiliation(s)
- Wern Chern Chai
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jonathan J. Whittall
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Steven W. Polyak
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Klyie Foo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Xin Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cameron J. Dutschke
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Abiodun D. Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Matthew J. Sykes
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Susan J. Semple
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
12
|
Sionov RV, Banerjee S, Bogomolov S, Smoum R, Mechoulam R, Steinberg D. Targeting the Achilles' Heel of Multidrug-Resistant Staphylococcus aureus by the Endocannabinoid Anandamide. Int J Mol Sci 2022; 23:7798. [PMID: 35887146 PMCID: PMC9319909 DOI: 10.3390/ijms23147798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant Staphylococcus aureus is a major health issue that requires new therapeutic approaches. Accumulating data suggest that it is possible to sensitize these bacteria to antibiotics by combining them with inhibitors targeting efflux pumps, the low-affinity penicillin-binding protein PBP2a, cell wall teichoic acid, or the cell division protein FtsZ. We have previously shown that the endocannabinoid Anandamide (N-arachidonoylethanolamine; AEA) could sensitize drug-resistant S. aureus to a variety of antibiotics, among others, through growth arrest and inhibition of drug efflux. Here, we looked at biochemical alterations caused by AEA. We observed that AEA increased the intracellular drug concentration of a fluorescent penicillin and augmented its binding to membrane proteins with concomitant altered membrane distribution of these proteins. AEA also prevented the secretion of exopolysaccharides (EPS) and reduced the cell wall teichoic acid content, both processes known to require transporter proteins. Notably, AEA was found to inhibit membrane ATPase activity that is necessary for transmembrane transport. AEA did not affect the membrane GTPase activity, and the GTPase cell division protein FtsZ formed the Z-ring of the divisome normally in the presence of AEA. Rather, AEA caused a reduction in murein hydrolase activities involved in daughter cell separation. Altogether, this study shows that AEA affects several biochemical processes that culminate in the sensitization of the drug-resistant bacteria to antibiotics.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Shreya Banerjee
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Sergei Bogomolov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Reem Smoum
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| |
Collapse
|
13
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
14
|
Coupri D, Verneuil N, Hartke A, Liebaut A, Lequeux T, Pfund E, Budin-Verneuil A. Inhibition of d-alanylation of teichoic acids overcomes resistance of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2021; 76:2778-2786. [PMID: 34450626 PMCID: PMC8521394 DOI: 10.1093/jac/dkab287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
Background MRSA are high-priority multidrug-resistant pathogens. Although there are still some antibiotics active against MRSA, continuous efforts to discover new antibiotics and treatment strategies are needed because resistance to these new drugs has already been reported. Objectives Here we explore if d-alanylation of teichoic acids (TAs) mediated by the dlt operon gene products might be a druggable target to overcome β-lactam-resistance of MRSA. Methods MICs and bactericidal effects of several β-lactam antibiotics were monitored in a panel of clinical MRSA strains with genetic or chemically induced deficiency in d-alanylation of TAs. Efficiency of the chemical inhibitor to rescue MRSA-infected larvae of Galleria mellonella as well as its ability to prevent or eradicate biofilms of S. aureus were analysed. Results Genetic inactivation of the Dlt system or its chemical inhibition re-sensitizes MRSA to β-lactams. Among the 13 strains, the most pronounced effect was obtained using the inhibitor with imipenem, reducing the median MIC from 16 to 0.25 mg/L. This combination was also bactericidal in some strains and significantly protected G. mellonella larvae from lethal MRSA infections. Finally, inactivation of d-alanylation potentiated the effect of imipenem on inhibition and/or eradication of biofilm. Conclusions Our combined results show that highly efficient inhibitors of d-alanylation of TAs targeting enzymes of the Dlt system should be promising therapeutic adjuvants, especially in combination with carbapenems, for restoring the therapeutic efficacy of this class of antibiotics against MRSA.
Collapse
Affiliation(s)
| | | | - Axel Hartke
- Normandie Univ, UNICAEN, U2RM, 14000 Caen, France
| | | | - Thierry Lequeux
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France
| | - Emmanuel Pfund
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France
| | | |
Collapse
|
15
|
Impact of FtsZ Inhibition on the Localization of the Penicillin Binding Proteins in Methicillin-Resistant Staphylococcus aureus. J Bacteriol 2021; 203:e0020421. [PMID: 34031040 DOI: 10.1128/jb.00204-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen of acute clinical importance. Combination treatment with an FtsZ inhibitor potentiates the activity of penicillin binding protein (PBP)-targeting β-lactam antibiotics against MRSA. To explore the mechanism underlying this synergistic behavior, we examined the impact of treatment with the FtsZ inhibitor TXA707 on the spatial localization of the five PBP proteins expressed in MRSA. In the absence of drug treatment, PBP1, PBP2, PBP3, and PBP4 colocalize with FtsZ at the septum, contributing to new cell wall formation. In contrast, PBP2a localizes to distinct foci along the cell periphery. Upon treatment with TXA707, septum formation becomes disrupted, and FtsZ relocalizes away from midcell. PBP1 and PBP3 remain significantly colocalized with FtsZ, while PBP2, PBP4, and PBP2a localize away from FtsZ to specific sites along the periphery of the enlarged cells. We also examined the impact on PBP2a and PBP2 localization of treatment with β-lactam antibiotic oxacillin alone and in synergistic combination with TXA707. Significantly, PBP2a localizes to the septum in approximately 15% of the oxacillin-treated cells, a behavior that likely contributes to the β-lactam resistance of MRSA. Combination treatment with TXA707 causes both PBP2a and PBP2 to localize in malformed septum-like structures. Our collective results suggest that PBP2, PBP4, and PBP2a may function collaboratively in peripheral cell wall repair and maintenance in response to FtsZ inhibition by TXA707. Cotreatment with oxacillin appears to reduce the availability of PBP2a to assist in this repair, thereby rendering the MRSA cells more susceptible to the β-lactam. IMPORTANCE MRSA is a multidrug-resistant bacterial pathogen of acute clinical importance, infecting many thousands of individuals globally each year. The essential cell division protein FtsZ has been identified as an appealing target for the development of new drugs to combat MRSA infections. Through synergistic actions, FtsZ-targeting agents can sensitize MRSA to antibiotics like the β-lactams that would otherwise be ineffective. This study provides key insights into the mechanism underlying this synergistic behavior as well as MRSA resistance to β-lactam drugs. The results of this work will help guide the identification and optimization of combination drug regimens that can effectively treat MRSA infections and reduce the potential for future resistance.
Collapse
|
16
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
17
|
Casiraghi A, Suigo L, Valoti E, Straniero V. Targeting Bacterial Cell Division: A Binding Site-Centered Approach to the Most Promising Inhibitors of the Essential Protein FtsZ. Antibiotics (Basel) 2020; 9:E69. [PMID: 32046082 PMCID: PMC7167804 DOI: 10.3390/antibiotics9020069] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 11/16/2022] Open
Abstract
Binary fission is the most common mode of bacterial cell division and is mediated by a multiprotein complex denominated the divisome. The constriction of the Z-ring splits the mother bacterial cell into two daughter cells of the same size. The Z-ring is formed by the polymerization of FtsZ, a bacterial protein homologue of eukaryotic tubulin, and it represents the first step of bacterial cytokinesis. The high grade of conservation of FtsZ in most prokaryotic organisms and its relevance in orchestrating the whole division system make this protein a fascinating target in antibiotic research. Indeed, FtsZ inhibition results in the complete blockage of the division system and, consequently, in a bacteriostatic or a bactericidal effect. Since many papers and reviews already discussed the physiology of FtsZ and its auxiliary proteins, as well as the molecular mechanisms in which they are involved, here, we focus on the discussion of the most compelling FtsZ inhibitors, classified by their main protein binding sites and following a medicinal chemistry approach.
Collapse
Affiliation(s)
| | | | | | - Valentina Straniero
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Luigi Mangiagalli, 25, 20133 Milano, Italy; (A.C.); (L.S.); (E.V.)
| |
Collapse
|
18
|
Swain J, El Khoury M, Flament A, Dezanet C, Briée F, Van Der Smissen P, Décout JL, Mingeot-Leclercq MP. Antimicrobial activity of amphiphilic neamine derivatives: Understanding the mechanism of action on Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182998. [DOI: 10.1016/j.bbamem.2019.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023]
|
19
|
Lui HK, Gao W, Cheung KC, Jin WB, Sun N, Kan JW, Wong IL, Chiou J, Lin D, Chan EW, Leung YC, Chan TH, Chen S, Chan KF, Wong KY. Boosting the efficacy of anti-MRSA β-lactam antibiotics via an easily accessible, non-cytotoxic and orally bioavailable FtsZ inhibitor. Eur J Med Chem 2019; 163:95-115. [DOI: 10.1016/j.ejmech.2018.11.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022]
|
20
|
Competitive Fitness of Essential Gene Knockdowns Reveals a Broad-Spectrum Antibacterial Inhibitor of the Cell Division Protein FtsZ. Antimicrob Agents Chemother 2018; 62:AAC.01231-18. [PMID: 30297366 PMCID: PMC6256756 DOI: 10.1128/aac.01231-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/01/2018] [Indexed: 12/26/2022] Open
Abstract
To streamline the elucidation of antibacterial compounds' mechanism of action, comprehensive high-throughput assays interrogating multiple putative targets are necessary. However, current chemogenomic approaches for antibiotic target identification have not fully utilized the multiplexing potential of next-generation sequencing. Here, we used Illumina sequencing of transposon insertions to track the competitive fitness of a Burkholderia cenocepacia library containing essential gene knockdowns. Using this method, we characterized a novel benzothiadiazole derivative, 10126109 (C109), with antibacterial activity against B. cenocepacia, for which whole-genome sequencing of low-frequency spontaneous drug-resistant mutants had failed to identify the drug target. By combining the identification of hypersusceptible mutants and morphology screening, we show that C109 targets cell division. Furthermore, fluorescence microscopy of bacteria harboring green fluorescent protein (GFP) cell division protein fusions revealed that C109 prevents divisome formation by altering the localization of the essential cell division protein FtsZ. In agreement with this, C109 inhibited both the GTPase and polymerization activities of purified B. cenocepacia FtsZ. C109 displayed antibacterial activity against Gram-positive and Gram-negative cystic fibrosis pathogens, including Mycobacterium abscessus C109 effectively cleared B. cenocepacia infection in the Caenorhabditis elegans model and exhibited additive interactions with clinically relevant antibiotics. Hence, C109 is an enticing candidate for further drug development.
Collapse
|
21
|
Foster TJ. Can β-Lactam Antibiotics Be Resurrected to Combat MRSA? Trends Microbiol 2018; 27:26-38. [PMID: 30031590 DOI: 10.1016/j.tim.2018.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/25/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023]
Abstract
The use of β-lactam antibiotics to treat infections caused by Staphylococcus aureus has been severely compromised by the acquisition by horizontal gene transfer of a gene that encodes the β-lactam-insensitive penicillin-binding protein PBP2a. This allows methicillin-resistant S. aureus (MRSA) to proliferate in the presence of β-lactam antibiotics. Paradoxically the dependence on PBP2a for the essential transpeptidase activity in cell wall peptidoglycan biosynthesis is the 'Achilles heel' of MRSA. Compounds that disrupt the divisome, wall teichoic acid, and functional membrane microdomains act synergistically with β-lactams against MRSA. These include drugs such as statins that are widely used in human medicine. The antibiotics vancomycin and daptomycin are also synergistic with β-lactams, and combinations have been employed to treat persistent MRSA infections. An additional benefit of exposing MRSA to β-lactams could be a reduction in virulence mediated by interfering with the global regulator Agr. The mechanistic basis of synergy is discussed, and the possibility that β-lactams can be resurrected to combat MRSA infections is explored.
Collapse
Affiliation(s)
- Timothy J Foster
- Microbiology Department, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
22
|
PBP4: A New Perspective on Staphylococcus aureus β-Lactam Resistance. Microorganisms 2018; 6:microorganisms6030057. [PMID: 29932109 PMCID: PMC6164785 DOI: 10.3390/microorganisms6030057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
β-lactam antibiotics are excellent drugs for treatment of staphylococcal infections, due to their superior efficacy and safety compared to other drugs. Effectiveness of β-lactams is severely compromised due to resistance, which is widespread among clinical strains of Staphylococcus aureus. β-lactams inhibit bacterial cells by binding to penicillin binding proteins (PBPs), which perform the penultimate steps of bacterial cell wall synthesis. Among PBPs of S. aureus, PBP2a has received the most attention for the past several decades due to its preeminent role in conferring both high-level and broad-spectrum resistance to the entire class of β-lactam drugs. Studies on PBP2a have thus unraveled incredible details of its mechanism of action. We have recently identified that an uncanonical, low molecular weight PBP of S. aureus, PBP4, can also provide high-level and broad-spectrum resistance to the entire class of β-lactam drugs at a level similar to that of PBP2a. The role of PBP4 has typically been considered not so important for β-lactam resistance of S. aureus, and as a result its mode of action remains largely unknown. In this article, we review our current knowledge of PBP4 mediating β-lactam resistance in S. aureus.
Collapse
|