1
|
Moqbel Hassan Alzubaydi N, Oun Ali Z, Al-Asadi S, Al-Kahachi R. Design and characterization of a multi-epitope vaccine targeting Chlamydia abortus using immunoinformatics approach. J Biomol Struct Dyn 2024; 42:6660-6677. [PMID: 37774751 DOI: 10.1080/07391102.2023.2240891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 10/01/2023]
Abstract
Chlamydiosis is a widespread ailment affecting humans, livestock, and wildlife, caused by C. abortus, a member of the Chlamydia genus. This disease leads to reproductive disorders in bovines and poses a zoonotic risk, resulting in adverse outcomes such as abortion, stillbirths, weak offspring, endometritis, repeat breeding, and perinatal mortality. However, current chlamydiosis vaccines have limitations in terms of safety, efficacy, and stability, necessitating the development of effective and safe alternatives. In this study, our objective was to design a multi-epitope vaccine (MEV) targeting all strains of C. abortus using bioinformatics and immunoinformatics approaches. We identified highly antigenic and non-allergic proteins (yidC, yajC, secY, CAB503, and CAB746) using VaxiJen and AlgPred tools. Physicochemical analyses and secondary structure predictions confirmed protein stability through ProtParam and SOPMA methods. Furthermore, we employed IEDB-AR, NETMHCpan, and ToxinPred2 tools to predict cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B-cell epitopes, resulting in the identification of conserved epitopes for further analysis. The MEV construct, consisting of 545 amino acids, incorporated the adjuvant Beta defensin-3, along with 9 CTL epitopes and 21 HTL epitopes linked by EAAAK, KK, and AAY linkers. We assessed the safety and immunogenicity of the vaccine through comprehensive evaluations of antigenicity, toxicity, allergenicity, and physicochemical properties. Structural stability and quality were examined using 3D modeling via the ab initio approach with the Robetta platform. Molecular docking analysis explored the compatibility of the MEV with Toll-like receptor 9 (TLR9) using ClusPro, while molecular dynamics simulation with the DESMOND Maestro software predicted the stability and flexibility of the docked complex. Despite promising in silico findings, further wet lab investigations are crucial to validate the safety and efficacy of the MEV. Successful development and validation of this MEV hold significant potential in combatting chlamydiosis in both animal and human populations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Zainab Oun Ali
- Department of Radiology Techniques, College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Sura Al-Asadi
- Department of Laboratory Techniques, College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Rusul Al-Kahachi
- Department of Scholarships and Cultural Relationship, Republic of Iraq Ministry of Higher Education and Scientific Research, Baghdad, Iraq
| |
Collapse
|
2
|
Mansour NA, Mahmeed AA, Bindayna K. Effect of HMGB1 and HBD-3 levels in the diagnosis of sepsis- A comparative descriptive study. Biochem Biophys Rep 2023; 35:101511. [PMID: 37601451 PMCID: PMC10439382 DOI: 10.1016/j.bbrep.2023.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening condition characterized by a dysregulated host response to infection. Early and accurate diagnosis of sepsis is crucial for timely intervention and improved patient outcomes. In recent years, there has been growing interest in identifying reliable biomarkers to aid in the diagnosis of sepsis. This study aims to evaluate the levels of two potential biomarkers, high-mobility group box 1 (HMGB1) and human β-defensin 3 (HBD-3), and compare their diagnostic efficacy in sepsis. We aimed to assess HMGB-1 and HBD-3 levels in sepsis and assess the combined diagnostic validity of HMGB-1 and HBD-3. In this case-control study, the plasma concentration of HMGB-1 and HBD-3 was measured using an enzyme-linked immunosorbent assay (ELISA). Two groups, totaling 144 people, were formed; 66 patients treated in the ICU for sepsis were included in the patient group. 78 Blood donors from the Salmaniya Medical Complex Blood Bank who had no prior infection or inflammatory disease made up the Control group. The statistical computations were performed using the STATA 8® statistical software tool (StataCorp LP, College Station, TX, USA). In patients' mean HMGB-1 levels were 2.1442 ng/ml, compared to 0.62141 ng/ml in the control group. The mean HBD-3 level was 1068.453 ng/ml in sepsis patients versus 589.935 ng/ml in controls. A significant difference between the two groups has been observed in both biomarkers (P < 0.05). The sensitivity of HMGB-1 was 75.8% and 41.3%, respectively. The sensitivity and specificity of HBD-3 were 63.6% and 93.5%, respectively. The levels of HMGB-1 and HBD-3 between healthy and septic subjects varied significantly. HMGB-1 and HBD-3 levels in the blood tested together might accurately identify sepsis. These findings contribute to the growing body of evidence supporting the utility of biomarkers in sepsis diagnosis, and may ultimately aid in the development of more effective diagnostic strategies for sepsis management.
Collapse
Affiliation(s)
- Nourah Al Mansour
- Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Ali Al Mahmeed
- Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Khalid Bindayna
- Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| |
Collapse
|
3
|
D'Souza SM, Houston K, Keenan L, Yoo BS, Parekh PJ, Johnson DA. Role of microbial dysbiosis in the pathogenesis of esophageal mucosal disease: A paradigm shift from acid to bacteria? World J Gastroenterol 2021; 27:2054-2072. [PMID: 34025064 PMCID: PMC8117736 DOI: 10.3748/wjg.v27.i18.2054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic sequencing, bioinformatics, and initial speciation (e.g., relative abundance) of the commensal microbiome have revolutionized the way we think about the “human” body in health and disease. The interactions between the gut bacteria and the immune system of the host play a key role in the pathogenesis of gastrointestinal diseases, including those impacting the esophagus. Although relatively stable, there are a number of factors that may disrupt the delicate balance between the luminal esophageal microbiome (EM) and the host. These changes are thought to be a product of age, diet, antibiotic and other medication use, oral hygiene, smoking, and/or expression of antibiotic products (bacteriocins) by other flora. These effects may lead to persistent dysbiosis which in turn increases the risk of local inflammation, systemic inflammation, and ultimately disease progression. Research has suggested that the etiology of gastroesophageal reflux disease-related esophagitis includes a cytokine-mediated inflammatory component and is, therefore, not merely the result of esophageal mucosal exposure to corrosives (i.e., acid). Emerging evidence also suggests that the EM plays a major role in the pathogenesis of disease by inciting an immunogenic response which ultimately propagates the inflammatory cascade. Here, we discuss the potential role for manipulating the EM as a therapeutic option for treating the root cause of various esophageal disease rather than just providing symptomatic relief (i.e., acid suppression).
Collapse
Affiliation(s)
- Steve M D'Souza
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| | - Kevin Houston
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| | - Lauren Keenan
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| | - Byung Soo Yoo
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| | - Parth J Parekh
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| | - David A Johnson
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| |
Collapse
|
4
|
Du Y, Shang B, Yi H, Yuan Y, Zhen Y, Xu J. Albumin‐Mediated Delivery of Bioactive Peptides for Pancreatic Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yue Du
- Department of Pharmacy the First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College No. 1 Tiantanxili Beijing 100050 China
| | - Boyang Shang
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College No. 1 Tiantanxili Beijing 100050 China
| | - Hongfei Yi
- West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Yongliang Yuan
- Department of Pharmacy the First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Yongsu Zhen
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College No. 1 Tiantanxili Beijing 100050 China
| | - Jian Xu
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College No. 1 Tiantanxili Beijing 100050 China
| |
Collapse
|
5
|
Human Defensins: A Novel Approach in the Fight against Skin Colonizing Staphylococcus a ureus. Antibiotics (Basel) 2020; 9:antibiotics9040198. [PMID: 32326312 PMCID: PMC7235756 DOI: 10.3390/antibiotics9040198] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is a microorganism capable of causing numerous diseases of the human skin. The incidence of S. aureus skin infections reflects the conflict between the host skin′s immune defenses and the S. aureus’ virulence elements. Antimicrobial peptides (AMPs) are small protein molecules involved in numerous biological activities, playing a very important role in the innate immunity. They constitute the defense of the host′s skin, which prevents harmful microorganisms from entering the epithelial barrier, including S. aureus. However, S. aureus uses ambiguous mechanisms against host defenses by promoting colonization and skin infections. Our review aims to provide a reference collection on host-pathogen interactions in skin disorders, including S. aureus infections and its resistance to methicillin (MRSA). In addition to these, we discuss the involvement of defensins and other innate immunity mediators (i.e., toll receptors, interleukin-1, and interleukin-17), involved in the defense of the host against the skin disorders caused by S. aureus, and then focus on the evasion mechanisms developed by the pathogenic microorganism under analysis. This review provides the “state of the art” on molecular mechanisms underlying S. aureus skin infection and the pharmacological potential of AMPs as a new therapeutic strategy, in order to define alternative directions in the fight against cutaneous disease.
Collapse
|
6
|
Krishnakumari V, Binny TM, Adicherla H, Nagaraj R. Escherichia coli Lipopolysaccharide Modulates Biological Activities of Human-β-Defensin Analogues but Not Non-Ribosomally Synthesized Peptides. ACS OMEGA 2020; 5:6366-6375. [PMID: 32258871 PMCID: PMC7114172 DOI: 10.1021/acsomega.9b03770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Human-β-defensins (HBD1-3) are antibacterial peptides containing three disulphide bonds. In the present study, the effect of Escherichia coli lipopolysaccharide (LPS) on the antibacterial activities of HBD2-3, C-terminal analogues having a single disulphide bond, Phd1-3, and their corresponding myristoylated analogues MPhd1-3 were investigated. The effect of LPS on the activities of linear amphipathic peptides melittin, LL37 and non-ribosomally synthesized peptides, polymyxin B, alamethicin, gramicidin A, and gramicidin S was also examined. The antibacterial activity of HBD 2-3, Phd1-3, and MPhd1-3 in the presence of LPS against E. coli and Staphylococcus aureus was inhibited. While LPS inhibited the antibacterial activity of LL37, the inhibition of melittin activity was partial. The hemolytic activity exhibited by MPhd1, MPhd3, melittin, and LL37 was inhibited in the presence of LPS. HBD2-3, Phd1-3, and MPhd1-3 also showed endotoxin neutralizing activity. The antibacterial and hemolytic activities of polymyxin B, alamethicin, gramicidin A, and gramicidin S were not inhibited in the presence of LPS. Fluorescence assays employing dansyl cadaverine showed that HBD2-3 and defensin analogues bind to LPS more strongly as compared to alamethicin, gramicidin A, and gramicidin S. Electron microscopy images indicated that peptides disintegrate the structure of LPS. The inhibition of the antibacterial activity of native defensins and analogues in the presence of LPS indicates that the initial interaction with the bacterial surface is similar. The native defensin sequence or structure is also not essential, although cationic charges are necessary for binding to LPS. Hydrophobic interaction is the main driving force for association of non-ribosomally synthesized polymyxin B, alamethicin, gramicidin A, and gramicidin S with LPS. It is likely that these peptides rapidly insert into membranes and do not interact with the bacterial cell surface, whereas cationic peptides such as β-defensin and their analogues, melittin and LL37, first interact with the bacterial cell surface and then the membrane. Our results suggest that evaluating interaction of antibacterial and hemolytic peptides with LPS is a compelling way of elucidating the mechanism of bacterial killing or hemolysis.
Collapse
|
7
|
Nehls C, Böhling A, Podschun R, Schubert S, Grötzinger J, Schromm A, Fedders H, Leippe M, Harder J, Kaconis Y, Gronow S, Gutsmann T. Influence of disulfide bonds in human beta defensin-3 on its strain specific activity against Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183273. [PMID: 32171739 DOI: 10.1016/j.bbamem.2020.183273] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) play an important role in the host defense against various microbes. One of the most efficient human AMPs is the human beta defensin-3 (hBD-3) which is produced by, e.g. keratinocytes and lung epithelial cells. However, the structure-function relationship for AMPs and in particular for defensins with their typical three disulfide bonds is still poorly understood. In this study the importance of the three disulfide bonds for the activity of the AMPs is investigated with biological assays and with biophysical experiments utilizing different membrane reconstitution systems. The activities of natural hBD-3, hBD-3-c (cyclic variant with one disulfide bond), and hBD-3-l (linear variant without disulfide bonds) and fragments thereof were tested against specific Gram-negative bacteria. Furthermore, hemolytic and cytotoxic activities were analyzed as well as the potency to neutralize immune cell stimulation of lipopolysaccharide (LPS). Experiments using reconstituted lipid matrices composed of phospholipids or LPS purified from the respective Gram-negative bacteria, showed that the membrane activity of all three hBD-3 peptides is decisive for their capability to kill bacteria and to neutralize LPS. In most of the test systems the linear hBD-3-l showed the highest activity. It was also the only peptide significantly active against polymyxin B-resistant Proteus mirabilis R45. However, the stability of hBD-3 against protease activity decreases with decreasing number of disulfide bonds. This study demonstrates that the refining of AMP structures can generate more active compounds against certain strains.
Collapse
Affiliation(s)
- Christian Nehls
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Arne Böhling
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Rainer Podschun
- Institute for Infection Medicine, Christian-Albrechts University, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Sabine Schubert
- Institute for Infection Medicine, Christian-Albrechts University, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts University, Ohlshausenstr. 40, 24098 Kiel, Germany
| | - Andra Schromm
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Henning Fedders
- Department of Zoophysiology, Christian-Albrechts University, Olshausenstraße 40, 24098 Kiel, Germany
| | - Matthias Leippe
- Department of Zoophysiology, Christian-Albrechts University, Olshausenstraße 40, 24098 Kiel, Germany
| | - Jürgen Harder
- Clinical Research Unit at the Department of Dermatology, Schittenhelmstr. 7, 24105 Kiel, Germany
| | - Yani Kaconis
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Sabine Gronow
- DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Medizinische Mikrobiologie, Inhoffenstr. 7b, 38124 Braunschweig, Germany
| | - Thomas Gutsmann
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany.
| |
Collapse
|
8
|
Molecular Dynamics Study of the Human Beta-defensins 2 and 3 Chimeric Peptides with the Cell Membrane Model of Pseudomonas aeruginosa. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
10
|
Wade HM, Darling LEO, Elmore DE. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182980. [PMID: 31067436 DOI: 10.1016/j.bbamem.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 01/30/2023]
Abstract
Combining two known antimicrobial peptides (AMPs) into a hybrid peptide is one promising avenue in the design of agents with increased antibacterial activity. However, very few previous studies have considered the effect of creating a hybrid from one AMP that permeabilizes membranes and another AMP that acts intracellularly after translocating across the membrane. Moreover, very few studies have systematically evaluated the order of parent peptides or the presence of linkers in the design of hybrid AMPs. Here, we use a combination of antibacterial measurements, cellular assays and semi-quantitative confocal microscopy to characterize the activity and mechanism for a library of sixteen hybrid peptides. These hybrids consist of permutations of two primarily membrane translocating peptides, buforin II and DesHDAP1, and two primarily membrane permeabilizing peptides, magainin 2 and parasin. For all hybrids, the permeabilizing peptide appeared to dominate the mechanism, with hybrids primarily killing bacteria through membrane permeabilization. We also observed increased hybrid activity when the permeabilizing parent peptide was placed at the N-terminus. Activity data also highlighted the potential value of considering AMP cocktails in addition to hybrid peptides. Together, these observations will guide future design efforts aiming to design more active hybrid AMPs.
Collapse
Affiliation(s)
- Heidi M Wade
- Department of Chemistry, Wellesley College, Wellesley, MA 02481, United States of America; Biochemistry Program, Wellesley College, Wellesley, MA 02481, United States of America
| | - Louise E O Darling
- Biochemistry Program, Wellesley College, Wellesley, MA 02481, United States of America; Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, United States of America
| | - Donald E Elmore
- Department of Chemistry, Wellesley College, Wellesley, MA 02481, United States of America; Biochemistry Program, Wellesley College, Wellesley, MA 02481, United States of America.
| |
Collapse
|
11
|
Krishnakumari V, Guru A, Adicherla H, Nagaraj R. Effects of increasing hydrophobicity by N‐terminal myristoylation on the antibacterial and hemolytic activities of the C‐terminal cationic segments of human‐β‐defensins 1–3. Chem Biol Drug Des 2018; 92:1504-1513. [DOI: 10.1111/cbdd.13317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2018] [Accepted: 01/20/2018] [Indexed: 12/26/2022]
Affiliation(s)
| | - Ankeeta Guru
- CSIR‐ Center for Cellular and Molecular Biology Hyderabad India
| | | | | |
Collapse
|
12
|
Du Y, Shang BY, Sheng WJ, Zhang SH, Li Y, Miao QF, Zhen YS. A recombinantly tailored β-defensin that displays intensive macropinocytosis-mediated uptake exerting potent efficacy against K-Ras mutant pancreatic cancer. Oncotarget 2018; 7:58418-58434. [PMID: 27517152 PMCID: PMC5295440 DOI: 10.18632/oncotarget.11170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022] Open
Abstract
K-Ras mutant pancreatic cancer cells display intensive macropinocytosis, indicating that this process may be exploited in the design of anticancer targeted therapies. In this study, we constructed a macropinocytosis-oriented recombinantly tailored defensin (DF-HSA) which consists of human β-defensin-2 (DF) and human serum albumin (HSA). The macropinocytosis intensity and cytotoxicity of DF-HSA were investigated in K-Ras mutant MIA PaCa-2 cells and wild-type BxPC-3 cells. As found, the DF-HSA uptake in MIA PaCa-2 cells was much higher than that in wild-type BxPC-3 cells. Correspondingly, the cytotoxicity of DF-HSA to MIA PaCa-2 cells was more potent than that to BxPC-3 cells. In addition, the cytotoxicity of DF-HSA was much stronger than that of β-defensin HBD2. DF-HSA suppressed cancer cell proliferation and induced mitochondrial pathway apoptosis. Notably, DF-HSA significantly inhibited the growth of human pancreatic carcinoma MIA PaCa-2 xenograft in athymic mice at well tolerated dose. By in vivo imaging, DF-HSA displayed a prominent accumulation in the tumor. The study indicates that the recombinantly tailored β-defensin can intensively enter into the K-Ras mutant pancreatic cancer cells through macropinocytosis-mediated process and exert potent therapeutic efficacy against the pancreatic carcinoma xenograft. The novel format of β-defensin may play an active role in macropinocytosis-mediated targeting therapy.
Collapse
Affiliation(s)
- Yue Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Bo-Yang Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Wei-Jin Sheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Sheng-Hua Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Qing-Fang Miao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| |
Collapse
|
13
|
Grassi L, Di Luca M, Maisetta G, Rinaldi AC, Esin S, Trampuz A, Batoni G. Generation of Persister Cells of Pseudomonas aeruginosa and Staphylococcus aureus by Chemical Treatment and Evaluation of Their Susceptibility to Membrane-Targeting Agents. Front Microbiol 2017; 8:1917. [PMID: 29046671 PMCID: PMC5632672 DOI: 10.3389/fmicb.2017.01917] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022] Open
Abstract
Persister cells (PCs) are a subset of dormant, phenotypic variants of regular bacteria, highly tolerant to antibiotics. Generation of PCs in vivo may account for the recalcitrance of most chronic infections to antimicrobial treatment and demands for the identification of new antimicrobial agents able to target such cells. The present study explored the possibility to obtain in vitro PCs of Pseudomonas aeruginosa and Staphylococcus aureus at high efficiency through chemical treatment, and to test their susceptibility to structurally different antimicrobial peptides (AMPs) and two clinically used peptide-based antibiotics, colistin and daptomycin. The main mechanism of action of these molecules (i.e., membrane-perturbing activity) renders them potential candidates to act against dormant cells. Exposure of stationary-phase cultures to optimized concentrations of the uncoupling agent cyanide m-chlorophenylhydrazone (CCCP) was able to generate at high efficiency PCs exhibiting an antibiotic-tolerant phenotype toward different classes of antibiotics. The metabolic profile of CCCP-treated bacteria was investigated by monitoring bacterial heat production through isothermal microcalorimetry and by evaluating oxidoreductase activity by flow cytometry. CCCP-pretreated bacteria of both bacterial species underwent a substantial decrease in heat production and oxidoreductase activity, as compared to the untreated controls. After CCCP removal, induced persisters showed a delay in heat production that correlated with a lag phase before resumption of normal growth. The metabolic reactivation of bacteria coincided with their reversion to an antibiotic-sensitive phenotype. Interestingly, PCs generated by CCCP treatment resulted highly sensitive to three different membrane-targeting AMPs at levels comparable to those of CCCP-untreated bacteria. Colistin was also highly active against PCs of P. aeruginosa, while daptomycin killed PCs of S. aureus only at concentrations 32 to 64-fold higher than those of the tested AMPs. In conclusion, CCCP treatment was demonstrated to be a suitable method to generate in vitro PCs of medically important bacterial species at high efficiency. Importantly, unlike conventional antibiotics, structurally different AMPs were able to eradicate PCs suggesting that such molecules might represent valid templates for the development of new antimicrobials active against persisters.
Collapse
Affiliation(s)
- Lucia Grassi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mariagrazia Di Luca
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburger Centrum für Regenerative Therapien, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea C Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrej Trampuz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Wu CX, Liu ZF. Proteomic Profiling of Sweat Exosome Suggests its Involvement in Skin Immunity. J Invest Dermatol 2017; 138:89-97. [PMID: 28899687 DOI: 10.1016/j.jid.2017.05.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
Abstract
Healthy human skin sustains an effective immune defense mechanism, formed by a complex physical and chemical epidermal barrier that coordinates with different cellular components of the skin immune system. However, the mechanism by which skin cells regulate local immune homeostasis in health and disease contexts is not well known. To investigate whether exosomes exist in sweat, sweat samples from healthy individuals were collected after aerobic exercise. Sweat exosome was isolated via differential ultracentrifugation, observed under transmission electron microscopy, measured by dynamic light scattering, and confirmed by immunoblot. Further, shotgun liquid chromatography (LC)-mass spectrometry (MS)/MS analysis was conducted to investigate the proteomic profiling of sweat exosome. Secreted exosome was detected in human sweat. A total of 1,062 proteins were identified in sweat exosome, including 997 different proteins compared with sweat proteomics and 896 unique proteins compared with urine, saliva, and plasma exosomes. Diverse antimicrobial peptides and immunological factors were found in sweat exosome, suggesting the involvement of exosome in skin immunity. This study provides direct evidence that secreted exosomes exist in human sweat. The proteomic profiling of sweat exosome provides insight into sweat features and the potential physiological significance of exosomes in immune homeostasis.
Collapse
Affiliation(s)
- Chang-Xian Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
15
|
Oyama LB, Crochet JA, Edwards JE, Girdwood SE, Cookson AR, Fernandez-Fuentes N, Hilpert K, Golyshin PN, Golyshina OV, Privé F, Hess M, Mantovani HC, Creevey CJ, Huws SA. Buwchitin: A Ruminal Peptide with Antimicrobial Potential against Enterococcus faecalis. Front Chem 2017; 5:51. [PMID: 28748180 PMCID: PMC5506224 DOI: 10.3389/fchem.2017.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 11/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.
Collapse
Affiliation(s)
- Linda B Oyama
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Jean-Adrien Crochet
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Joan E Edwards
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Susan E Girdwood
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Alan R Cookson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Narcis Fernandez-Fuentes
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Kai Hilpert
- Institute of Infection and Immunity, St George's University of LondonLondon, United Kingdom
| | - Peter N Golyshin
- School of Biological Sciences, Bangor UniversityBangor, United Kingdom
| | - Olga V Golyshina
- School of Biological Sciences, Bangor UniversityBangor, United Kingdom
| | - Florence Privé
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, DavisDavis, CA, United States
| | | | - Christopher J Creevey
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Sharon A Huws
- Medical Biology Centre, School of Biological Sciences, Queen's University BelfastBelfast, United Kingdom
| |
Collapse
|
16
|
Bleackley MR, Payne JAE, Hayes BME, Durek T, Craik DJ, Shafee TMA, Poon IKH, Hulett MD, van der Weerden NL, Anderson MA. Nicotiana alata Defensin Chimeras Reveal Differences in the Mechanism of Fungal and Tumor Cell Killing and an Enhanced Antifungal Variant. Antimicrob Agents Chemother 2016; 60:6302-12. [PMID: 27503651 PMCID: PMC5038239 DOI: 10.1128/aac.01479-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
The plant defensin NaD1 is a potent antifungal molecule that also targets tumor cells with a high efficiency. We examined the features of NaD1 that contribute to these two activities by producing a series of chimeras with NaD2, a defensin that has relatively poor activity against fungi and no activity against tumor cells. All plant defensins have a common tertiary structure known as a cysteine-stabilized α-β motif which consists of an α helix and a triple-stranded β-sheet stabilized by four disulfide bonds. The chimeras were produced by replacing loops 1 to 7, the sequences between each of the conserved cysteine residues on NaD1, with the corresponding loops from NaD2. The loop 5 swap replaced the sequence motif (SKILRR) that mediates tight binding with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and is essential for the potent cytotoxic effect of NaD1 on tumor cells. Consistent with previous reports, there was a strong correlation between PI(4,5)P2 binding and the tumor cell killing activity of all of the chimeras. However, this correlation did not extend to antifungal activity. Some of the loop swap chimeras were efficient antifungal molecules, even though they bound poorly to PI(4,5)P2, suggesting that additional mechanisms operate against fungal cells. Unexpectedly, the loop 1B swap chimera was 10 times more active than NaD1 against filamentous fungi. This led to the conclusion that defensin loops have evolved as modular components that combine to make antifungal molecules with variable mechanisms of action and that artificial combinations of loops can increase antifungal activity compared to that of the natural variants.
Collapse
Affiliation(s)
- Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jennifer A E Payne
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Brigitte M E Hayes
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Sharma H, Mathew B, Nagaraj R. Engineering of a linear inactive analog of human β-defensin 4 to generate peptides with potent antimicrobial activity. J Pept Sci 2015; 21:501-11. [PMID: 25810238 DOI: 10.1002/psc.2770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 02/01/2023]
Abstract
Human β-defensins (HBDs) are cationic antimicrobial peptides constrained by three disulfide bridges. They have diverse range of functions in the innate immune response. It is of interest to investigate whether linear analogs of defensins can be generated, which possess antimicrobial activity. In this study, we have designed linear peptides with potent antimicrobial activity from an inactive peptide spanning the N-terminus of HBD4. Our results show that l-arginine to d-arginine substitution imparts considerable antimicrobial activity against both bacteria and Candida albicans. Increase in hydrophobicity by fatty acylation of the peptides with myristic acid further enhances their potency. In the presence of high concentrations of salt, antimicrobial activity of the myristoylated peptide with l-arginine is attenuated relatively to a lesser extent as compared with the linear active peptide with d-arginine. Substitution of cysteine with the hydrophobic helix-promoting amino acid α-aminoisobutyric acid favors candidacidal activity but not antibacterial activity. The mechanism of killing by d-arginine substituted unacylated analog involves transient interaction with the bacterial membrane followed by translocation into the cytoplasm without membrane permeabilization. Accumulation of peptides in the cytoplasm can affect various cellular processes that lead to cell death. However, the peptide causes membrane permeabilization in case of C. albicans. Myristoylation results in greater interaction of the peptide chain with the microbial cell surface and causes membrane permeabilization. Results described in the study demonstrate that it is possible to generate highly active linear analogs of defensins by selective introduction of d-amino acids and fatty acids, which could be attractive candidates for development as therapeutic agents.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Basil Mathew
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| |
Collapse
|
18
|
Huang XX, Gao CY, Zhao QJ, Li CL. Antimicrobial characterization of site-directed mutagenesis of porcine beta defensin 2. PLoS One 2015; 10:e0118170. [PMID: 25719446 PMCID: PMC4342241 DOI: 10.1371/journal.pone.0118170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022] Open
Abstract
Porcine β defensin 2 (pBD2) is a small, cationic and amphiphilic antimicrobial peptide. It has broad antimicrobial activities against bacteria and plays an important role in host defense. In order to enhance its antimicrobial activity and better understand the effect of positively charged residues on its activity, we substituted eight amino acid residues with arginine or lysine respectively. All mutants were cloned and expressed in BL21 (DE3) plysS and the mutant proteins were then purified. These mutant versions had higher positive charges but similar structural configurations compared to the wild-type pBD2. Moreover, these mutant proteins showed different antimicrobial activities against E. coli and S. aureus. The mutant I4R of pBD2 had the highest antimicrobial activity. In addition, all the mutants showed low hemolytic activities. Our results indicated that the positively charged residues were not the only factor that influenced antimicrobial activity, but other factors such as distribution of these residues on the surface of defensins might also contribute to their antimicrobial potency.
Collapse
Affiliation(s)
- Xian-xian Huang
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, Henan Province, The People's Republic of China
| | - Chun-yu Gao
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, Henan Province, The People's Republic of China
| | - Qing-jun Zhao
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, Henan Province, The People's Republic of China
| | - Chun-li Li
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, Henan Province, The People's Republic of China
| |
Collapse
|
19
|
Li T, Guo F, Wang Q, Fang H, Li Z, Wang D, Wang H. N-terminus three residues deletion mutant of human beta-defensin 3 with remarkably enhanced salt-resistance. PLoS One 2015; 10:e0117913. [PMID: 25706284 PMCID: PMC4338079 DOI: 10.1371/journal.pone.0117913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 01/03/2015] [Indexed: 12/20/2022] Open
Abstract
In this study, we designed and synthesized three N-terminal deletion analogs of human beta-defensin 3 (hBD-3), namely, hBD-3Δ4, hBD-3Δ7, and hBD-3Δ10, to determine the effect of N-terminal residues on the antibacterial activity and salt resistance of these peptides. The antibacterial activities and salt resistance of hBD-3 and its analogs were tested against a broad range of standard and clinically isolated strains. The deletion of nine N-terminal residues significantly reduced the antibacterial activity of hBD-3 against most of tested strains, particularly Klebsiella pneumonia. Compared with hBD-3 and other analogs, the analog with a deletion of three residues, hBD-3Δ4, exhibited significantly higher antimicrobial activity against almost all the tested strains, especially Escherichia coli and Enterococcus faecium, at high NaCl concentrations. Given its broad spectrum of antimicrobial activity and high salt resistance, hBD-3Δ4 could serve as a promising template for new therapeutic antimicrobial agents.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, PR China
| | - Feng Guo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, PR China
| | - Qin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, PR China
| | - Huali Fang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, PR China
| | - Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, PR China
| | - Dehui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, PR China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, PR China
- * E-mail:
| |
Collapse
|
20
|
Krishnakumari V, Nagaraj R. N-Terminal fatty acylation of peptides spanning the cationic C-terminal segment of bovine β-defensin-2 results in salt-resistant antibacterial activity. Biophys Chem 2015; 199:25-33. [PMID: 25791057 DOI: 10.1016/j.bpc.2015.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/29/2022]
Abstract
Peptides spanning the C-terminal segment of bovine-β-defensin-2 (BNBD-2) rich in cationic amino acids, show antimicrobial activity. However, they exhibit considerably reduced activity at physiological concentration of NaCl. In the present study, we have investigated whether N-terminal acylation (acetylation and palmitoylation) of these peptides would result in improved antimicrobial activity. N-terminal palmitoylation though increased hydrophobicity of the peptides, did not enhance antimicrobial potency. However, antibacterial activity of these peptides was not attenuated by NaCl. Biophysical studies on the palmitoylated peptides have indicated that antibacterial activity in the presence of NaCl arises due to the ability of the peptides to interact with membranes more effectively. These peptides showed hemolytic activity which was attenuated considerably in the presence of serum and lipid vesicles. In defensin related peptides, fatty acylation would be a convenient way to generate analogs that are active in the presence of salt.
Collapse
Affiliation(s)
| | - Ramakrishnan Nagaraj
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| |
Collapse
|
21
|
Li Q, Yu H, Zhao X, Huang X. Insight into the impact of environments on structure of chimera C3 of human β-defensins 2 and 3 from molecular dynamics simulations. J Biomol Struct Dyn 2014; 33:1989-2002. [DOI: 10.1080/07391102.2014.985255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Sudheendra US, Dhople V, Datta A, Kar RK, Shelburne CE, Bhunia A, Ramamoorthy A. Membrane disruptive antimicrobial activities of human β-defensin-3 analogs. Eur J Med Chem 2014; 91:91-9. [PMID: 25112689 DOI: 10.1016/j.ejmech.2014.08.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/26/2023]
Abstract
Human beta defensin-3 (HβD-3) is a host-defense protein exhibiting antibacterial activity towards both Gram-negative and Gram-positive bacteria. There is considerable interest in the function of this protein due to its increased salt tolerance and activity against Gram-positive Staphylococcus aureus. In this study, analogs of HβD-3 devoid of N and C terminal regions are investigated to determine the influence of specific structural motif on antimicrobial activity and selectivity between Gram-positive and Gram-negative bacteria. Circular dichroism, fluorescence and solid-state NMR experiments have been used to investigate the conformation and mode of action of HβD3 analogs with various model membranes to mimic bacterial inner and outer membranes and also mammalian membranes. Our studies specifically focused on determining four major characteristics: (i) interaction of HβD3 analogs with phospholipid vesicles composed of zwitterionic PC or anionic PE:PG vesicles and LPS; (ii) conformation of HβD3-peptide analogs in the presence of PC or PE:PG vesicles; (iii) ability of HβD3 analogs to permeate phospholipid vesicles composed of PC or PE:PG; and (iv) activities on bacteria cells and erythrocytes. Our results infer that the linear peptide L25P and its cyclic form C25P are more active than L21P and C21P analogs. However, they are less active than the parent peptide, thus pointing towards the importance of the N terminal domain in its biological activity. The variation in the activities of L21P/C21P and L25P/C25P also suggest the importance of the positively charged residues at the C terminus in providing selectivity particularly to Gram-negative bacteria.
Collapse
Affiliation(s)
- U S Sudheendra
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Vishnu Dhople
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Aritreyee Datta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Rajiv K Kar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Charles E Shelburne
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India.
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
23
|
Bustillo ME, Fischer AL, LaBouyer MA, Klaips JA, Webb AC, Elmore DE. Modular analysis of hipposin, a histone-derived antimicrobial peptide consisting of membrane translocating and membrane permeabilizing fragments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2228-2233. [PMID: 24747525 DOI: 10.1016/j.bbamem.2014.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/01/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022]
Abstract
Antimicrobial peptides continue to garner attention as potential alternatives to conventional antibiotics. Hipposin is a histone-derived antimicrobial peptide (HDAP) previously isolated from Atlantic halibut. Though potent against bacteria, its antibacterial mechanism had not been characterized. The mechanism of this peptide is particularly interesting to consider since the full hipposin sequence contains the sequences of parasin and buforin II (BF2), two other known antimicrobial peptides that act via different antibacterial mechanisms. While parasin kills bacteria by inducing membrane permeabilization, buforin II enters cells without causing significant membrane disruption, harming bacteria through interactions with intracellular nucleic acids. In this study, we used a modular approach to characterize hipposin and determine the role of the parasin and buforin II fragments in the overall hipposin mechanism. Our results show that hipposin kills bacteria by inducing membrane permeabilization, and this membrane permeabilization is promoted by the presence of the N-terminal domain. Portions of hipposin lacking the N-terminal sequence do not cause membrane permeabilization and function more similarly to buforin II. We also determined that the C-terminal portion of hipposin, HipC, is a cell-penetrating peptide that readily enters bacterial cells but has no measurable antimicrobial activity. HipC is the first membrane active histone fragment identified that does not kill bacterial or eukaryotic cells. Together, these results characterize hipposin and provide a useful starting point for considering the activity of chimeric peptides made by combining peptides with different antimicrobial mechanisms. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Maria E Bustillo
- Department of Chemistry, Wellesley College, Wellesley, MA 02481
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | | | - Maria A LaBouyer
- Department of Chemistry, Wellesley College, Wellesley, MA 02481
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | - Julia A Klaips
- Department of Chemistry, Wellesley College, Wellesley, MA 02481
| | - Andrew C Webb
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | - Donald E Elmore
- Department of Chemistry, Wellesley College, Wellesley, MA 02481
| |
Collapse
|
24
|
Hu H, Xiang Q, Liu H, Qu H, Tang X, Xiao X, Zhang Q, Su Z, Huang Y. Expression, purification, and biological activity of the recombinant pramlintide precursor. Appl Microbiol Biotechnol 2014; 98:7837-44. [PMID: 24728756 DOI: 10.1007/s00253-014-5699-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 11/28/2022]
Abstract
Pramlintide is an artificially designed protein which has the same function as amylin in human body. This protein is extremely difficult to synthesize through prokaryotic expression method because of its two essential active sites, intrachain disulfide bond and C-terminal amide group. Since α-amidating monooxygenase is widely distributed in human and animal, it is possible to use pramlintide precursor with an additional C-terminal glycine (PAG), which is the potential substrate of α-amidating monooxygenase, for in vivo applications. The recombinant PAG was expressed in Escherichia coli using the small ubiquitin-related modifier (SUMO) as the molecular chaperone, and the optimal fusion expression level reached to 36.3% of the total supernatant protein. Under optimal conditions in a 10-L fermentor, the recombinant PAG was obtained with a purity of greater than 95%, and the average expression level was reached to 20 mg/L. The authenticity and the intrachain disulfide bridge of PAG were confirmed by Western blotting and matrix-assisted laser desorption/ionization coupled to time-of-flight mass spectrometry (MALDI-TOF MS) as well as N-terminal sequencing of protein. Based on an L6 myoblast cell model in vitro and an animal model of gastric emptying in vivo, the results of activity revealed that PAG showed a lower biological activity in vitro but has almost the same activity as the chemically synthesized pramlintide in vivo.
Collapse
Affiliation(s)
- Hao Hu
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Olli S, Rangaraj N, Nagaraj R. Effect of selectively introducing arginine and D-amino acids on the antimicrobial activity and salt sensitivity in analogs of human beta-defensins. PLoS One 2013; 8:e77031. [PMID: 24086767 PMCID: PMC3785448 DOI: 10.1371/journal.pone.0077031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
We have examined the antimicrobial activity of C-terminal analogs of human β-defensins HBD-1and-3 wherein lysines have been selectively replaced by L- and D-arginines and L-isoleucine substituted with its D-enantiomer. The analogs exhibited antibacterial and antifungal activities. Physiological concentration of NaCl did not attenuate the activity of the peptides against Gram-negative bacteria considerably, while some attenuation of activity was observed against S. aureus. Variable attenuation of activity was observed in the presence of Ca2+ and Mg2+. Introduction of D-amino acids abrogated the need for a disulfide bridge for exhibiting activity. Confocal images of carboxyfluorescein (CF) labeled peptides indicated initial localization on the membrane and subsequent translocation into the cell. Analogs corresponding to cationic rich segments of human defensins substituted with L- and D-arginine, could be attractive candidates for development as future therapeutic drugs.
Collapse
Affiliation(s)
- Sudar Olli
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Nandini Rangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
26
|
Krishnakumari V, Packiyanathan KK, Nagaraj R. Human-β-defensins-1-3 and analogs do not require proton motive force for antibacterial activity against Escherichia coli. FEMS Microbiol Lett 2013; 348:52-7. [PMID: 23980689 DOI: 10.1111/1574-6968.12242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/06/2023] Open
Abstract
Human-β-defensins 1-3 (HBD-1-3) and their C-terminal analogs Phd-1-3 do not show antibacterial activity against Escherichia coli in the presence of mono- and divalent cations. Activity of peptides was examined against E. coli pretreated with carbonyl cyanide m-chlorophenylhydrazone (CCCP) and salt remedial Escherichia coli ftsEX, a deletion mutant of FtsEX complex [an ATP-binding cassette (ABC) transporter protein], in the presence of Na(+), Ca(2+), and Mg(2+). Activity was observed in the presence of Na(+) and Ca(2+), although not in the presence of Mg(2+) against E. coli, when proton motive force (PMF) was dissipated by CCCP. The peptides exhibited antibacterial activity against E. coli ftsEX even in the presence of Na(+) and Ca(2+). Our results indicate that HBD-1-3 and Phd-1-3 do not require PMF for their antibacterial activity. The absence of activity against E. coli in the presence of Na(+) and Ca(2+) ions is due to not only weakened electrostatic interactions with anionic membrane components, but also involvement of electrochemical gradients. However, Mg(2+) prevents electrostatic interaction of the peptides with the outer membrane resulting in loss of activity.
Collapse
|
27
|
Abstract
Cationic and amphiphilic peptides are widely distributed in eukaryotic organisms and constitute a first line of host defense against invading pathogens. Some of these host defense peptides (HDPs) combine specific antibiotic activities with modulation of immune responses. Moreover, they are active against bacteria resistant to conventional antibiotics and show only modest resistance development under in vitro selection pressure. Based on these features, HDPs and particularly defensins are considered a promising source of novel anti-infective agents. This review summarizes the current knowledge about defensins from different kingdoms and discusses their potential for therapeutic application.
Collapse
|
28
|
Subramanian H, Gupta K, Lee D, Bayir AK, Ahn H, Ali H. β-Defensins activate human mast cells via Mas-related gene X2. THE JOURNAL OF IMMUNOLOGY 2013; 191:345-52. [PMID: 23698749 DOI: 10.4049/jimmunol.1300023] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human β-defensins (hBDs) stimulate degranulation in rat peritoneal mast cells in vitro and cause increased vascular permeability in rats in vivo. In this study, we sought to determine whether hBDs activate murine and human mast cells and to delineate the mechanisms of their regulation. hBD2 and hBD3 did not induce degranulation in murine peritoneal or bone marrow-derived mast cells (BMMC) in vitro and had no effect on vascular permeability in vivo. By contrast, these peptides induced sustained Ca(2+) mobilization and substantial degranulation in human mast cells, with hBD3 being more potent. Pertussis toxin (PTx) had no effect on hBD-induced Ca(2+) mobilization, but La(3+) and 2-aminoethoxydiphenyl borate (a dual inhibitor of inositol 1,4,5-triphosphate receptor and transient receptor potential channels) caused substantial inhibition of this response. Interestingly, degranulation induced by hBDs was substantially inhibited by PTx, La(3+), or 2-aminoethoxydiphenyl borate. Whereas human mast cells endogenously express G protein-coupled receptor, Mas-related gene X2 (MrgX2), rat basophilic leukemia, RBL-2H3 cells, and murine BMMCs do not. Silencing the expression of MrgX2 in human mast cells inhibited hBD-induced degranulation, but had no effect on anaphylatoxin C3a-induced response. Furthermore, ectopic expression of MrgX2 in RBL-2H3 and murine BMMCs rendered these cells responsive to hBDs for degranulation. This study demonstrates that hBDs activate human mast cells via MrgX2, which couples to both PTx-sensitive and insensitive signaling pathways most likely involving Gαq and Gαi to induce degranulation. Furthermore, murine mast cells are resistant to hBDs for degranulation, and this reflects the absence of MrgX2 in these cells.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Ayala-Sumuano JT, Téllez-López VM, Domínguez-Robles MDC, Shibayama-Salas M, Meza I. Toll-like receptor signaling activation by Entamoeba histolytica induces beta defensin 2 in human colonic epithelial cells: its possible role as an element of the innate immune response. PLoS Negl Trop Dis 2013; 7:e2083. [PMID: 23469306 PMCID: PMC3585038 DOI: 10.1371/journal.pntd.0002083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
Abstract
Background Entamoeba histolytica, a protozoan parasite of humans, produces dysenteric diarrhea, intestinal mucosa damage and extraintestinal infection. It has been proposed that the intestinal microbiota composition could be an important regulatory factor of amebic virulence and tissue invasion, particularly if pathogenic bacteria are present. Recent in vitro studies have shown that Entamoeba histolytica trophozoites induced human colonic CaCo2 cells to synthesize TLR-2 and TLR-4 and proinflammatory cytokines after binding to the amebic Gal/GalNac lectin carbohydrate recognition domain. The magnitude of the inflammatory response induced by trophozoites and the subsequent cell damage were synergized when cells had previously been exposed to pathogenic bacteria. Methodology/Principal Findings We show here that E. histolytica activation of the classic TLR pathway in CaCo2 cells is required to induce β defensin-2 (HBD2) mRNA expression and production of a 5-kDa cationic peptide with similar properties to the antimicrobial HBD2 expressed by CaCo2 cells exposed to enterotoxigenic Escherichia coli. The induced peptide showed capacity to permeabilize membranes of bacteria and live trophozoites. This activity was abrogated by inhibition of TLR2/4-NFκB pathway or by neutralization with an anti-HBD2 antibody. Conclusions/Significance Entamoeba histolytica trophozoites bind to human intestinal cells and induce expression of HBD2; an antimicrobial molecule with capacity to destroy pathogenic bacteria and trophozoites. HDB2's possible role as a modulator of the course of intestinal infections, particularly in mixed ameba/bacteria infections, is discussed. Entamoeba histolytica ameba/bacteria mixed intestinal infections are common in endemic regions of Amebiasis. Recent investigations support the idea that pathogen interplay in these infections may have a role in invasive disease, activating signals that increase intestinal inflammation. We have studied interactions of amebic trophozoites with human colonic CaCo2 cells, using as positive control pathogenic intestinal bacteria E. coli (ETEC). Both pathogens activated a chain of chemical reactions in the cells that led to production of the antimicrobial peptide β defensin-2 (HBD2), an element of the innate immune response. Pathogen activation of CaCo2 cell response and production of HBD2 were analyzed employing biochemical, cell, molecular biology, and immunology methods. Amebas induced HBD2 via the same classic Toll-receptor signaling pathway activated by ETEC. Amebic-induced HBD2 showed capacity to permeabilize and cause severe damage to bacteria and ameba membranes. Although this study was done in vitro, due to lack of an adequate animal model in which to monitor ameba/bacteria interactions, it provides a new insight into intestinal infections, showing that presence of amebas induces synthesis of elements of an innate immune response that could affect the equilibrium of the intestinal microbiota and modify the course of intestinal infections by other pathogens.
Collapse
Affiliation(s)
- Jorge-Tonatiuh Ayala-Sumuano
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | - Victor M. Téllez-López
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | - M. del Carmen Domínguez-Robles
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | - Mineko Shibayama-Salas
- Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | - Isaura Meza
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
- * E-mail:
| |
Collapse
|
31
|
Mitchell C, Gottsch ML, Liu C, Fredricks DN, Nelson DB. Associations between vaginal bacteria and levels of vaginal defensins in pregnant women. Am J Obstet Gynecol 2013; 208:132.e1-7. [PMID: 23174285 DOI: 10.1016/j.ajog.2012.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/26/2012] [Accepted: 11/14/2012] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We evaluated vaginal defensin concentrations and levels of bacterial vaginosis-associated bacterial species in pregnant women. STUDY DESIGN Self-collected vaginal swabs from 2 visits during pregnancy were tested with quantitative polymerase chain reaction for 9 bacterial species. Beta defensins 2-3 and alpha defensins 1-3 were measured by enzyme-linked immunosorbent assay. RESULTS Our 126 participants were primarily African American (60%), had a mean gestational age at enrollment of 10 ± 3 weeks and at follow-up visit of 25 ± 6 weeks. At enrollment, the prevalence of bacterial vaginosis was 74% (94/126 women), which decreased to 60% (75/126 specimens) at follow-up visit. At enrollment, beta defensin 3 concentrations were significantly lower in women with bacterial vaginosis (2.64 ± 0.91 vs 3.25 ± 0.99 log(10) pg/mL; P = .003). Higher concentrations of Atopobium vaginae, bacterial vaginosis-associated bacteria1 and 2 were associated with significantly lower concentrations of beta defensin 3 (P < .01). CONCLUSION Bacterial vaginosis was associated with lower vaginal concentrations of beta defensin 3, but not beta defensin 2 or alpha defensins 1-3, in pregnant women.
Collapse
|
32
|
Chimeric beta-defensin analogs, including the novel 3NI analog, display salt-resistant antimicrobial activity and lack toxicity in human epithelial cell lines. Antimicrob Agents Chemother 2013; 57:1701-8. [PMID: 23357761 DOI: 10.1128/aac.00934-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human beta-defensins (hBDs) are crucial peptides for the innate immune response and are thus prime candidates as therapeutic agents directed against infective diseases. Based on the properties of wild-type hBD1 and hBD3 and of previously synthesized analogs (1C, 3I, and 3N), we have designed a new analog, 3NI, and investigated its potential as an antimicrobial drug. Specifically, we evaluated the antimicrobial activities of 3NI versus those of hBD1, hBD3, 1C, 3I, and 3N. Our results show that 3NI exerted greater antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis than did hBD1 and hBD3, even with elevated salt concentrations. Moreover, its antiviral activity against herpes simplex virus 1 was greater than that of hBD1 and similar to that of hBD3. Subsequently, we investigated the cytotoxic effects of all peptides in three human epithelial carcinoma cell lines: A549 from lung, CaCo-2 from colon, and Capan-1 from pancreas. None of the analogs significantly reduced cell viability versus wild-type hBD1 and hBD3. They did not induce genotoxicity or cause an increase in the number of apoptotic cells. Using confocal microscopy, we also investigated the localization of the peptides during their incubation with epithelial cells and found that they were distributed on the cell surface, from which they were internalized. Finally, we show that hBD1 and hBD3 are characterized by high resistance to serum degradation. In conclusion, the new analog 3NI seems to be a promising anti-infective agent, particularly given its high salt resistance--a feature that is relevant in diseases such as cystic fibrosis.
Collapse
|
33
|
Sharma H, Nagaraj R. Antimicrobial activity of human β-defensin 4 analogs: insights into the role of disulfide linkages in modulating activity. Peptides 2012; 38:255-65. [PMID: 23000475 DOI: 10.1016/j.peptides.2012.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 02/08/2023]
Abstract
Human β-defensins (HBDs) are cationic antimicrobial peptides that are components of the innate immune system. They are characterized by three disulfide bridges. However, the number of cationic residues as well as the presence of lysine and arginine residues vary. In HBD4, the cationic residues occur predominantly in the N-terminal segment, unlike in HBD1-3. We have examined the antimicrobial activity of peptides spanning the N- and C-terminal segments of HBD4. We have introduced one, two and three disulfide bridges in the peptides corresponding to the N-terminal segments. Peptides corresponding to the N-terminal segment had identical sequences and variation was only in the number and spacing of cysteines and disulfide bridges. Antimicrobial activity to varying extents was observed for all the peptides. When two disulfide bridges were present, decrease in antimicrobial potency as well as sensitivity of activity to salt was observed. Enhanced antimicrobial activity was observed when three disulfide bridges were present. The antimicrobial potency was similar to HBD4 except against Escherichia coli and was attenuated in the presence of salt. While the presence of three disulfide bridges did not constrain the peptide to a rigid β-sheet, the activity was considerably more as compared to the peptides with one or two disulfide bridges. The peptides enter bacterial and fungal cells rapidly without membrane permeabilization and appear to exert their activity inside the cells rather than at the membrane.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
34
|
Spudy B, Sönnichsen FD, Waetzig GH, Grötzinger J, Jung S. Identification of structural traits that increase the antimicrobial activity of a chimeric peptide of human β-defensins 2 and 3. Biochem Biophys Res Commun 2012; 427:207-11. [PMID: 22995312 DOI: 10.1016/j.bbrc.2012.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Antimicrobial peptides participate in the first line of defence of many organisms against pathogens. In humans, the family of β-defensins plays a pivotal role in innate immunity. Two human β-defensins, β-defensin-2 and -3 (HBD2 and HBD3), show substantial sequence identity and structural similarity. However, HBD3 kills Staphylococcus (S.) aureus with a 4- to 8-fold higher efficiency compared to HBD2, whereas their activities against Escherichia (E.) coli are very similar. The generation of six HBD2/HBD3-chimeric molecules led to the identification of distinct molecular regions which mediate their divergent killing properties. One of the chimeras (chimera C3) killed both E. coli and S. aureus with an even higher efficacy compared to the wild-type molecules. Due to the broad spectrum of its antimicrobial activity against many human multidrug-resistant pathogens, this HBD2/HBD3-chimeric peptide represents a promising candidate for a new class of antibiotics. In order to investigate the structural basis of its exceptional antimicrobial activity, the peptide's tertiary structure was determined by NMR spectroscopy, which allowed its direct comparison to the published structures of HBD2 and HBD3 and the identification of the activity-increasing molecular features.
Collapse
Affiliation(s)
- Björn Spudy
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
35
|
Hugo AA, Tymczyszyn EE, Gómez-Zavaglia A, Pérez PF. Effect of human defensins on lactobacilli and liposomes. J Appl Microbiol 2012; 113:1491-7. [PMID: 22905671 DOI: 10.1111/j.1365-2672.2012.05433.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/13/2012] [Accepted: 08/14/2012] [Indexed: 12/14/2022]
Abstract
AIMS To study the effect of human β-defensins (HBD-1 and HBD-2) on lactobacilli membranes as well as on liposomes prepared from purified bacterial lipids. METHODS AND RESULTS Lactobacillus delbrueckii subsp. bulgaricus CIDCA 331 and Lact. delbrueckii subsp. lactis CIDCA 133 were grown in Man, Rogosa, Sharpe broth for 16 h at 37 °C. After being washed, micro-organisms were treated with 0.1-10 μg ml(-1) of HBD-1 and HBD-2 (30 min, 37 °C). Bacterial damage was determined by flow cytometry after propidium iodide staining. In parallel experiments, release of carboxyfluorescein from liposomes prepared from bacterial lipids was determined fluorometrically (excitation 485/20 nm, emission 528/20 nm) in the presence of HBD-1, HBD-2 or Nisin. Exposure of lactobacilli to HBD-2 resulted in a significant membrane permeabilization being Lact. delbrueckii subsp. bulgaricus CIDCA 331 the most susceptible strain. Liposomes prepared with lipids from strain CIDCA 133 were destabilized neither by HBD-1 nor by HBD-2, whereas liposomes derived from strain CIDCA 331 were susceptible to HBD-2 but not to HBD-1. Effect of defensins was strongly inhibited in the presence of NaCl, and the activity increased in water. CONCLUSIONS Results reported in the presented work indicate that lipid composition of bacterial membranes lead to a different interaction with cationic peptides such as defensins. SIGNIFICANCE AND IMPACT OF THE STUDY The results represent an advance in the understanding of the differential effect of HBDs on micro-organisms. Differences in susceptibility to anti-microbial peptides could modify the fate of micro-organisms after the interaction with host's cells.
Collapse
Affiliation(s)
- A A Hugo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Conicet La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | |
Collapse
|
36
|
Zhang M, Qiu Z, Li Y, Yang Y, Zhang Q, Xiang Q, Su Z, Huang Y. Construction and characterization of a recombinant human beta defensin 2 fusion protein targeting the epidermal growth factor receptor: in vitro study. Appl Microbiol Biotechnol 2012; 97:3913-23. [DOI: 10.1007/s00253-012-4257-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/04/2023]
|
37
|
Binding of peptides corresponding to the carboxy-terminal region of human-β-defensins-1–3 with model membranes investigated by isothermal titration calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1386-94. [DOI: 10.1016/j.bbamem.2012.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/27/2012] [Accepted: 02/15/2012] [Indexed: 12/23/2022]
|
38
|
Schlusselhuber M, Jung S, Bruhn O, Goux D, Leippe M, Leclercq R, Laugier C, Grötzinger J, Cauchard J. In vitro potential of equine DEFA1 and eCATH1 as alternative antimicrobial drugs in rhodococcosis treatment. Antimicrob Agents Chemother 2012; 56:1749-55. [PMID: 22232283 PMCID: PMC3318344 DOI: 10.1128/aac.05797-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/30/2011] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi, the causal agent of rhodococcosis, is a severe pathogen of foals but also of immunodeficient humans, causing bronchopneumonia. The pathogen is often found together with Klebsiella pneumoniae or Streptococcus zooepidemicus in foals. Of great concern is the fact that some R. equi strains are already resistant to commonly used antibiotics. In the present study, we evaluated the in vitro potential of two equine antimicrobial peptides (AMPs), eCATH1 and DEFA1, as new drugs against R. equi and its associated pathogens. The peptides led to growth inhibition and death of R. equi and S. zooepidemicus at low micromolar concentrations. Moreover, eCATH1 was able to inhibit growth of K. pneumoniae. Both peptides caused rapid disruption of the R. equi membrane, leading to cell lysis. Interestingly, eCATH1 had a synergic effect together with rifampin. Furthermore, eCATH1 was not cytotoxic against mammalian cells at bacteriolytic concentrations and maintained its high killing activity even at physiological salt concentrations. Our data suggest that equine AMPs, especially eCATH1, may be promising candidates for alternative drugs to control R. equi in mono- and coinfections.
Collapse
Affiliation(s)
- Margot Schlusselhuber
- Bacteriology and Parasitology Unit, Dozulé Laboratory for Equine Diseases, ANSES, Goustranville, Dozulé, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jung S, Sönnichsen FD, Hung CW, Tholey A, Boidin-Wichlacz C, Haeusgen W, Gelhaus C, Desel C, Podschun R, Waetzig V, Tasiemski A, Leippe M, Grötzinger J. Macin family of antimicrobial proteins combines antimicrobial and nerve repair activities. J Biol Chem 2012; 287:14246-58. [PMID: 22396551 DOI: 10.1074/jbc.m111.336495] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tertiary structures of theromacin and neuromacin confirmed the macin protein family as a self-contained family of antimicrobial proteins within the superfamily of scorpion toxin-like proteins. The macins, which also comprise hydramacin-1, are antimicrobially active against Gram-positive and Gram-negative bacteria. Despite high sequence identity, the three proteins showed distinct differences with respect to their biological activity. Neuromacin exhibited a significantly stronger capacity to permeabilize the cytoplasmic membrane of Bacillus megaterium than theromacin and hydramacin-1. Accordingly, it is the only macin that displays pore-forming activity and that was potently active against Staphylococcus aureus. Moreover, neuromacin and hydramacin-1 led to an aggregation of bacterial cells that was not observed with theromacin. Analysis of the molecular surface properties of macins allowed confirmation of the barnacle model as the mechanistic model for the aggregation effect. Besides being antimicrobially active, neuromacin and theromacin, in contrast to hydramacin-1, were able to enhance the repair of leech nerves ex vivo. Notably, all three macins enhanced the viability of murine neuroblastoma cells, extending their functional characteristics. As neuromacin appears to be both a functional and structural chimera of hydramacin-1 and theromacin, the putative structural correlate responsible for the nerve repair capacity in leech was located to a cluster of six amino acid residues using the sequence similarity of surface-exposed regions.
Collapse
Affiliation(s)
- Sascha Jung
- Institute of Biochemistry, Zoophysiology, Christian Albrechts University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li P, Li X, Saravanan R, Li CM, Leong SSJ. Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv 2012. [DOI: 10.1039/c2ra01297a] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Brogden NK, Brogden KA. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 2011; 38:217-25. [PMID: 21733662 DOI: 10.1016/j.ijantimicag.2011.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
The concept of antimicrobial peptides (AMPs) as potent pharmaceuticals is firmly established in the literature, and most research articles on this topic conclude by stating that AMPs represent promising therapeutic agents against bacterial and fungal pathogens. Indeed, early research in this field showed that AMPs were diverse in nature, had high activities with low minimal inhibitory concentrations, had broad spectrums of activity against bacterial, fungal and viral pathogens, and could easily be manipulated to alter their specificities, reduce their cytotoxicities and increase their antimicrobial activities. Unfortunately, commercial development of these peptides, for even the simplest of applications, has been very limited. With some peptides there are obstacles with their manufacture, in vivo efficacy and in vivo retention. More recently, the focus has shifted. Contemporary research now uses a more sophisticated approach to develop AMPs that surmount many of these prior obstacles. AMP mimetics, hybrid AMPs, AMP congeners, cyclotides and stabilised AMPs, AMP conjugates and immobilised AMPs have all emerged with selective or 'targeted' antimicrobial activities, improved retention, or unique abilities that allow them to bind to medical or industrial surfaces. These groups of new peptides have creative medical and industrial application potentials to treat antibiotic-resistant bacterial infections and septic shock, to preserve food or to sanitise surfaces both in vitro and in vivo.
Collapse
Affiliation(s)
- Nicole K Brogden
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
42
|
Wilmes M, Cammue BPA, Sahl HG, Thevissen K. Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 2011; 28:1350-8. [PMID: 21617811 DOI: 10.1039/c1np00022e] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defensins are small basic amphiphilic peptides (up to 5 kDa) that have been shown to be important effector molecules of the innate immune system of animals, plants and fungi. In addition to immune modulatory functions, they have potent direct antimicrobial activity against a broad spectrum of bacteria, fungi and/or viruses, which makes them promising lead compounds for the development of next-generation antiinfectives. The mode of antibiotic action of defensins was long thought to result from electrostatic interaction between the positively charged defensins and negatively charged microbial membranes, followed by unspecific membrane permeabilization or pore-formation. Microbial membranes are more negatively charged than human membranes, which may explain to some extent the specificity of defensin action against microbes and associated low toxicity for the host. However, research during the past decade has demonstrated that defensin activities can be much more targeted and that microbe-specific lipid receptors are involved in the killing activity of various defensins. In this respect, human, fungal and invertebrate defensins have been shown to bind to and sequester the bacterial cell wall building block lipid II, thereby specifically inhibiting cell wall biosynthesis. Moreover, plant and insect defensins were found to interact with fungal sphingolipid receptors, resulting in fungal cell death. This review summarizes the current knowledge on the mode of action and structure of defensins from different kingdoms, with specific emphasis on their interaction with microbial lipid receptors.
Collapse
Affiliation(s)
- Miriam Wilmes
- Institute of Medical Microbiology, Immunology and Parasitology - Pharmaceutical Microbiology Section, University of Bonn, Meckenheimer Allee 168. 53115, Bonn. Germany
| | | | | | | |
Collapse
|