1
|
Zhang S, Yang W, Xie Y, Zhao X, Chen H, Zhang L, Lin X. Quantitative proteomics investigating the intrinsic adaptation mechanism of Aeromonas hydrophila to streptomycin. Proteomics 2024; 24:e2300383. [PMID: 38700048 DOI: 10.1002/pmic.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Aeromonas hydrophila, a prevalent pathogen in the aquaculture industry, poses significant challenges due to its drug-resistant strains. Moreover, residues of antibiotics like streptomycin, extensively employed in aquaculture settings, drive selective bacterial evolution, leading to the progressive development of resistance to this agent. However, the underlying mechanism of its intrinsic adaptation to antibiotics remains elusive. Here, we employed a quantitative proteomics approach to investigate the differences in protein expression between A. hydrophila under streptomycin (SM) stress and nonstress conditions. Notably, bioinformatics analysis unveiled the potential involvement of metal pathways, including metal cluster binding, iron-sulfur cluster binding, and transition metal ion binding, in influencing A. hydrophila's resistance to SM. Furthermore, we evaluated the sensitivity of eight gene deletion strains related to streptomycin and observed the potential roles of petA and AHA_4705 in SM resistance. Collectively, our findings enhance the understanding of A. hydrophila's response behavior to streptomycin stress and shed light on its intrinsic adaptation mechanism.
Collapse
Affiliation(s)
- Shuangziying Zhang
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenxiao Yang
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuyue Xie
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinrui Zhao
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haoyu Chen
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lishan Zhang
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiangmin Lin
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Bielinski M, Henderson LR, Yosaatmadja Y, Swift LP, Baddock HT, Bowen MJ, Brem J, Jones PS, McElroy SP, Morrison A, Speake M, van Boeckel S, van Doornmalen E, van Groningen J, van den Hurk H, Gileadi O, Newman JA, McHugh PJ, Schofield CJ. Cell-active small molecule inhibitors validate the SNM1A DNA repair nuclease as a cancer target. Chem Sci 2024; 15:8227-8241. [PMID: 38817593 PMCID: PMC11134331 DOI: 10.1039/d4sc00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/30/2024] [Indexed: 06/01/2024] Open
Abstract
The three human SNM1 metallo-β-lactamase fold nucleases (SNM1A-C) play key roles in DNA damage repair and in maintaining telomere integrity. Genetic studies indicate that they are attractive targets for cancer treatment and to potentiate chemo- and radiation-therapy. A high-throughput screen for SNM1A inhibitors identified diverse pharmacophores, some of which were shown by crystallography to coordinate to the di-metal ion centre at the SNM1A active site. Structure and turnover assay-guided optimization enabled the identification of potent quinazoline-hydroxamic acid containing inhibitors, which bind in a manner where the hydroxamic acid displaces the hydrolytic water and the quinazoline ring occupies a substrate nucleobase binding site. Cellular assays reveal that SNM1A inhibitors cause sensitisation to, and defects in the resolution of, cisplatin-induced DNA damage, validating the tractability of MBL fold nucleases as cancer drug targets.
Collapse
Affiliation(s)
- Marcin Bielinski
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Lucy R Henderson
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Yuliana Yosaatmadja
- Centre for Medicines Discovery, NDM Research Building, University of Oxford Old Road Campus Research Building, Roosevelt Drive Oxford OX3 7DQ UK
| | - Lonnie P Swift
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Matthew J Bowen
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Philip S Jones
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | - Stuart P McElroy
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | - Angus Morrison
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | - Michael Speake
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | | | | | | | | | - Opher Gileadi
- Centre for Medicines Discovery, NDM Research Building, University of Oxford Old Road Campus Research Building, Roosevelt Drive Oxford OX3 7DQ UK
| | - Joseph A Newman
- Centre for Medicines Discovery, NDM Research Building, University of Oxford Old Road Campus Research Building, Roosevelt Drive Oxford OX3 7DQ UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
3
|
Oelschlaeger P, Kaadan H, Dhungana R. Strategies to Name Metallo-β-Lactamases and Number Their Amino Acid Residues. Antibiotics (Basel) 2023; 12:1746. [PMID: 38136780 PMCID: PMC10740994 DOI: 10.3390/antibiotics12121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Metallo-β-lactamases (MBLs), also known as class B β-lactamases (BBLs), are Zn(II)-containing enzymes able to inactivate a broad range of β-lactams, the most commonly used antibiotics, including life-saving carbapenems. They have been known for about six decades, yet they have only gained much attention as a clinical problem for about three decades. The naming conventions of these enzymes have changed over time and followed various strategies, sometimes leading to confusion. We are summarizing the naming strategies of the currently known MBLs. These enzymes are quite diverse on the amino acid sequence level but structurally similar. Problems trying to describe conserved residues, such as Zn(II) ligands and other catalytically important residues, which have different numbers in different sequences, have led to the establishment of a standard numbering scheme for BBLs. While well intended, the standard numbering scheme is not trivial and has not been applied consistently. We revisit this standard numbering scheme and suggest some strategies for how its implementation could be made more accessible to researchers. Standard numbering facilitates the comparison of different enzymes as well as their interaction with novel antibiotics and BBL inhibitors.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Heba Kaadan
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Rinku Dhungana
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Sakurai A, Suzuki M, Ohkushi D, Harada S, Hosokawa N, Ishikawa K, Sakurai T, Ishihara T, Sasazawa H, Yamamoto T, Takehana K, Koyano S, Doi Y. Clinical Features, Genome Epidemiology, and Antimicrobial Resistance Profiles of Aeromonas spp. Causing Human Infections: A Multicenter Prospective Cohort Study. Open Forum Infect Dis 2023; 10:ofad587. [PMID: 38156048 PMCID: PMC10753922 DOI: 10.1093/ofid/ofad587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Indexed: 12/30/2023] Open
Abstract
Background The genus Aeromonas is increasingly implicated in human infections, but knowledge of its clinical characteristics and antimicrobial resistance profiles has been limited owing to its complex taxonomy. Methods We conducted a multicenter prospective cohort study of patients with Aeromonas infections at hospitals across Japan. Patients were eligible for inclusion if they had an Aeromonas spp. strain in a clinical culture and were considered infected at the culture site. Clinical data were collected, and isolates underwent susceptibility testing and whole-genome sequencing. Results A total of 144 patients were included. Hepatobiliary infection accounted for a majority of infections (73% [105 of 144]), which mostly occurred in elderly patients with comorbid conditions, including hepatobiliary complications. The all-cause 30-day mortality rate was 10.0% (95% confidence interval, 4.9%-14.8%). By whole-genome sequencing, 141 strains (98%) belonged to 4 Aeromonas species-A caviae, A hydrophila, A veronii, and A dhakensis-with significant intraspecies diversity. A caviae was predominant in all infection sites except skin and soft tissue, for which A hydrophila was the prevailing species. The genes encoding chromosomally mediated class B, C, and D β-lactamases were harbored by 92%-100% of the isolates in a species-specific manner, but they often lacked association with resistance phenotypes. The activity of cefepime was reliable. All isolates of A hydrophila and A dhakensis carried an mcr-3-like colistin resistance gene and showed reduced susceptibility to colistin. Conclusions Hepatobiliary tract was the most common infection site of Aeromonas spp., with A caviae being the dominant causative species. The resistance genotype and phenotype were often incongruent for β-lactam agents.
Collapse
Affiliation(s)
- Aki Sakurai
- Department of Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
| | - Daisuke Ohkushi
- Department of Infectious Diseases, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sohei Harada
- Department of Infection Control and Prevention, University of Tokyo Hospital, Tokyo, Japan
| | - Naoto Hosokawa
- Department of Infectious Diseases, Kameda Medical Center, Chiba, Japan
| | - Kazuhiro Ishikawa
- Department of Infectious Diseases, St Luke's International Hospital, Tokyo, Japan
| | - Takayuki Sakurai
- Department of Infectious Diseases, NTT Medical Center, Tokyo, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Hiroki Sasazawa
- Department of Infectious Diseases, Kameda Medical Center, Chiba, Japan
- Department of Internal Medicine/Infectious Diseases, Omachi Municipal General Hospital, Nagano, Japan
| | - Takeru Yamamoto
- Department of Infectious Diseases, Kameda Medical Center, Chiba, Japan
| | - Kazumi Takehana
- Clinical Laboratory, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Saho Koyano
- Department of Infection Control and Prevention, University of Tokyo Hospital, Tokyo, Japan
| | - Yohei Doi
- Department of Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Omolabi KF, Reddy N, Mdanda S, Ntshangase S, Singh SD, Kruger HG, Naicker T, Govender T, Bajinath S. The in vitro and in vivo potential of metal-chelating agents as metallo-beta-lactamase inhibitors against carbapenem-resistant Enterobacterales. FEMS Microbiol Lett 2023; 370:6912242. [PMID: 36521842 DOI: 10.1093/femsle/fnac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The recent surge in beta-lactamase resistance has created superbugs, which pose a current and significant threat to public healthcare. This has created an urgent need to keep pace with the discovery of inhibitors that can inactivate these beta-lactamase producers. In this study, the in vitro and in vivo activity of 1,4,7-triazacyclononane-1,4,7 triacetic acid (NOTA)-a potential metallo-beta-lactamase (MBL) inhibitor was evaluated in combination with meropenem against MBL producing bacteria. Time-kill studies showed that NOTA restored the efficacy of meropenem against all bacterial strains tested. A murine infection model was then used to study the in vivo pharmacokinetics and efficacy of this metal chelator. The coadministration of NOTA and meropenem (100 mg/kg.bw each) resulted in a significant decrease in the colony-forming units of Klebsiella pneumoniae NDM-1 over an 8-h treatment period (>3 log10 units). The findings suggest that chelators, such as NOTA, hold strong potential for use as a MBL inhibitor in treating carbapenem-resistant Enterobacterale infections.
Collapse
Affiliation(s)
- Kehinde F Omolabi
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Nakita Reddy
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Sipho Mdanda
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Sphamandla Ntshangase
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Sanil D Singh
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Thavendran Govender
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Sooraj Bajinath
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa.,Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.,School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
6
|
The development of New Delhi metallo-β-lactamase-1 inhibitors since 2018. Microbiol Res 2022; 261:127079. [DOI: 10.1016/j.micres.2022.127079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
|
7
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
8
|
Shin WS, Nguyen ME, Bergstrom A, Jennings IR, Crowder MW, Muthyala R, Sham YY. Fragment-based screening and hit-based substructure search: Rapid discovery of 8-hydroxyquinoline-7-carboxylic acid as a low-cytotoxic, nanomolar metallo β-lactamase inhibitor. Chem Biol Drug Des 2021; 98:481-492. [PMID: 34148302 DOI: 10.1111/cbdd.13912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022]
Abstract
Metallo-β-lactamases (MBLs) are zinc-containing carbapenemases that inactivate a broad range of β-lactam antibiotics. There is a lack of β-lactamase inhibitors for restoring existing β-lactam antibiotics arsenals against common bacterial infections. Fragment-based screening of a non-specific metal chelator library demonstrates 8-hydroxyquinoline as a broad-spectrum nanomolar inhibitor against VIM-2 and NDM-1. A hit-based substructure search provided an early structure-activity relationship of 8-hydroxyquinolines and identified 8-hydroxyquinoline-7-carboxylic acid as a low-cytotoxic β-lactamase inhibitor that can restore β-lactam activity against VIM-2-expressing E. coli. Molecular modeling further shed structural insight into its potential mode of binding within the dinuclear zinc active site. 8-Hydroxyquinoline-7-carboxylic acid is highly stable in human plasma and human liver microsomal study, making it an ideal lead candidate for further development.
Collapse
Affiliation(s)
- Woo Shik Shin
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Megin E Nguyen
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | | | - Isabella R Jennings
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Ramaiah Muthyala
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Yuk Yin Sham
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA.,Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Wade N, Tehrani KHME, Brüchle NC, van Haren MJ, Mashayekhi V, Martin NI. Mechanistic Investigations of Metallo-β-lactamase Inhibitors: Strong Zinc Binding Is Not Required for Potent Enzyme Inhibition*. ChemMedChem 2021; 16:1651-1659. [PMID: 33534956 PMCID: PMC8248298 DOI: 10.1002/cmdc.202100042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/03/2021] [Indexed: 12/21/2022]
Abstract
Metallo-β-lactamases (MBLs) are zinc-dependent bacterial enzymes that inactivate essentially all classes of β-lactam antibiotics including last-resort carbapenems. At present there are no clinically approved MBL inhibitors, and in order to develop such agents it is essential to understand their inhibitory mechanisms. Herein, we describe a comprehensive mechanistic study of a panel of structurally distinct MBL inhibitors reported in both the scientific and patent literature. Specifically, we determined the half-maximal inhibitory concentration (IC50 ) for each inhibitor against MBLs belonging to the NDM and IMP families. In addition, the binding affinities of the inhibitors for Zn2+ , Ca2+ and Mg2+ were assessed by using isothermal titration calorimetry (ITC). We also compared the ability of the different inhibitors to resensitize a highly resistant MBL-expressing Escherichia coli strain to meropenem. These investigations reveal clear differences between the MBL inhibitors studied in terms of their IC50 value, metal binding ability, and capacity to synergize with meropenem. Notably, our studies demonstrate that potent MBL inhibition and synergy with meropenem are not explicitly dependent on the capacity of an inhibitor to strongly chelate zinc.
Collapse
Affiliation(s)
- Nicola Wade
- Biological Chemistry GroupInstitute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeiden (TheNetherlands
| | - Kamaleddin H. M. E. Tehrani
- Biological Chemistry GroupInstitute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeiden (TheNetherlands
| | - Nora C. Brüchle
- Biological Chemistry GroupInstitute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeiden (TheNetherlands
| | - Matthijs J. van Haren
- Biological Chemistry GroupInstitute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeiden (TheNetherlands
| | - Vida Mashayekhi
- Department of BiologyUtrecht UniversityPadualaan 83584 CHUtrecht (TheNetherlands
| | - Nathaniel I. Martin
- Biological Chemistry GroupInstitute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeiden (TheNetherlands
| |
Collapse
|
10
|
Davies DT, Everett M. Designing Inhibitors of β-Lactamase Enzymes to Overcome Carbapenem Resistance in Gram-Negative Bacteria. Acc Chem Res 2021; 54:2055-2064. [PMID: 33788541 DOI: 10.1021/acs.accounts.0c00863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ever since the first β-lactam antibiotic, penicillin, was introduced into the clinic over 70 years ago, resistance has been observed because of the presence of β-lactamase enzymes, which hydrolyze the β-lactam ring of β-lactam antibiotics. Early β-lactamase enzymes were all of the serine β-lactamase (SBL) type, but more recently, highly resistant Gram-negative strains have emerged in which metallo-β-lactamase (MBL) enzymes are responsible for resistance. The two types of β-lactamase enzymes are structurally and mechanistically different but serve the same purpose in bacteria. The SBLs use an active serine group as a nucleophile to attack the β-lactamase ring, forming a covalent intermediate that is subsequently hydrolyzed. In contrast, the MBLs use a zinc ion to activate the β-lactam toward nucleophilic attack by a hydroxide anion held between two zinc ions. In this Account, we review our recent contribution to the field of β-lactamase inhibitor design in terms of both SBL and MBL inhibitors. We describe how we have approached these challenges from the particular perspective of a small biotechnology company, identifying new inhibitors when faced with either a paucity of starting points for medicinal chemistry (MBL inhibitors) or else an abundance of prior research necessitating a search for novelty, improvement, and differentiation (SBL inhibitors). During the journey from the beginning of lead optimization to successful identification of a preclinical candidate for development, we encountered and solved a range of issues. For example, in the MBL inhibitor series we were able to prevent metabolic cleavage of a glycinamide moiety by circulating amidases while still retaining the activity by converting the amino group into a guanidine. In the SBL inhibitor series, the structure-activity relationship led us to consider introducing a fluorine substituent adjacent to a urea functionality. At first sight this grouping would appear to be chemically unstable. However, deeper theoretical considerations suggested that this would not be the case, and in practice the compound is remarkably stable. Both examples serve to illustrate the importance of scientific insight and the necessity to explore speculative hypotheses as part of the creative medicinal chemistry process.
Collapse
|
11
|
Duan M, Bai J, Yang J, Shi P, Bian L. Screening and identification of bioactive components resistant to metallo-beta-lactamase from Schisandra chinensis (Turcz.) Baill. by metalloenzyme-immobilized affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1165:122524. [PMID: 33486218 DOI: 10.1016/j.jchromb.2021.122524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/17/2020] [Accepted: 01/01/2021] [Indexed: 11/17/2022]
Abstract
The screening and identification of bioactive components, which are effectively resistant to metallo-beta-lactamase (MβL), were studied in the alcohol extract of Schisandra chinensis (Turcz.) Baill. by metalloenzyme-immobilized affinity chromatography. Taking bizinc metalloenzyme beta-lactamase II from Bacillus cereus (Bc II) and monozinc metalloenzyme CphA from aeromonas hydrophila (CphA) as examples, we studied the feasibility of this scheme based on the construction of metalloenzyme-immobilized chromatographic model. It was found that the Bc II- and CphA-immobilized chromatographic column could be used not only to explore the interaction between the MβL and their specific ligands, but also to screen the bioactive components from traditional Chinese medicine. The Bc II-and CphA-immobilized columns were used to screen the bioactive components from the alcohol extract of Schisandra chinensis (Turcz.) Baill. Time-of-flight tandem mass spectrometry analysis and molecular docking revealed that isobutyl 3-O-sulfo-β-D-galactopyranoside is the effective bioactive components that could bind with metalloenzyme Bc II. It is believed that our current work may provide a methodological reference for screening MβL inhibitors from traditional Chinese medicine.
Collapse
Affiliation(s)
- Meijiao Duan
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Jiakun Bai
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Jian Yang
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Penghui Shi
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
12
|
Sanders TJ, Wenck BR, Selan JN, Barker MP, Trimmer SA, Walker JE, Santangelo TJ. FttA is a CPSF73 homologue that terminates transcription in Archaea. Nat Microbiol 2020; 5:545-553. [PMID: 32094586 PMCID: PMC7103508 DOI: 10.1038/s41564-020-0667-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022]
Abstract
Regulated gene expression is largely achieved by controlling the activities of essential, multisubunit RNA polymerase transcription elongation complexes (TECs). The extreme stability required of TECs to processively transcribe large genomic regions necessitates robust mechanisms to terminate transcription. Efficient transcription termination is particularly critical for gene-dense bacterial and archaeal genomes1-3 in which continued transcription would necessarily transcribe immediately adjacent genes and result in conflicts between the transcription and replication apparatuses4-6; the coupling of transcription and translation7,8 would permit the loading of ribosomes onto aberrant transcripts. Only select sequences or transcription termination factors can disrupt the otherwise extremely stable TEC and we demonstrate that one of the last universally conserved archaeal proteins with unknown biological function is the Factor that terminates transcription in Archaea (FttA). FttA resolves the dichotomy of a prokaryotic gene structure (operons and polarity) and eukaryotic molecular homology (general transcription apparatus) that is observed in Archaea. This missing link between prokaryotic and eukaryotic transcription regulation provides the most parsimonious link to the evolution of the processing activities involved in RNA 3'-end formation in Eukarya.
Collapse
Affiliation(s)
- Travis J Sanders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Breanna R Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jocelyn N Selan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Mathew P Barker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Stavros A Trimmer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Julie E Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- Watchmaker Genomics, Boulder, CO, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
13
|
Yan Y, Li G, Li G. Principles and current strategies targeting metallo‐β‐lactamase mediated antibacterial resistance. Med Res Rev 2020; 40:1558-1592. [PMID: 32100311 DOI: 10.1002/med.21665] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Yu‐Hang Yan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| | - Gen Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| | - Guo‐Bo Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| |
Collapse
|
14
|
González-Bello C, Rodríguez D, Pernas M, Rodríguez Á, Colchón E. β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J Med Chem 2019; 63:1859-1881. [PMID: 31663735 DOI: 10.1021/acs.jmedchem.9b01279] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infections caused by resistant bacteria are nowadays too common, and some pathogens have even become resistant to multiple types of antibiotics, in which case few or even no treatments are available. In recent years, the most successful strategy in anti-infective drug discovery for the treatment of such problematic infections is the combination therapy "antibiotic + inhibitor of resistance". These inhibitors allow the repurposing of antibiotics that have already proven to be safe and effective for clinical use. Three main types of compounds have been developed to block the principal bacterial resistance mechanisms: (i) β-lactamase inhibitors; (ii) outer membrane permeabilizers; (iii) efflux pump inhibitors. This Perspective is focused on β-lactamase inhibitors that disable the most prevalent cause of antibiotic resistance in Gram-negative bacteria, i.e., the deactivation of the most widely used antibiotics, β-lactams (penicillins, cephalosporines, carbapenems, and monobactams), by the production of β-lactamases. An overview of the most recently identified β-lactamase inhibitors and of combination therapy is provided. The article also covers the mechanism of action of the different types of β-lactamase enzymes as a basis for inhibitor design and target inactivation.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Diana Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Marina Pernas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ángela Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Esther Colchón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Ebsulfur as a potent scaffold for inhibition and labelling of New Delhi metallo-β-lactamase-1 in vitro and in vivo. Bioorg Chem 2019; 84:192-201. [DOI: 10.1016/j.bioorg.2018.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022]
|
16
|
Leiris S, Coelho A, Castandet J, Bayet M, Lozano C, Bougnon J, Bousquet J, Everett M, Lemonnier M, Sprynski N, Zalacain M, Pallin TD, Cramp MC, Jennings N, Raphy G, Jones MW, Pattipati R, Shankar B, Sivasubrahmanyam R, Soodhagani AK, Juventhala RR, Pottabathini N, Pothukanuri S, Benvenuti M, Pozzi C, Mangani S, De Luca F, Cerboni G, Docquier JD, Davies DT. SAR Studies Leading to the Identification of a Novel Series of Metallo-β-lactamase Inhibitors for the Treatment of Carbapenem-Resistant Enterobacteriaceae Infections That Display Efficacy in an Animal Infection Model. ACS Infect Dis 2019; 5:131-140. [PMID: 30427656 PMCID: PMC6332448 DOI: 10.1021/acsinfecdis.8b00246] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The clinical effectiveness of carbapenem antibiotics such as meropenem is becoming increasingly compromised by the spread of both metallo-β-lactamase (MBL) and serine-β-lactamase (SBL) enzymes on mobile genetic elements, stimulating research to find new β-lactamase inhibitors to be used in conjunction with carbapenems and other β-lactam antibiotics. Herein, we describe our initial exploration of a novel chemical series of metallo-β-lactamase inhibitors, from concept to efficacy, in a survival model using an advanced tool compound (ANT431) in conjunction with meropenem.
Collapse
Affiliation(s)
- Simon Leiris
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Alicia Coelho
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Jérôme Castandet
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Maëlle Bayet
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Clarisse Lozano
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Juliette Bougnon
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Justine Bousquet
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Martin Everett
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Marc Lemonnier
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Nicolas Sprynski
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Magdalena Zalacain
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
- Zala Drug Discovery Consulting LLC, West Chester, Pennsylvania 19380, United States
| | - Thomas David Pallin
- Charles River Laboratories, 8-9 The Spire Green Centre, Harlow CM19 5TR, United Kingdom
| | - Michael C. Cramp
- Charles River Laboratories, 8-9 The Spire Green Centre, Harlow CM19 5TR, United Kingdom
| | - Neil Jennings
- Charles River Laboratories, 8-9 The Spire Green Centre, Harlow CM19 5TR, United Kingdom
| | - Gilles Raphy
- Charles River Laboratories, 8-9 The Spire Green Centre, Harlow CM19 5TR, United Kingdom
| | - Mark W. Jones
- Charles River Laboratories, 8-9 The Spire Green Centre, Harlow CM19 5TR, United Kingdom
| | - Ramesh Pattipati
- GVK Biosciences Private Limited, Plot No. 28 A, IDA Nacharam, Hyderabad 500076, India
| | - Battu Shankar
- GVK Biosciences Private Limited, Plot No. 28 A, IDA Nacharam, Hyderabad 500076, India
| | | | - Ashok K. Soodhagani
- GVK Biosciences Private Limited, Plot No. 28 A, IDA Nacharam, Hyderabad 500076, India
| | | | - Narender Pottabathini
- GVK Biosciences Private Limited, Plot No. 28 A, IDA Nacharam, Hyderabad 500076, India
| | - Srinivasu Pothukanuri
- GVK Biosciences Private Limited, Plot No. 28 A, IDA Nacharam, Hyderabad 500076, India
| | - Manuela Benvenuti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 2 Via Aldo Moro, Siena, 53100 Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 2 Via Aldo Moro, Siena, 53100 Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 2 Via Aldo Moro, Siena, 53100 Italy
| | - Filomena De Luca
- Department of Medical Biotechnology, University of Siena, 16 Viale Bracci, Siena, 53100 Italy
| | - Giulia Cerboni
- Department of Medical Biotechnology, University of Siena, 16 Viale Bracci, Siena, 53100 Italy
| | - Jean-Denis Docquier
- Department of Medical Biotechnology, University of Siena, 16 Viale Bracci, Siena, 53100 Italy
| | - David T. Davies
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| |
Collapse
|
17
|
Qian X, Zhang S, Xue S, Mao W, Xu M, Xu W, Xie H. A carbapenem-based fluorescence assay for the screening of metallo-β-lactamase inhibitors. Bioorg Med Chem Lett 2019; 29:322-325. [DOI: 10.1016/j.bmcl.2018.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
18
|
Somboro AM, Osei Sekyere J, Amoako DG, Essack SY, Bester LA. Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors. Appl Environ Microbiol 2018; 84:e00698-18. [PMID: 30006399 PMCID: PMC6121990 DOI: 10.1128/aem.00698-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The worldwide proliferation of life-threatening metallo-β-lactamase (MBL)-producing Gram-negative bacteria is a serious concern to public health. MBLs are compromising the therapeutic efficacies of β-lactams, particularly carbapenems, which are last-resort antibiotics indicated for various multidrug-resistant bacterial infections. Inhibition of enzymes mediating antibiotic resistance in bacteria is one of the major promising means for overcoming bacterial resistance. Compounds having potential MBL-inhibitory activity have been reported, but none are currently under clinical trials. The need for developing safe and efficient MBL inhibitors (MBLIs) is obvious, particularly with the continuous spread of MBLs worldwide. In this review, the emergence and escalation of MBLs in Gram-negative bacteria are discussed. The relationships between different class B β-lactamases identified up to 2017 are represented by a phylogenetic tree and summarized. In addition, approved and/or clinical-phase serine β-lactamase inhibitors are recapitulated to reflect the successful advances made in developing class A β-lactamase inhibitors. Reported MBLIs, their inhibitory properties, and their purported modes of inhibition are delineated. Insights into structural variations of MBLs and the challenges involved in developing potent MBLIs are also elucidated and discussed. Currently, natural products and MBL-resistant β-lactam analogues are the most promising agents that can become clinically efficient MBLIs. A deeper comprehension of the mechanisms of action and activity spectra of the various MBLs and their inhibitors will serve as a bedrock for further investigations that can result in clinically useful MBLIs to curb this global menace.
Collapse
Affiliation(s)
- Anou M Somboro
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Daniel G Amoako
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
Tehrani KHME, Martin NI. β-lactam/β-lactamase inhibitor combinations: an update. MEDCHEMCOMM 2018; 9:1439-1456. [PMID: 30288219 PMCID: PMC6151480 DOI: 10.1039/c8md00342d] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance caused by β-lactamase production continues to present a growing challenge to the efficacy of β-lactams and their role as the most important class of clinically used antibiotics. In response to this threat however, only a handful of β-lactamase inhibitors have been introduced to the market over the past thirty years. The first-generation β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) are all β-lactam derivatives and work primarily by inactivating class A and some class C serine β-lactamases. The newer generations of β-lactamase inhibitors including avibactam and vaborbactam are based on non-β-lactam structures and their spectrum of inhibition is extended to KPC as an important class A carbapenemase. Despite these advances several class D and virtually all important class B β-lactamases are resistant to existing inhibitors. The present review provides an overview of recent FDA-approved β-lactam/β-lactamase inhibitor combinations as well as an update on research efforts aimed at the discovery and development of novel β-lactamase inhibitors.
Collapse
Affiliation(s)
- Kamaleddin H M E Tehrani
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
- Biological Chemistry Group , Institute of Biology Leiden , Leiden University , Sylvius Laboratories, Sylviusweg 72 , 2333 BE Leiden , The Netherlands . ; Tel: +31 (0)6 1878 5274
| |
Collapse
|
20
|
Wang Q, He Y, Lu R, Wang WM, Yang KW, Fan HM, Jin Y, Blackburn GM. Thermokinetic profile of NDM-1 and its inhibition by small carboxylic acids. Biosci Rep 2018; 38:BSR20180244. [PMID: 29507059 PMCID: PMC5897741 DOI: 10.1042/bsr20180244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/16/2018] [Accepted: 03/03/2018] [Indexed: 01/09/2023] Open
Abstract
The New Delhi metallo-β-lactamase (NDM-1) is an important clinical target for antimicrobial research, but there are insufficient clinically useful inhibitors and the details of NDM-1 enzyme catalysis remain unclear. The aim of this work is to provide a thermodynamic profile of NDM-1 catalysed hydrolysis of β-lactams using an isothermal titration calorimetry (ITC) approach and to apply this new method to the identification of new low-molecular-weight dicarboxylic acid inhibitors. The results reveal that hydrolysis of penicillin G and imipenem by NDM-1 share the same thermodynamic features with a significant intrinsic enthalpy change and the release of one proton into solution, while NDM-1 hydrolysis of cefazolin exhibits a different mechanism with a smaller enthalpy change and the release of two protons. The inhibitory constants of four carboxylic acids are found to be in the micromolar range. The compounds pyridine-2,6-dicarboxylic acid and thiazolidine-2,4-dicarboxylic acid show the best inhibitory potency and are confirmed to inhibit NDM-1 using a clinical strain of Escherichia coli The pyridine compound is further shown to restore the susceptibility of this E. coli strain to imipenem, at an inhibitor concentration of 400 μM, while the thiazoline compound also shows a synergistic effect with imipenem. These results provide valuable information to enrich current understanding on the catalytic mechanism of NDM-1 and to aid the future optimisation of β-lactamase inhibitors based on these scaffolds to tackle the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an 710127, P.R. China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an 710127, P.R. China
| | - Rui Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an 710127, P.R. China
| | - Wen-Ming Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an 710127, P.R. China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an 710127, P.R. China
| | - Hai Ming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an 710127, P.R. China
| | - Yi Jin
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - G Michael Blackburn
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
21
|
Discovery of a Novel Metallo-β-Lactamase Inhibitor That Potentiates Meropenem Activity against Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 2018. [PMID: 29530861 DOI: 10.1128/aac.00074-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Infections caused by carbapenem-resistant Enterobacteriaceae (CRE) are increasingly prevalent and have become a major worldwide threat to human health. Carbapenem resistance is driven primarily by the acquisition of β-lactamase enzymes, which are able to degrade carbapenem antibiotics (hence termed carbapenemases) and result in high levels of resistance and treatment failure. Clinically relevant carbapenemases include both serine β-lactamases (SBLs; e.g., KPC-2 and OXA-48) and metallo-β-lactamases (MBLs), such as NDM-1. MBL-producing strains are endemic within the community in many Asian countries, have successfully spread worldwide, and account for many significant CRE outbreaks. Recently approved combinations of β-lactam antibiotics with β-lactamase inhibitors are active only against SBL-producing pathogens. Therefore, new drugs that specifically target MBLs and which restore carbapenem efficacy against MBL-producing CRE pathogens are urgently needed. Here we report the discovery of a novel MBL inhibitor, ANT431, that can potentiate the activity of meropenem (MEM) against a broad range of MBL-producing CRE and restore its efficacy against an Escherichia coli NDM-1-producing strain in a murine thigh infection model. This is a strong starting point for a chemistry lead optimization program that could deliver a first-in-class MBL inhibitor-carbapenem combination. This would complement the existing weaponry against CRE and address an important and growing unmet medical need.
Collapse
|
22
|
Li GB, Brem J, Lesniak R, Abboud MI, Lohans CT, Clifton IJ, Yang SY, Jiménez-Castellanos JC, Avison MB, Spencer J, McDonough MA, Schofield CJ. Crystallographic analyses of isoquinoline complexes reveal a new mode of metallo-β-lactamase inhibition. Chem Commun (Camb) 2018; 53:5806-5809. [PMID: 28470248 DOI: 10.1039/c7cc02394d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Crystallographic analyses of the VIM-5 metallo-β-lactamase (MBL) with isoquinoline inhibitors reveal non zinc ion binding modes. Comparison with other MBL-inhibitor structures directed addition of a zinc-binding thiol enabling identification of potent B1 MBL inhibitors. The inhibitors potentiate meropenem activity against clinical isolates harboring MBLs.
Collapse
Affiliation(s)
- Guo-Bo Li
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hinchliffe P, Tanner CA, Krismanich AP, Labbé G, Goodfellow VJ, Marrone L, Desoky AY, Calvopiña K, Whittle EE, Zeng F, Avison MB, Bols NC, Siemann S, Spencer J, Dmitrienko GI. Structural and Kinetic Studies of the Potent Inhibition of Metallo-β-lactamases by 6-Phosphonomethylpyridine-2-carboxylates. Biochemistry 2018; 57:1880-1892. [PMID: 29485857 PMCID: PMC6007964 DOI: 10.1021/acs.biochem.7b01299] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/15/2018] [Indexed: 01/05/2023]
Abstract
There are currently no clinically available inhibitors of metallo-β-lactamases (MBLs), enzymes that hydrolyze β-lactam antibiotics and confer resistance to Gram-negative bacteria. Here we present 6-phosphonomethylpyridine-2-carboxylates (PMPCs) as potent inhibitors of subclass B1 (IMP-1, VIM-2, and NDM-1) and B3 (L1) MBLs. Inhibition followed a competitive, slow-binding model without an isomerization step (IC50 values of 0.3-7.2 μM; Ki values of 0.03-1.5 μM). Minimum inhibitory concentration assays demonstrated potentiation of β-lactam (Meropenem) activity against MBL-producing bacteria, including clinical isolates, at concentrations at which eukaryotic cells remain viable. Crystal structures revealed unprecedented modes of binding of inhibitor to B1 (IMP-1) and B3 (L1) MBLs. In IMP-1, binding does not replace the nucleophilic hydroxide, and the PMPC carboxylate and pyridine nitrogen interact closely (2.3 and 2.7 Å, respectively) with the Zn2 ion of the binuclear metal site. The phosphonate group makes limited interactions but is 2.6 Å from the nucleophilic hydroxide. Furthermore, the presence of a water molecule interacting with the PMPC phosphonate and pyridine N-C2 π-bond, as well as the nucleophilic hydroxide, suggests that the PMPC binds to the MBL active site as its hydrate. Binding is markedly different in L1, with the phosphonate displacing both Zn2, forming a monozinc enzyme, and the nucleophilic hydroxide, while also making multiple interactions with the protein main chain and Zn1. The carboxylate and pyridine nitrogen interact with Ser221 and -223, respectively (3 Å distance). The potency, low toxicity, cellular activity, and amenability to further modification of PMPCs indicate these and similar phosphonate compounds can be further considered for future MBL inhibitor development.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Carol A. Tanner
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Geneviève Labbé
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Laura Marrone
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Ahmed Y. Desoky
- Department
of Chemistry, College of Science, University
of Hail, Saudi Arabia
| | - Karina Calvopiña
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Emily E. Whittle
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Fanxing Zeng
- Department
of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Matthew B. Avison
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Niels C. Bols
- Department
of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Stefan Siemann
- Department
of Chemistry and Biochemistry, Laurentian
University, Sudbury, Ontario, Canada P3E 2C6
| | - James Spencer
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Gary I. Dmitrienko
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- School
of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
24
|
Ouyang X, Chang YN, Yang KW, Wang WM, Bai JJ, Wang JW, Zhang YJ, Wang SY, Xie BB, Wang LL. A DNA nanoribbon as a potent inhibitor of metallo-β-lactamases. Chem Commun (Camb) 2018; 53:8878-8881. [PMID: 28737795 DOI: 10.1039/c7cc04483f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discovered a promising metallo-β-lactamase inhibitor, a DNA nanoribbon, by enzymatic kinetics and isothermal titration calorimetry evaluations. Atomic force microscopy, gel electrophoresis, competitive binding experiments, circular dichroic and thermal denaturation studies suggested that the DNA nanoribbon could bind to the enzyme through a minor groove.
Collapse
Affiliation(s)
- Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Material Science, Northwest University, Xi'an, 710127, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen AY, Thomas PW, Stewart AC, Bergstrom A, Cheng Z, Miller C, Bethel CR, Marshall SH, Credille CV, Riley CL, Page RC, Bonomo RA, Crowder MW, Tierney DL, Fast W, Cohen SM. Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1. J Med Chem 2017; 60:7267-7283. [PMID: 28809565 PMCID: PMC5599375 DOI: 10.1021/acs.jmedchem.7b00407] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The efficacy of β-lactam antibiotics is threatened by the emergence and global spread of metallo-β-lactamase (MBL) mediated resistance, specifically New Delhi metallo-β-lactamase-1 (NDM-1). By utilization of fragment-based drug discovery (FBDD), a new class of inhibitors for NDM-1 and two related β-lactamases, IMP-1 and VIM-2, was identified. On the basis of 2,6-dipicolinic acid (DPA), several libraries were synthesized for structure-activity relationship (SAR) analysis. Inhibitor 36 (IC50 = 80 nM) was identified to be highly selective for MBLs when compared to other Zn(II) metalloenzymes. While DPA displayed a propensity to chelate metal ions from NDM-1, 36 formed a stable NDM-1:Zn(II):inhibitor ternary complex, as demonstrated by 1H NMR, electron paramagnetic resonance (EPR) spectroscopy, equilibrium dialysis, intrinsic tryptophan fluorescence emission, and UV-vis spectroscopy. When coadministered with 36 (at concentrations nontoxic to mammalian cells), the minimum inhibitory concentrations (MICs) of imipenem against clinical isolates of Eschericia coli and Klebsiella pneumoniae harboring NDM-1 were reduced to susceptible levels.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Pei W Thomas
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas , Austin, Texas 78712, United States
| | - Alesha C Stewart
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas , Austin, Texas 78712, United States
| | - Alexander Bergstrom
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Callie Miller
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Christopher R Bethel
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center , Cleveland, Ohio 44106, United States
| | - Steven H Marshall
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center , Cleveland, Ohio 44106, United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Christopher L Riley
- Department of Molecular Biosciences, University of Texas , Austin, Texas 78712, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Robert A Bonomo
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center , Cleveland, Ohio 44106, United States
- Department of Medicine, Department of Molecular Biology and Microbiology, Department of Biochemistry, and Department of Pharmacology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Walter Fast
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas , Austin, Texas 78712, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
26
|
Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1 H -pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor. Eur J Med Chem 2017; 137:351-364. [DOI: 10.1016/j.ejmech.2017.05.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/16/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022]
|
27
|
Sevaille L, Gavara L, Bebrone C, De Luca F, Nauton L, Achard M, Mercuri P, Tanfoni S, Borgianni L, Guyon C, Lonjon P, Turan-Zitouni G, Dzieciolowski J, Becker K, Bénard L, Condon C, Maillard L, Martinez J, Frère JM, Dideberg O, Galleni M, Docquier JD, Hernandez JF. 1,2,4-Triazole-3-thione Compounds as Inhibitors of Dizinc Metallo-β-lactamases. ChemMedChem 2017; 12:972-985. [DOI: 10.1002/cmdc.201700186] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/12/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Laurent Sevaille
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| | - Laurent Gavara
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| | - Carine Bebrone
- Laboratoire de Macromolécules Biologiques, Centre d'Ingénierie des Protéines; Université de Liège; Allée du 6 août B6, Sart-Tilman 4000 Liège Belgium
- Present address: Symbiose Biomaterials S.A., GIGA Bât. B34; 1 avenue de l'Hôpital 4000 Liège Belgium
| | - Filomena De Luca
- Dipartimento di Biotecnologie Mediche; Università di Siena; 53100 Siena Italy
| | - Lionel Nauton
- Institut de Biologie Structurale-Jean-Pierre Ebel, UMR5075 CNRS, CEA; Université Joseph Fourier; 41 rue Jules Horowitz 38027 Grenoble cedex 1 France
- Present address: Institut de Chimie de Clermont-Ferrand, UMR6296 CNRS; Université Clermont Auvergne; 63000 Clermont-Ferrand France
| | - Maud Achard
- EMBL Outstation c/o DESY; Notkestrasse 85 22603 Hamburg Germany
- Present address: School of Chemistry and Molecular Bioscience; University of Queensland, St. Lucia; Brisbane QLD 4072 Australia
| | - Paola Mercuri
- Laboratoire de Macromolécules Biologiques, Centre d'Ingénierie des Protéines; Université de Liège; Allée du 6 août B6, Sart-Tilman 4000 Liège Belgium
| | - Silvia Tanfoni
- Dipartimento di Biotecnologie Mediche; Università di Siena; 53100 Siena Italy
| | - Luisa Borgianni
- Dipartimento di Biotecnologie Mediche; Università di Siena; 53100 Siena Italy
| | - Carole Guyon
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| | - Pauline Lonjon
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
- Present address: CERN, HSE/SEE/SI; 1211 Geneva 23 Switzerland
| | - Gülhan Turan-Zitouni
- Department of Pharmaceutical Chemistry; Anadolu University, Faculty of Pharmacy; 26470 Eskisehir Turkey
| | - Julia Dzieciolowski
- Chair of Biochemistry and Molecular Biology, Interdisciplinary Research Center; Justus Liebig University; Heinrich-Buff-Ring 26-32 35392 Giessen Germany
| | - Katja Becker
- Chair of Biochemistry and Molecular Biology, Interdisciplinary Research Center; Justus Liebig University; Heinrich-Buff-Ring 26-32 35392 Giessen Germany
| | - Lionel Bénard
- UMR8226, CNRS, Université Pierre et Marie Curie; Institut de Biologie Physico-Chimique; 13 rue Pierre et Marie Curie 75005 Paris France
| | - Ciaran Condon
- UMR8261, CNRS, Université Paris-Diderot; Institut de Biologie Physico-Chimique; 13 rue Pierre et Marie Curie 75005 Paris France
| | - Ludovic Maillard
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| | - Jean-Marie Frère
- Laboratoire de Macromolécules Biologiques, Centre d'Ingénierie des Protéines; Université de Liège; Allée du 6 août B6, Sart-Tilman 4000 Liège Belgium
| | - Otto Dideberg
- Institut de Biologie Structurale-Jean-Pierre Ebel, UMR5075 CNRS, CEA; Université Joseph Fourier; 41 rue Jules Horowitz 38027 Grenoble cedex 1 France
| | - Moreno Galleni
- Laboratoire de Macromolécules Biologiques, Centre d'Ingénierie des Protéines; Université de Liège; Allée du 6 août B6, Sart-Tilman 4000 Liège Belgium
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche; Università di Siena; 53100 Siena Italy
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| |
Collapse
|
28
|
Abstract
The global overuse of antibiotics has led to the emergence of drug-resistant pathogenic bacteria. Bacteria can combat β-lactams by expressing β-lactamases. Inhibitors of one class of β-lactamase, the serine-β-lactamases, are used clinically to prevent degradation of β-lactam antibiotics. However, a second class of β-lactamase, the metallo-β-lactamases (MBLs), function by a different mechanism to serine-β-lactamases and no inhibitors of MBLs have progressed to be used in the clinic. Bacteria that express MBLs are an increasingly important threat to human health. This review outlines various approaches taken to discover MBL inhibitors, with an emphasis on the different chemical classes of inhibitors. Recent progress, particularly new screening methods and the rational design of potent MBL inhibitors are discussed.
Collapse
|
29
|
Christopeit T, Carlsen TJO, Helland R, Leiros HKS. Discovery of Novel Inhibitor Scaffolds against the Metallo-β-lactamase VIM-2 by Surface Plasmon Resonance (SPR) Based Fragment Screening. J Med Chem 2015; 58:8671-82. [DOI: 10.1021/acs.jmedchem.5b01289] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tony Christopeit
- Department of Chemistry,
Faculty of Science and Technology, The Norwegian Structural Biology
Centre (NorStruct), UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Trine Josefine O. Carlsen
- Department of Chemistry,
Faculty of Science and Technology, The Norwegian Structural Biology
Centre (NorStruct), UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ronny Helland
- Department of Chemistry,
Faculty of Science and Technology, The Norwegian Structural Biology
Centre (NorStruct), UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hanna-Kirsti S. Leiros
- Department of Chemistry,
Faculty of Science and Technology, The Norwegian Structural Biology
Centre (NorStruct), UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
30
|
Liu XL, Shi Y, Kang JS, Oelschlaeger P, Yang KW. Amino Acid Thioester Derivatives: A Highly Promising Scaffold for the Development of Metallo-β-lactamase L1 Inhibitors. ACS Med Chem Lett 2015; 6:660-4. [PMID: 26101570 DOI: 10.1021/acsmedchemlett.5b00098] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/23/2015] [Indexed: 11/29/2022] Open
Abstract
In light of the biomedical significance of metallo-β-lactamases (MβLs), ten new mercaptoacetic acid thioester amino acid derivatives were synthesized and characterized. Biological activity assays indicated that all these synthesized compounds are very potent inhibitors of L1, exhibiting an IC50 value range of 0.018-2.9 μM and a K i value range of 0.11-0.95 μM using cefazolin as substrate. Partial thioesters also showed effective inhibitory activities against NDM-1 and ImiS with an IC50 value range of 12-96 and 3.6-65 μM, respectively. Also, all these thioesters increased susceptibility of E. coli cells expressing L1 to cefazolin, indicated by a 2-4-fold reduction in MIC of the antibiotic. Docking studies revealed potential binding modes of the two most potent L1 inhibitors to the active site in which the carboxylate group interacts with both Zn(II) ions and Ser221. This work introduces a highly promising scaffold for the development of metallo-β-lactamase L1 inhibitors.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Key Laboratory of Synthetic and Natural Functional Molecule
Chemistry of Ministry of Education, College of Chemistry and Materials
Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying Shi
- Key Laboratory of Synthetic and Natural Functional Molecule
Chemistry of Ministry of Education, College of Chemistry and Materials
Science, Northwest University, Xi’an 710127, P. R. China
| | - Joon S. Kang
- Department of Biological Sciences, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - Peter Oelschlaeger
- Department
of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, United States
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule
Chemistry of Ministry of Education, College of Chemistry and Materials
Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
31
|
Yang SK, Kang JS, Oelschlaeger P, Yang KW. Azolylthioacetamide: A Highly Promising Scaffold for the Development of Metallo-β-lactamase Inhibitors. ACS Med Chem Lett 2015; 6:455-60. [PMID: 25893049 DOI: 10.1021/ml500534c] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/12/2015] [Indexed: 11/28/2022] Open
Abstract
A new scaffold, azolylthioacetamide, was constructed and assayed against metallo-β-lactamases (MβLs). The obtained molecules specifically inhibited MβL ImiS, and 1c was found to be the most potent inhibitor, with a K i = 1.2 μM using imipenem as substrate. Structure-activity relationships reveal that the aromatic carboxyl improves inhibitory activity of the inhibitors, but the aliphatic carboxyl does not. Compounds 1c-d and 1h-i showed the best antibacterial activities against E. coli BL21(DE3) cells producing CcrA or ImiS, resulting in 32- and 8-fold reduction in MIC values, respectively; 1c and 1f-j resulted in a reduction in MIC against P. aeruginosa. Docking studies revealed that 1a, 1c, and 1d fit tightly into the substrate binding site of CphA as a proxy for ImiS with the aromatic carboxylate forming interactions with Lys224, the Zn(II) ion, the backbone of Asn233, and hydrophobic portions of the inhibitors aligning with hydrophobic patches of the protein surface.
Collapse
Affiliation(s)
- Shao-Kang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule
Chemistry of Ministry of Education, College of Chemistry and Materials
Science, Northwest University, Xi’an 710127, P. R. China
| | - Joon S. Kang
- Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - Peter Oelschlaeger
- Department
of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, United States
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule
Chemistry of Ministry of Education, College of Chemistry and Materials
Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
32
|
Targeting metallo-carbapenemases via modulation of electronic properties of cephalosporins. Biochem J 2015; 464:271-9. [PMID: 25220027 DOI: 10.1042/bj20140364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The global proliferation of metallo-carbapenemase-producing Enterobacteriaceae has created an unmet need for inhibitors of these enzymes. The rational design of metallo-carbapenemase inhibitors requires detailed knowledge of their catalytic mechanisms. Nine cephalosporins, structurally identical except for the systematic substitution of electron-donating and withdrawing groups in the para position of the styrylbenzene ring, were synthesized and utilized to probe the catalytic mechanism of New Delhi metallo-β-lactamase (NDM-1). Under steady-state conditions, K(m) values were all in the micromolar range (1.5-8.1 μM), whereas k(cat) values varied widely (17-220 s(-1)). There were large solvent deuterium isotope effects for all substrates under saturating conditions, suggesting a proton transfer is involved in the rate-limiting step. Pre-steady-state UV-visible scans demonstrated the formation of short-lived intermediates for all compounds. Hammett plots yielded reaction constants (ρ) of -0.34 ± 0.02 and -1.15 ± 0.08 for intermediate formation and breakdown, respectively. Temperature-dependence experiments yielded ΔG(‡) values that were consistent with the Hammett results. These results establish the commonality of the formation of an azanide intermediate in the NDM-1-catalysed hydrolysis of a range cephalosporins with differing electronic properties. This intermediate is a promising target for judiciously designed β-lactam antibiotics that are poor NDM-1 substrates and inhibitors with enhanced active-site residence times.
Collapse
|
33
|
Zhang YL, Yang KW, Zhou YJ, LaCuran AE, Oelschlaeger P, Crowder MW. Diaryl-Substituted Azolylthioacetamides: Inhibitor Discovery of New Delhi Metallo-β-Lactamase-1 (NDM-1). ChemMedChem 2014; 9:2445-8. [DOI: 10.1002/cmdc.201402249] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 11/09/2022]
|
34
|
Abstract
The production of β-lactamase is one of the primary resistance mechanisms used by Gram-negative bacterial pathogens to counter β-lactam antibiotics, such as penicillins, cephalosporins and carbapenems. There is an urgent need to develop novel β-lactamase inhibitors in response to ever evolving β-lactamases possessing an expanded spectrum of β-lactam hydrolyzing activity. Whereas traditional high-throughput screening has proven ineffective against serine β-lactamases, fragment-based approaches have been successfully employed to identify novel chemical matter, which in turn has revealed much about the specific molecular interactions possible in the active site of serine and metallo β-lactamases. In this review, we summarize recent progress in the field, particularly: the identification of novel inhibitor chemotypes through fragment-based screening; the use of fragment-protein structures to understand key features of binding hot spots and inform the design of improved leads; lessons learned and new prospects for β-lactamase inhibitor development using fragment-based approaches.
Collapse
Affiliation(s)
- Derek A Nichols
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry & Small Molecule Discovery Center, University of California San Francisco, 1700 4th Street, Byers Hall S504, San Francisco, CA 94158, USA
| | - Yu Chen
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612, USA
| |
Collapse
|
35
|
Abstract
The β-lactam antibiotics are essential for the treatment of a wide range of human bacterial diseases. However, a class of zinc-dependent hydrolases known as the metallo-β-lactamase (MBL) can confer bacteria with extended spectrum β-lactam resistance. To date, there are no clinically approved MBL inhibitors, making these enzymes a serious threat to human health. In this review, a structural approach is taken to outline some of the more promising MBL inhibitors and shed light on how the resistance conferred by this emerging class of enzymes may be circumvented in the future.
Collapse
|
36
|
Ma J, Eisenhaber F, Maurer-Stroh S. Automatic phylogenetic classification of bacterial beta-lactamase sequences including structural and antibiotic substrate preference information. J Bioinform Comput Biol 2014; 11:1343011. [PMID: 24372040 DOI: 10.1142/s0219720013430117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Beta lactams comprise the largest and still most effective group of antibiotics, but bacteria can gain resistance through different beta lactamases that can degrade these antibiotics. We developed a user friendly tree building web server that allows users to assign beta lactamase sequences to their respective molecular classes and subclasses. Further clinically relevant information includes if the gene is typically chromosomal or transferable through plasmids as well as listing the antibiotics which the most closely related reference sequences are known to target and cause resistance against. This web server can automatically build three phylogenetic trees: the first tree with closely related sequences from a Tachyon search against the NCBI nr database, the second tree with curated reference beta lactamase sequences, and the third tree built specifically from substrate binding pocket residues of the curated reference beta lactamase sequences. We show that the latter is better suited to recover antibiotic substrate assignments through nearest neighbor annotation transfer. The users can also choose to build a structural model for the query sequence and view the binding pocket residues of their query relative to other beta lactamases in the sequence alignment as well as in the 3D structure relative to bound antibiotics. This web server is freely available at http://blac.bii.a-star.edu.sg/.
Collapse
Affiliation(s)
- Jianmin Ma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | | | | |
Collapse
|
37
|
Yang KW, Feng L, Yang SK, Aitha M, LaCuran AE, Oelschlaeger P, Crowder MW. New β-phospholactam as a carbapenem transition state analog: Synthesis of a broad-spectrum inhibitor of metallo-β-lactamases. Bioorg Med Chem Lett 2013; 23:5855-9. [PMID: 24064498 PMCID: PMC3833270 DOI: 10.1016/j.bmcl.2013.08.098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
In an effort to test whether a transition state analog is an inhibitor of the metallo-β-lactamases, a phospholactam analog of carbapenem has been synthesized and characterized. The phospholactam 1 proved to be a weak, time-dependent inhibitor of IMP-1 (70%), CcrA (70%), L1 (70%), NDM-1 (53%), and Bla2 (94%) at an inhibitor concentration of 100μM. The phospholactam 1 activated ImiS and BcII at the same concentration. Docking studies were used to explain binding and to offer suggestions for modifications to the phospholactam scaffold to improve binding affinities.
Collapse
Affiliation(s)
- Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Lei Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Shao-Kang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, 160 Hughes Hall, Oxford, OH 45056, USA
| | - Alecander E. LaCuran
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766, USA
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766, USA
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, 160 Hughes Hall, Oxford, OH 45056, USA
| |
Collapse
|
38
|
Metallo-β-lactamase: Inhibitors and reporter substrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1648-59. [DOI: 10.1016/j.bbapap.2013.04.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/18/2013] [Accepted: 04/21/2013] [Indexed: 11/22/2022]
|
39
|
Faridoon, Ul Islam N. An Update on the Status of Potent Inhibitors of Metallo-β-Lactamases. Sci Pharm 2013; 81:309-27. [PMID: 23833706 PMCID: PMC3700068 DOI: 10.3797/scipharm.1302-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/28/2013] [Indexed: 11/22/2022] Open
Abstract
The production of metallo-β-lactamases is the most important strategy by which pathogenic bacteria become resistant to currently known β-lactam antibiotics. The emergence of these enzymes is particularly concerning for the future treatment of bacterial infections. There are no clinically available drugs capable of inhibiting any of the metallo-β-lactamases, so there is an urgent need to find such inhibitors. In this review, an up-to-date status of the inhibitors investigated for the inhibition of metallo-β-lactamases has been given so that this rich source of structural information of presently known metallo-β-lactamases could be helpful in generating a broad-spectrum potent inhibitor of metallo-β-lactamases.
Collapse
Affiliation(s)
- Faridoon
- Chemistry Department, Islamia College University, Peshawar-25120, Pakistan
| | | |
Collapse
|
40
|
Feng L, Yang KW, Zhou LS, Xiao JM, Yang X, Zhai L, Zhang YL, Crowder MW. N-Heterocyclic dicarboxylic acids: Broad-spectrum inhibitors of metallo-β-lactamases with co-antibacterial effect against antibiotic-resistant bacteria. Bioorg Med Chem Lett 2012; 22:5185-9. [DOI: 10.1016/j.bmcl.2012.06.074] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 11/29/2022]
|
41
|
Gatti DL. Biapenem inactivation by B2 metallo β-lactamases: energy landscape of the post-hydrolysis reactions. PLoS One 2012; 7:e30079. [PMID: 22272276 PMCID: PMC3260057 DOI: 10.1371/journal.pone.0030079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/13/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The first line of defense by bacteria against β-lactam antibiotics is the expression of β-lactamases, which cleave the amide bond of the β-lactam ring. In the reaction of biapenem inactivation by B2 metallo β-lactamases (MβLs), after the β-lactam ring is opened, the carboxyl group generated by the hydrolytic process and the hydroxyethyl group (common to all carbapenems) rotate around the C5-C6 bond, assuming a new position that allows a proton transfer from the hydroxyethyl group to C2, and a nucleophilic attack on C3 by the oxygen atom of the same side-chain. This process leads to the formation of a bicyclic compound, as originally observed in the X-ray structure of the metallo β-lactamase CphA in complex with product. METHODOLOGY/PRINCIPAL FINDINGS QM/MM and metadynamics simulations of the post-hydrolysis steps in solution and in the enzyme reveal that while the rotation of the hydroxyethyl group can occur in solution or in the enzyme active site, formation of the bicyclic compound occurs primarily in solution, after which the final product binds back to the enzyme. The calculations also suggest that the rotation and cyclization steps can occur at a rate comparable to that observed experimentally for the enzymatic inactivation of biapenem only if the hydrolysis reaction leaves the N4 nitrogen of the β-lactam ring unprotonated. CONCLUSIONS/SIGNIFICANCE The calculations support the existence of a common mechanism (in which ionized N4 is the leaving group) for carbapenems hydrolysis in all MβLs, and suggest a possible revision of mechanisms for B2 MβLs in which the cleavage of the β-lactam ring is associated with or immediately followed by protonation of N4. The study also indicates that the bicyclic derivative of biapenem has significant affinity for B2 MβLs, and that it may be possible to obtain clinically effective inhibitors of these enzymes by modification of this lead compound.
Collapse
Affiliation(s)
- Domenico L Gatti
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America.
| |
Collapse
|
42
|
Stamp AL, Owen P, El Omari K, Nichols CE, Lockyer M, Lamb HK, Charles IG, Hawkins AR, Stammers DK. Structural and functional characterization of Salmonella enterica serovar Typhimurium YcbL: an unusual Type II glyoxalase. Protein Sci 2011; 19:1897-905. [PMID: 20669241 DOI: 10.1002/pro.475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
YcbL has been annotated as either a metallo-β-lactamase or glyoxalase II (GLX2), both members of the zinc metallohydrolase superfamily, that contains many enzymes with a diverse range of activities. Here, we report crystallographic and biochemical data for Salmonella enterica serovar Typhimurium YcbL that establishes it as GLX2, which differs in certain structural and functional properties compared with previously known examples. These features include the insertion of an α-helix after residue 87 in YcbL and truncation of the C-terminal domain, which leads to the loss of some recognition determinants for the glutathione substrate. Despite these changes, YcbL has robust GLX2 activity. A further difference is that the YcbL structure contains only a single bound metal ion rather than the dual site normally observed for GLX2s. Activity assays in the presence of various metal ions indicate an increase in activity above basal levels in the presence of manganous and ferrous ions. Thus, YcbL represents a novel member of the GLX2 family.
Collapse
Affiliation(s)
- Anna L Stamp
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bebrone C, Lassaux P, Vercheval L, Sohier JS, Jehaes A, Sauvage E, Galleni M. Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition. Drugs 2010; 70:651-79. [PMID: 20394454 DOI: 10.2165/11318430-000000000-00000] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The use of the three classical beta-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam) in combination with beta-lactam antibacterials is currently the most successful strategy to combat beta-lactamase-mediated resistance. However, these inhibitors are efficient in inactivating only class A beta-lactamases and the efficiency of the inhibitor/antibacterial combination can be compromised by several mechanisms, such as the production of naturally resistant class B or class D enzymes, the hyperproduction of AmpC or even the production of evolved inhibitor-resistant class A enzymes. Thus, there is an urgent need for the development of novel inhibitors. For serine active enzymes (classes A, C and D), derivatives of the beta-lactam ring such as 6-beta-halogenopenicillanates, beta-lactam sulfones, penems and oxapenems, monobactams or trinems seem to be potential starting points to design efficient molecules (such as AM-112 and LK-157). Moreover, a promising non-beta-lactam molecule, NXL-104, is now under clinical development. In contrast, an ideal inhibitor of metallo-beta-lactamases (class B) remains to be found, despite the huge number of potential molecules already described (biphenyl tetrazoles, cysteinyl peptides, mercaptocarboxylates, succinic acid derivatives, etc.). The search for such an inhibitor is complicated by the absence of a covalent intermediate in their catalytic mechanisms and the fact that beta-lactam derivatives often behave as substrates rather than as inhibitors. Currently, the most promising broad-spectrum inhibitors of class B enzymes are molecules presenting chelating groups (thiols, carboxylates, etc.) combined with an aromatic group. This review describes all the types of molecules already tested as potential beta-lactamase inhibitors and thus constitutes an update of the current status in beta-lactamase inhibitor discovery.
Collapse
Affiliation(s)
- Carine Bebrone
- Biological Macromolecules, Centre for Protein Engineering, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
44
|
Lassaux P, Hamel M, Gulea M, Delbrück H, Mercuri PS, Horsfall L, Dehareng D, Kupper M, Frère JM, Hoffmann K, Galleni M, Bebrone C. Mercaptophosphonate Compounds as Broad-Spectrum Inhibitors of the Metallo-β-lactamases. J Med Chem 2010; 53:4862-76. [DOI: 10.1021/jm100213c] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Patricia Lassaux
- Laboratory of Biological Macromolecules
- Centre for Protein Engineering
| | - Matthieu Hamel
- Laboratoire de Chimie Moléculaire et Thio-Organique, UMR CNRS 6507, INC3M, FR 3038, ENSICAEN, Université de Caen, 6, Boulevard du Maréchal Juin, 14 050 CAEN, France
| | - Mihaela Gulea
- Laboratoire de Chimie Moléculaire et Thio-Organique, UMR CNRS 6507, INC3M, FR 3038, ENSICAEN, Université de Caen, 6, Boulevard du Maréchal Juin, 14 050 CAEN, France
| | - Heinrich Delbrück
- Institute of Molecular Biotechnology, RWTH-Aachen University, c/o Fraunhofer IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | | | - Louise Horsfall
- Laboratory of Biological Macromolecules
- Centre for Protein Engineering
| | | | - Michaël Kupper
- Institute of Molecular Biotechnology, RWTH-Aachen University, c/o Fraunhofer IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | | | - Kurt Hoffmann
- Institute of Molecular Biotechnology, RWTH-Aachen University, c/o Fraunhofer IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Moreno Galleni
- Laboratory of Biological Macromolecules
- Centre for Protein Engineering
| | - Carine Bebrone
- Laboratory of Biological Macromolecules
- Centre for Protein Engineering
| |
Collapse
|
45
|
Oelschlaeger P, Ai N, Duprez KT, Welsh WJ, Toney JH. Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? J Med Chem 2010; 53:3013-27. [PMID: 20121112 DOI: 10.1021/jm9012938] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Oelschlaeger
- Chemistry Department and Center for Macromolecular Modeling and Materials Design, California State Polytechnic University, Pomona, California, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Robert A. Bonomo
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
47
|
The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site. Antimicrob Agents Chemother 2009; 53:4464-71. [PMID: 19651913 DOI: 10.1128/aac.00288-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria can defend themselves against beta-lactam antibiotics through the expression of class B beta-lactamases, which cleave the beta-lactam amide bond and render the molecule harmless. There are three subclasses of class B beta-lactamases (B1, B2, and B3), all of which require Zn2+ for activity and can bind either one or two zinc ions. Whereas the B1 and B3 metallo-beta-lactamases are most active as dizinc enzymes, subclass B2 enzymes, such as Aeromonas hydrophila CphA, are inhibited by the binding of a second zinc ion. We crystallized A. hydrophila CphA in order to determine the binding site of the inhibitory zinc ion. X-ray data from zinc-saturated crystals allowed us to solve the crystal structures of the dizinc forms of the wild-type enzyme and N220G mutant. The first zinc ion binds in the cysteine site, as previously determined for the monozinc form of the enzyme. The second zinc ion occupies a slightly modified histidine site, where the conserved His118 and His196 residues act as metal ligands. This atypical coordination sphere probably explains the rather high dissociation constant for the second zinc ion compared to those observed with enzymes of subclasses B1 and B3. Inhibition by the second zinc ion results from immobilization of the catalytically important His118 and His196 residues, as well as the folding of the Gly232-Asn233 loop into a position that covers the active site.
Collapse
|
48
|
Mansour TS, Bradford PA, Venkatesan AM. Recent Developments in β-Lactamases and Inhibitors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00015-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
49
|
Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007; 74:1686-701. [PMID: 17597585 DOI: 10.1016/j.bcp.2007.05.021] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/24/2007] [Accepted: 05/24/2007] [Indexed: 11/27/2022]
Abstract
One strategy employed by bacterial strains to resist beta-lactam antibiotics is the expression of metallo-beta-lactamases requiring Zn(2+) for activity. In the last few years, many new zinc beta-lactamases have been described and several pathogens are now known to synthesize members of this class. Metallo-beta-lactamases are especially worrisome due to: (1) their broad activity profiles that encompass most beta-lactam antibiotics, including the carbapenems; (2) potential for horizontal transference; and (3) the absence of clinically useful inhibitors. On the basis of the known sequences, three different lineages, identified as subclasses B1, B2, and B3 have been characterized. The three-dimensional structure of at least one metallo-beta-lactamase of each subclass has been solved. These very similar 3D structures are characterized by the presence of an alphabetabetaalpha-fold. In addition to metallo-beta-lactamases which cleave the amide bond of the beta-lactam ring, the metallo-beta-lactamase superfamily includes enzymes which hydrolyze thiol-ester, phosphodiester and sulfuric ester bonds as well as oxydoreductases. Most of the 6000 members of this superfamily share five conserved motifs, the most characteristic being the His116-X-His118-X-Asp120-His121 signature. They all exhibit an alphabetabetaalpha-fold, similar to that found in the structure of zinc beta-lactamases. Many members of this superfamily are involved in mRNA maturation and DNA reparation. This fact suggests the hypothesis that metallo-beta-lactamases may be the result of divergent evolution starting from an ancestral protein which did not have a beta-lactamase activity.
Collapse
Affiliation(s)
- Carine Bebrone
- Center for Protein Engineering/Biological Macromolecules, University of Liège, Allée du 6 Août B6, Sart-Tilman 4000 Liège, Belgium.
| |
Collapse
|