1
|
Wang M, Liao Z, Zhangsun D, Wu Y, Luo S. Engineering Enhanced Antimicrobial Properties in α-Conotoxin RgIA through D-Type Amino Acid Substitution and Incorporation of Lysine and Leucine Residues. Molecules 2024; 29:1181. [PMID: 38474693 DOI: 10.3390/molecules29051181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Antimicrobial peptides (AMPs), acknowledged as host defense peptides, constitute a category of predominant cationic peptides prevalent in diverse life forms. This study explored the antibacterial activity of α-conotoxin RgIA, and to enhance its stability and efficacy, D-amino acid substitution was employed, resulting in the synthesis of nine RgIA mutant analogs. Results revealed that several modified RgIA mutants displayed inhibitory efficacy against various pathogenic bacteria and fungi, including Candida tropicalis and Escherichia coli. Mechanistic investigations elucidated that these polypeptides achieved antibacterial effects through the disruption of bacterial cell membranes. The study further assessed the designed peptides' hemolytic activity, cytotoxicity, and safety. Mutants with antibacterial activity exhibited lower hemolytic activity and cytotoxicity, with Pep 8 demonstrating favorable safety in mice. RgIA mutants incorporating D-amino acids exhibited notable stability and adaptability, sustaining antibacterial properties across diverse environmental conditions. This research underscores the potential of the peptide to advance innovative oral antibiotics, offering a novel approach to address bacterial infections.
Collapse
Affiliation(s)
- Minghe Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Zhouyuji Liao
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Yong Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Sharma A, Rashid M, Chauhan P, Kaur S, Kaur A. In vitro antibacterial and anti-biofilm potential of an endophytic Schizophyllum commune. AMB Express 2024; 14:10. [PMID: 38245627 PMCID: PMC10799838 DOI: 10.1186/s13568-024-01663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024] Open
Abstract
The emergence of antibiotic resistance in pathogens is one of the major health concerns facing mankind as different bacterial strains have developed resistance to antibiotics over the period of time due to overuse and misuse of antibiotics. Besides this, ability to form biofilms is another major factor contributing to antibiotic resistance, which has necessitated the need for exploration for novel and effective compounds with ability to inhibit biofilm formation. Endophytic fungi are reported to exhibit antibacterial and anti-biofilm potential and could serve as a potent source of novel antibacterial compounds. Majority of the bioactivities have been reported from fungi belonging to phylum Ascomycota. Endophytic basidiomycetes, inspite of their profound ability to serve as a source of bioactive compounds have not been exploited extensively. In present study, an attempt was made to assess the antibacterial, anti-biofilm and biofilm dispersion potential of an endophytic basidiomycetous fungus Schizophyllum commune procured from the culture collection of our lab. Ethyl acetate extract of S. commune showed good antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica and Vibrio cholerae. Minimum inhibitory concentration and minimum bactericidal concentration of the extract were in the range of 1.25-10 mg/ml against the tested bacterial pathogens. The mode of action was determined to be bactericidal which was further confirmed by time kill studies. Good anti-biofilm activity of S. commune extract was recorded against K. pneumoniae and S. enterica, which was further validated by fluorescence microscopy. The present study highlights the importance of endophytic basidiomycetes as source of therapeutic compounds.
Collapse
Affiliation(s)
- Avinash Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pooja Chauhan
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
3
|
Yuan S, Shen DD, Bai YR, Zhang M, Zhou T, Sun C, Zhou L, Wang SQ, Liu HM. Oxazolidinone: A promising scaffold for the development of antibacterial drugs. Eur J Med Chem 2023; 250:115239. [PMID: 36893700 DOI: 10.1016/j.ejmech.2023.115239] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Due to the long-term and widespread use of antibiotics in clinic, the problem of bacterial resistance is increasingly serious, and the development of new drugs to treat drug-resistant bacteria has gradually become the mainstream direction of antibiotic research. The oxazolidinone-containing drugs linezolid, tedizolid phosphate and contezolid have been approved to the market, which are effective against a variety of Gram-positive bacterium infections. Moreover, there are also many antibiotics containing oxazolidinone fragment under clinical investigation that show good pharmacokinetic and pharmacodynamic properties with unique mechanism of action against resistant bacteria. In this review, we summarized the oxazolidinone-based antibiotics already on the market or in clinical trials and the representative bioactive molecules, and mainly focused on their structural optimizations, development strategies and structure-activity relationships in hope of insight into the reasonable design for medical chemists to develop new oxazolidinone antibiotics with highly potency and fewer side effects.
Collapse
Affiliation(s)
- Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Miao Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Tian Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Chong Sun
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Sai-Qi Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, 450008, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Buckley ME, Ndukwe ARN, Nair PC, Rana S, Fairfull-Smith KE, Gandhi NS. Comparative Assessment of Docking Programs for Docking and Virtual Screening of Ribosomal Oxazolidinone Antibacterial Agents. Antibiotics (Basel) 2023; 12:463. [PMID: 36978331 PMCID: PMC10044086 DOI: 10.3390/antibiotics12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Oxazolidinones are a broad-spectrum class of synthetic antibiotics that bind to the 50S ribosomal subunit of Gram-positive and Gram-negative bacteria. Many crystal structures of the ribosomes with oxazolidinone ligands have been reported in the literature, facilitating structure-based design using methods such as molecular docking. It would be of great interest to know in advance how well docking methods can reproduce the correct ligand binding modes and rank these correctly. We examined the performance of five molecular docking programs (AutoDock 4, AutoDock Vina, DOCK 6, rDock, and RLDock) for their ability to model ribosomal-ligand interactions with oxazolidinones. Eleven ribosomal crystal structures with oxazolidinones as the ligands were docked. The accuracy was evaluated by calculating the docked complexes' root-mean-square deviation (RMSD) and the program's internal scoring function. The rankings for each program based on the median RMSD between the native and predicted were DOCK 6 > AD4 > Vina > RDOCK >> RLDOCK. Results demonstrate that the top-performing program, DOCK 6, could accurately replicate the ligand binding in only four of the eleven ribosomes due to the poor electron density of said ribosomal structures. In this study, we have further benchmarked the performance of the DOCK 6 docking algorithm and scoring in improving virtual screening (VS) enrichment using the dataset of 285 oxazolidinone derivatives against oxazolidinone binding sites in the S. aureus ribosome. However, there was no clear trend between the structure and activity of the oxazolidinones in VS. Overall, the docking performance indicates that the RNA pocket's high flexibility does not allow for accurate docking prediction, highlighting the need to validate VS. protocols for ligand-RNA before future use. Later, we developed a re-scoring method incorporating absolute docking scores and molecular descriptors, and the results indicate that the descriptors greatly improve the correlation of docking scores and pMIC values. Morgan fingerprint analysis was also used, suggesting that DOCK 6 underpredicted molecules with tail modifications with acetamide, n-methylacetamide, or n-ethylacetamide and over-predicted molecule derivatives with methylamino bits. Alternatively, a ligand-based approach similar to a field template was taken, indicating that each derivative's tail groups have strong positive and negative electrostatic potential contributing to microbial activity. These results indicate that one should perform VS. campaigns of ribosomal antibiotics with care and that more comprehensive strategies, including molecular dynamics simulations and relative free energy calculations, might be necessary in conjunction with VS. and docking.
Collapse
Affiliation(s)
- McKenna E. Buckley
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Audrey R. N. Ndukwe
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Pramod C. Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
- Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA 5042, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA 5000, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Santu Rana
- Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, VIC 3220, Australia
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Neha S. Gandhi
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
5
|
Zhao J, Ge G, Huang Y, Hou Y, Hu SQ. Butelase 1-Mediated Enzymatic Cyclization of Antimicrobial Peptides: Improvements on Stability and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15869-15878. [PMID: 36471508 DOI: 10.1021/acs.jafc.2c06588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) have broad-spectrum antibacterial properties and safety as food preservatives, whereas the stability and antibacterial activity require improvement. Here, the "head-to-tail" cyclization of linear AMP GKE was catalyzed by butelase 1, which resulted in an improved pronouncedly antibacterial effect. Cell morphology and propidium iodide uptake revealed that the increased membrane permeability was one of the bacteriostatic mechanisms of GKE and could be enhanced after cyclization. As cyclic GKE (cGKE) exhibited more stability than the linear counterpart under the microorganism culture environment, the increase in effective bacteriostatic concentration should be a reason for the superior antibacterial effect. Moreover, cGKE exhibited the ordered secondary structure, while GKE possessed a similar structure only in sodium dodecyl sulfate micelles. The structure was also beneficial to improve the antibacterial activity caused by the increased affinity of cGKE to the membranes. Overall, butelase 1-mediated cyclization is a promising strategy for enhancing the antibacterial activity of linear AMPs.
Collapse
Affiliation(s)
- Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ge Ge
- Beijing Food Safety Monitoring and Risk Assessment Center, Beijing 100094, China
| | - Yanbo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Ndukwe ARN, Wiedbrauk S, Boase NRB, Fairfull‐Smith KE. Strategies to Improve the Potency of Oxazolidinones towards Bacterial Biofilms. Chem Asian J 2022; 17:e202200201. [PMID: 35352479 PMCID: PMC9321984 DOI: 10.1002/asia.202200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years. They have a unique mechanism of action and only develop low levels of resistance in the clinical setting. With the aim of providing insight into strategies to design more potent antibiotic compounds with activity against bacterial biofilms, we review the biofilm activity of clinically approved oxazolidinones and report on structural modifications to oxazolidinones and their delivery systems which lead to enhanced anti-biofilm activity.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Kathryn E. Fairfull‐Smith
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| |
Collapse
|
7
|
Antibacterial mechanisms of bacteriocin BM1157 against Escherichia coli and Cronobacter sakazakii. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Qiao Z, Chen J, Zhou Q, Wang X, Shan Y, Yi Y, Liu B, Zhou Y, Lü X. Purification, characterization, and mode of action of a novel bacteriocin BM173 from Lactobacillus crustorum MN047 and its effect on biofilm formation of Escherichia coli and Staphylococcus aureus. J Dairy Sci 2020; 104:1474-1483. [PMID: 33246623 DOI: 10.3168/jds.2020-18959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023]
Abstract
There is an increasing demand for dairy products, but the presence of food-spoilage bacteria seriously affects the development of the dairy industry. Bacteriocins are considered to be a potential antibacterial or antibiofilm agent that can be applied as a preservative. In this study, bacteriocin BM173 was successfully expressed in the Escherichia coli expression system and purified by a 2-step method. Furthermore, it exhibited a broad-spectrum antibacterial activity, high thermal stability (121°C, 20 min), and broad pH stability (pH 3-11). Moreover, the minimum inhibitory concentration values of BM173 against E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923 were 14.8 μg/mL and 29.6 μg/mL, respectively. Growth and time-kill curves showed that BM173 exhibited antibacterial and bactericidal activity. The results of scanning electron microscopy and transmission electron microscopy demonstrated that BM173 increased membrane permeability, facilitated pore formation, and even promoted cell lysis. The disruption of cell membrane integrity was further verified by propidium iodide uptake and lactic dehydrogenase release. In addition, BM173 exhibited high efficiency in inhibiting biofilm formation. Therefore, BM173 has promising potential as a preservative used in the dairy industry.
Collapse
Affiliation(s)
- Zhu Qiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jiaxin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Qiaqia Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
9
|
Sharma P, Rashid M, Kaur S. Novel enterocin E20c purified from Enterococcus hirae 20c synergised with ß-lactams and ciprofloxacin against Salmonella enterica. Microb Cell Fact 2020; 19:98. [PMID: 32366243 PMCID: PMC7197179 DOI: 10.1186/s12934-020-01352-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background An increasing rate of antibiotic resistance among Gram-negative bacterial pathogens has created an urgent need to discover novel therapeutic agents to combat infectious diseases. Use of bacteriocins as therapeutic agents has immense potential due to their high potency and mode of action different from that of conventional antibiotics. Results In this study, a novel bacteriocin E20c of molecular weight 6.5 kDa was purified and characterized from the probiotic strain of Enterococcus hirae. E20c had bactericidal activities against several multidrug resistant (MDR) Gram-negative bacterial pathogens. Flow cytometry and scanning electron microscopy studies showed that it killed the Salmonella enterica cells by forming ion-permeable channels in the cell membrane leading to enhanced cell membrane permeability. Further, checkerboard titrations showed that E20c had synergistic interaction with antibiotics such as ampicillin, penicillin, ceftriaxone, and ciprofloxacin against a ciprofloxacin- and penicillin-resistant strain of S. enterica. Conclusion Thus, this study shows the broad spectrum antimicrobial activity of novel enterocin E20c against various MDR pathogens. Further, it highlights the importance of bacteriocins in lowering the minimum inhibitory concentrations of conventional antibiotics when used in combination.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
10
|
Hou Y, Dong Y, Ye T, Jiang J, Ding L, Qin M, Ding X, Zhao Y. Synthesis and antibacterial evaluation of novel oxazolidinone derivatives containing a piperidinyl moiety. Bioorg Med Chem Lett 2019; 29:126746. [PMID: 31676225 DOI: 10.1016/j.bmcl.2019.126746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
In this article, a series of novel oxazolidinone derivatives containing a piperidinyl moiety was designed and synthesized. Their antibacterial activities were measured against S. aureus, MRSA, MSSA, LREF and VRE by MIC assay. Most of them exhibited potent activity against Gram-positive pathogens comparable to linezolid. Among them, compound 9h exhibited comparable activity with linezolid against human MAO-A for safety evaluation and showed moderate metabolism in human liver microsome. The most promising compound 9h, which showed remarkable antibacterial activity against S. aureus, MRSA, MSSA, LREF and VRE pathogens with MIC value of 0.25-1 μg/mL, was an interesting candidate for further investigation.
Collapse
Affiliation(s)
- Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yuhong Dong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Tianyu Ye
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Jia Jiang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Liang Ding
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Mingze Qin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Xiudong Ding
- Department of Clinical Laboratory, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| |
Collapse
|
11
|
Kalhoro MS, Visessanguan W, Nguyen LT, Anal AK. Probiotic potential of
Lactobacillus paraplantarum
BT‐11 isolated from raw buffalo (
Bubalus bubalis
) milk and characterization of bacteriocin‐like inhibitory substance produced. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Muhammad Saleem Kalhoro
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources Asian Institute of Technology Pathumthani Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC) National Science and Technology Development Agency (NSTDA) Pathumthani Thailand
| | - Loc Thai Nguyen
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources Asian Institute of Technology Pathumthani Thailand
| | - Anil Kumar Anal
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources Asian Institute of Technology Pathumthani Thailand
| |
Collapse
|
12
|
Nitrofurantoin-Microbial Degradation and Interactions with Environmental Bacterial Strains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091526. [PMID: 31052168 PMCID: PMC6539117 DOI: 10.3390/ijerph16091526] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
The continuous exposure of living organisms and microorganisms to antibiotics that have increasingly been found in various environmental compartments may be perilous. One group of antibacterial agents that have an environmental impact that has been very scarcely studied is nitrofuran derivatives. Their representative is nitrofurantoin (NFT)-a synthetic, broad-spectrum antibiotic that is often overdosed. The main aims of the study were to: (a) isolate and characterize new microbial strains that are able to grow in the presence of NFT, (b) investigate the ability of isolates to decompose NFT, and (c) study the impact of NFT on microbial cell properties. As a result, five microbial species were isolated. A 24-h contact of bacteria with NFT provoked modifications in microbial cell properties. The greatest differences were observed in Sphingobacterium thalpophilum P3d, in which a decrease in both total and inner membrane permeability (from 86.7% to 48.3% and from 0.49 to 0.42 µM min-1) as well as an increase in cell surface hydrophobicity (from 28.3% to 39.7%) were observed. Nitrofurantoin removal by selected microbial cultures ranged from 50% to 90% in 28 days, depending on the bacterial strain. Although the isolates were able to decompose the pharmaceutical, its presence significantly affected the bacterial cells. Hence, the environmental impact of NFT should be investigated to a greater extent.
Collapse
|
13
|
Yi L, Li X, Luo L, Lu Y, Yan H, Qiao Z, Lü X. A novel bacteriocin BMP11 and its antibacterial mechanism on cell envelope of Listeria monocytogenes and Cronobacter sakazakii. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Synthesis and Biological Evaluation of Pyrimidine-oxazolidin-2-arylimino Hybrid Molecules as Antibacterial Agents. Molecules 2018; 23:molecules23071754. [PMID: 30018259 PMCID: PMC6099984 DOI: 10.3390/molecules23071754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022] Open
Abstract
Pyrimidine-1,3-oxazolidin-2-arylimino hybrids have been synthesized as a new class of antibacterial agents. The synthetic approach exploits a Cu(II)-catalyzed intramolecular halkoxyhalogenation of alkynyl ureas, followed by a Suzuki coupling reaction with 2,4-dimethoxypyrimidin-5-boronic acid. Biological screenings revealed that most of the compounds showed moderate to good activity against two Gram-positive (B. subtilis, S. aureus) and three Gram-negative (P. aeruginosa, S. typhi, K. pneumonia) pathogenic strains. A molecular docking study, performed in the crystal structure of 50S ribosomal unit of Haloarcula marismortui, indicated that pyrimidine-oxazolidin-2-arylimino hybrids 8c and 8h exhibited a high binding affinity (−9.65 and −10.74 kcal/mol), which was in agreement with their good antibacterial activity. The obtained results suggest that the combination of pyrimidine and oxazolidone moieties can be considered as a valid basis to develop new further modifications towards more efficacious antibacterial compounds.
Collapse
|
15
|
Yi L, Luo L, Lü X. Efficient Exploitation of Multiple Novel Bacteriocins by Combination of Complete Genome and Peptidome. Front Microbiol 2018; 9:1567. [PMID: 30057579 PMCID: PMC6053492 DOI: 10.3389/fmicb.2018.01567] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Backgroud: The growing emergence of antibiotic-resistant pathogens including the most dangerous superbugs requires quick discovery of novel antibiotics/biopreservatives for human health and food safety. Bacteriocins, a subgroup of antimicrobial peptides, have been considered as promising alternatives to antibiotics. Abundant novel bacteriocins are stored in genome sequences of lactic acid bacteria. However, discovery of novel bacteriocins still mainly relies on dubious traditional purification with low efficiency. Moreover, sequence alignment is invalid for novel bacteriocins which have no homology to known bacteriocins in databases. Therefore, an efficient, simple, universal, and time-saving method was needed to discover novel bacteriocins. Methods and Results: Crude bacteriocins from both cell-related and culture supernatant of Lactobacillus crustorum MN047 fermentation were applied to LC-MS/MS for peptidome assay, by which 131 extracellular peptides or proteins were identified in the complete genome sequence of L. crustorum MN047. Further, the genes of suspected bacteriocins were verified by expressed in Escherichia coli BL21 (DE3) pLysS. Thereafter, eight novel bacteriocins and two nonribosomal antimicrobial peptides were identified to be broad-spectrum activity against both Gram-positive and Gram-negative bacteria, including some multidrug-resistant strains. Among them, BM1556 located within predicted bacteriocin gene cluster. The most active bacteriocin BM1122 had low MIC values of 13.7 mg/L against both Staphylococcus aureus ATCC29213 and E. coli ATCC25922. The BM1122 had bactericidal action mode by biofilm-destruction, pore-formation, and membrane permeability change. Conclusions: The combination of complete genome and peptidome is a valid approach for quick discovery of novel bacteriocins without/with-low homology to known ones. This method will contribute to deep exploitation of novel bacteriocins in genome of bacteria submitted to GenBank.
Collapse
Affiliation(s)
- Lanhua Yi
- Department of Food Nutrition and Safety, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Department of Food Nutrition and Safety, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Department of Food Nutrition and Safety, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Yi L, Luo L, Lü X. Heterologous expression of two novel bacteriocins produced by Lactobacillus crustorum MN047 and application of BM1157 in control of Listeria monocytogenes. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Xu B, Ding X, Wu Y, Cui L, Qian P, Wang D, Zhao Y. Synthesis and antibacterial activity of oxazolidinone derivatives containing nitro heteroaromatic moiety. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7302-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Igarashi M, Ishizaki Y, Takahashi Y. New antituberculous drugs derived from natural products: current perspectives and issues in antituberculous drug development. J Antibiot (Tokyo) 2017; 71:ja2017126. [PMID: 29089593 DOI: 10.1038/ja.2017.126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Tuberculosis is one of the most common and challenging infectious diseases worldwide. Especially, the lack of effective chemotherapeutic drugs for tuberculosis/human immunodeficiency virus co-infection and prevalence of multidrug-resistant and extensively drug-resistant tuberculosis remain to be serious clinical problems. Development of new drugs is a potential solution to fight tuberculosis. In this decade, the development status of new antituberculous drugs has been greatly advanced by the leading role of international organizations such as the Global Alliance for Tuberculosis Drug Development, Stop Tuberculosis Partnership and Global Health Innovative Technology Fund. In this review, we introduce the development status of new drugs for tuberculosis, focusing on those derived from natural products.The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.126.
Collapse
|
19
|
In Vitro Activities of LCB 01-0648, a Novel Oxazolidinone, against Gram-Positive Bacteria. Molecules 2017; 22:molecules22030394. [PMID: 28273820 PMCID: PMC6155267 DOI: 10.3390/molecules22030394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/21/2017] [Accepted: 03/02/2017] [Indexed: 12/05/2022] Open
Abstract
Oxazolidinones are a novel class of synthetic antibacterial agents that inhibit bacterial protein synthesis. Here, we synthesized and tested a series of oxazolidinone compounds containing cyclic amidrazone. Among these compounds, we further investigated the antibacterial activities of LCB01-0648 against drug-susceptible or resistant Gram-positive cocci in comparison with those of six reference compounds. LCB01-0648 showed the most potent antimicrobial activities against clinically isolated Gram-positive bacteria. Against the methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCNS) isolates, LCB01-0648 showed the lowest MIC90s (0.5 mg/L) among the tested compounds. In addition, LCB01-0648 had the lowest minimum inhibitory concentrations (MICs) against the four linezolid-resistant S. aureus (LRSA) strains (range 2–4 mg/L). The results of the time–kill studies demonstrated that LCB01-0648 at a concentration 8× the (MIC) showed bactericidal activity against methicillin-susceptible Staphylococcus aureus MSSA or MRSA, but showed a bacteriostatic effect against LRSA. These results indicate that LCB01-0648 could be a good antibacterial candidate against multidrug-resistant (MDR) Gram-positive cocci.
Collapse
|
20
|
In Vitro and In Vivo Activities of a Bi-Aryl Oxazolidinone, RBx 11760, against Gram-Positive Bacteria. Antimicrob Agents Chemother 2016; 60:7134-7145. [PMID: 27645240 DOI: 10.1128/aac.00453-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022] Open
Abstract
RBx 11760, a bi-aryl oxazolidinone, was investigated for antibacterial activity against Gram-positive bacteria. The MIC90s of RBx 11760 and linezolid against Staphylococcus aureus were 2 and 4 mg/liter, against Staphylococcus epidermidis were 0.5 and 2 mg/liter, and against Enterococcus were 1 and 4 mg/liter, respectively. Similarly, against Streptococcus pneumoniae the MIC90s of RBx 11760 and linezolid were 0.5 and 2 mg/liter, respectively. In time-kill studies, RBx 11760, tedizolid, and linezolid exhibited bacteriostatic effect against all tested strains except S. pneumoniae RBx 11760 showed 2-log10 kill at 4× MIC while tedizolid and linezolid showed 2-log10 and 1.4-log10 kill at 16× MIC, respectively, against methicillin-resistant S. aureus (MRSA) H-29. Against S. pneumoniae 5051, RBx 11760 showed bactericidal activity, with 4.6-log10 kill at 4× MIC compared to 2.42-log10 and 1.95-log10 kill for tedizolid and linezolid, respectively, at 16× MIC. RBx 11760 showed postantibiotic effects (PAE) at 3 h at 4 mg/liter against MRSA H-29, and linezolid showed the same effect at 16 mg/liter. RBx 11760 inhibited biofilm production against methicillin-resistant S. epidermidis (MRSE) ATCC 35984 in a concentration-dependent manner. In a foreign-body model, linezolid and rifampin resulted in no advantage over stasis, while the same dose of RBx 11760 demonstrated a significant killing compared to the initial control against S. aureus (P < 0.05) and MRSE (P < 0.01). The difference in killing was statistically significant for the lower dose of RBx 11760 (P < 0.05) versus the higher dose of linezolid (P > 0.05 [not significant]) in a groin abscess model. In neutropenic mouse thigh infection, RBx 11760 showed stasis at 20 mg/kg of body weight, whereas tedizolid showed the same effect at 40 mg/kg. These data support RBx 11760 as a promising investigational candidate.
Collapse
|
21
|
Hedaya OM, Mathew PM, Mohamed FH, Phillips OA, Luqmani YA. Antiproliferative activity of a series of 5‑(1H‑1,2,3‑triazolyl) methyl‑ and 5‑acetamidomethyl‑oxazolidinone derivatives. Mol Med Rep 2016; 13:3311-8. [PMID: 26936341 DOI: 10.3892/mmr.2016.4938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 02/02/2016] [Indexed: 11/05/2022] Open
Abstract
In the face of increasing resistance to the existing antibiotics, oxazolidinones (exemplified by linezolid) have been developed as promising antibacterial agents, but may have other useful actions. In the present study, a series of 5‑(1H‑1,2,3‑triazoly) l‑methyl‑, 5‑acetamidomethyl‑morpholino and N‑substituted‑piperazino oxazolidinone derivatives were investigated to determine whether they are active against eukaryotic cells. An MTT assay, validated by cell counting, was used to assess the effect of nine oxazolidinone derivatives (concentrations 100 nM‑10 µM) on the proliferation of MCF7 human breast cancer cells. The three most active compounds were then tested on MDA231 breast cancer cells. Cytotoxicity of the selected derivatives was determined by assessing the extent of apoptosis by flow cytometry. The antimetastatic potential of these compounds was assessed on MDA231 cells using wound healing and agarose invasion assays. The 5‑triazolylmethyl piperazino‑oxazolidinone derivatives containing 4‑N‑(2‑chlorocinnamoyl), 4‑N‑(4‑nitrobenzoyl) and 4‑N‑methylsulfonyl moieties exhibited the most potent cytostatic activity against cancer, inhibiting proliferation by up to 70%, in the same order as their reported antibacterial activity against Staphylococcus aureus, but at higher concentrations. Unexpectedly, several derivatives stimulated proliferation at 100 nM, well below their antibacterial minimum inhibitory concentrations. Certain compounds also retarded the motility and invasion of MDA231 cells. Three of the tested derivatives had no effect on the eukaryotic cell lines, demonstrating their preferential activity against bacteria. Two compounds actually stimulated eukaryotic cell proliferation. The remaining three exhibited potent cytostatic activity against and cancer cells, displaying differences in response at low and high concentrations, which may suggest multiple targets on eukaryotic cells. These latter compounds may be useful as anticancer agents.
Collapse
Affiliation(s)
- Omar M Hedaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Princy M Mathew
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Fatima H Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Oludotun A Phillips
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Yunus A Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
22
|
Phillips OA, D'Silva R, Bahta TO, Sharaf LH, Udo EE, Benov L, Eric Walters D. Synthesis and biological evaluation of novel 5-(hydroxamic acid)methyl oxazolidinone derivatives. Eur J Med Chem 2015; 106:120-31. [PMID: 26536532 DOI: 10.1016/j.ejmech.2015.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 12/01/2022]
Abstract
Research activities on the oxazolidinone antibacterial class of compounds continue to focus on developing newer derivatives with improved potency, broad-spectrum activity and safety profiles superior to linezolid. Among the safety concerns with the oxazolidinone antibacterial agents is inhibition of monoamine oxidases (MAO) resulting from their structural similarity with toloxatone, a known MAO inhibitor. Diverse substitution patterns at the C-5 position of the oxazolidinone ring have been shown to significantly affect both antibacterial activity and MAO inhibition to varying degrees. Also, the antibacterial activity of compounds containing iron-chelating functionalities, such as the hydroxamic acids, 8-hydroxyquinolines and catechols have been correlated to their ability to alter iron intake and/or metabolism. Hence a series of novel 5-(hydroxamic acid)methyl oxazolidinone derivatives were synthesized and evaluated for their antibacterial and MAO-A and -B inhibitory activities. The compounds were devoid of significant antibacterial activity but most demonstrated moderate MAO-A and -B inhibitory activities. Computer modeling studies revealed that the lack of potent antibacterial activity was due to significant steric interaction between the hydroxamic acid N-OH oxygen atom and one of the G2540 5'-phosphate oxygen atoms at the bacterial ribosomal binding site. Therefore, the replacement of the 5-acetamidomethyl group of linezolid with the 5-(N-hydroxyacetamido)methyl group present in the hydroxamic acid oxazolidinone derivatives was concluded to be detrimental to antibacterial activity. Furthermore, the 5-(hydroxamic acid)methyl oxazolidinone derivatives were also less active as MAO-A and -B inhibitors compared with linezolid and the selective inhibitors clorgyline and pargyline. In general, the 5-(hydroxamic acid)methyl oxazolidinone derivatives demonstrated moderate but selective MAO-B inhibitory activity.
Collapse
Affiliation(s)
- Oludotun A Phillips
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Roselyn D'Silva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Teklu O Bahta
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine & Science, North Chicago 60064, USA.
| | - Leyla H Sharaf
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Edet E Udo
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - D Eric Walters
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine & Science, North Chicago 60064, USA.
| |
Collapse
|
23
|
Chen Y, Ruan ZX, Wang F, Huangfu DS, Sun PH, Lin J, Chen WM. Novel Oxazolidinone Antibacterial Analogues with a Substituted Ligustrazine C-ring Unit. Chem Biol Drug Des 2015; 86:682-90. [DOI: 10.1111/cbdd.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Yan Chen
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | - Zhi-Xiong Ruan
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | - Fang Wang
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | | | - Ping-Hua Sun
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | - Jing Lin
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | - Wei-Min Chen
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| |
Collapse
|
24
|
A novel ketolide, RBx 14255, with activity against multidrug-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 2014; 58:4283-9. [PMID: 24550341 DOI: 10.1128/aac.01589-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present here the novel ketolide RBx 14255, a semisynthetic macrolide derivative obtained by the derivatization of clarithromycin, for its in vitro and in vivo activities against sensitive and macrolide-resistant Streptococcus pneumoniae. RBx 14255 showed excellent in vitro activity against macrolide-resistant S. pneumoniae, including an in-house-generated telithromycin-resistant strain (S. pneumoniae 3390 NDDR). RBx 14255 also showed potent protein synthesis inhibition against telithromycin-resistant S. pneumoniae 3390 NDDR. The binding affinity of RBx 14255 toward ribosomes was found to be more than that for other tested drugs. The in vivo efficacy of RBx 14255 was determined in murine pulmonary infection induced by intranasal inoculation of S. pneumoniae ATCC 6303 and systemic infection with S. pneumoniae 3390 NDDR strains. The 50% effective dose (ED50) of RBx 14255 against S. pneumoniae ATCC 6303 in a murine pulmonary infection model was 3.12 mg/kg of body weight. In addition, RBx 14255 resulted in 100% survival of mice with systemic infection caused by macrolide-resistant S. pneumoniae 3390 NDDR at 100 mg/kg four times daily (QID) and at 50 mg/kg QID. RBx 14255 showed favorable pharmacokinetic properties that were comparable to those of telithromycin.
Collapse
|
25
|
Zaffiri L, Gardner J, Toledo-Pereyra LH. History of antibiotics: from fluoroquinolones to daptomycin (Part 2). J INVEST SURG 2014; 26:167-79. [PMID: 23869821 DOI: 10.3109/08941939.2013.808461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the Modern Era, physicians attested to the reciprocal influence among a technologically advanced society, rapid scientific progresses in medicine, and the need for new antimicrobials. The results of these changes were not only seen in the prolongation of life expectancy but also by the emergence of new pathogens. We first observed the advent of Gram-negative bacteria as a major source of nosocomial infections. The treatment of these microorganisms was complicated by the appearance and spread of drug resistance. We first focused on the development of two major classes of antimicrobials still currently used for the treatment of Gram-negative bacteria, such as fluoroquinolones and carbapenemes. Subsequently, we directed our attention to the growth of the incidence of infections due to Methicillin-Resistant Staphylococcus aureus (MRSA). Although the first MRSA was already isolated in 1961, the treatment of this new pathogen has been based on the efficacy of vancomycin for more than four decades. Only in the last 15 yr, we assisted in the development of new antimicrobial agents such as linezolid and daptomycin.
Collapse
Affiliation(s)
- Lorenzo Zaffiri
- Western Michigan University School of Medicine, Kalamazoo, Michigan, USA
| | | | | |
Collapse
|
26
|
Tsutsumi LS, Owusu YB, Hurdle JG, Sun D. Progress in the discovery of treatments for C. difficile infection: A clinical and medicinal chemistry review. Curr Top Med Chem 2014; 14:152-75. [PMID: 24236721 PMCID: PMC3921470 DOI: 10.2174/1568026613666131113154753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/06/2013] [Accepted: 09/15/2013] [Indexed: 02/07/2023]
Abstract
Clostridium difficile is an anaerobic, Gram-positive pathogen that causes C. difficile infection, which results in significant morbidity and mortality. The incidence of C. difficile infection in developed countries has become increasingly high due to the emergence of newer epidemic strains, a growing elderly population, extensive use of broad spectrum antibiotics, and limited therapies for this diarrheal disease. Because treatment options currently available for C. difficile infection have some drawbacks, including cost, promotion of resistance, and selectivity problems, new agents are urgently needed to address these challenges. This review article focuses on two parts: the first part summarizes current clinical treatment strategies and agents under clinical development for C. difficile infection; the second part reviews newly reported anti-difficile agents that have been evaluated or reevaluated in the last five years and are in the early stages of drug discovery and development. Antibiotics are divided into natural product inspired and synthetic small molecule compounds that may have the potential to be more efficacious than currently approved treatments. This includes potency, selectivity, reduced cytotoxicity, and novel modes of action to prevent resistance.
Collapse
Affiliation(s)
| | | | | | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA.
| |
Collapse
|
27
|
Bhattarai D, Lee JH, Seo SH, Nam G, Choo H, Kang SB, Kwak JH, Oh T, Cho SN, Pae AN, Kim EE, Jeong N, Keum G. Synthesis and in Vitro Evaluation of the Antitubercular and Antibacterial Activity of Novel Oxazolidinones Bearing Octahydrocyclopenta[ c]pyrrol-2-yl Moieties. Chem Pharm Bull (Tokyo) 2014; 62:1214-24. [DOI: 10.1248/cpb.c14-00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Deepak Bhattarai
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST)
- Department of Biological Chemistry, University of Science and Technology
| | - Ju-hyeon Lee
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST)
- Department of chemistry, Korea University
| | - Seon Hee Seo
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST)
| | - Ghilsoo Nam
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST)
| | - Hyunah Choo
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST)
| | - Soon Bang Kang
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST)
| | | | - Taegwon Oh
- Department of Microbiology and the Brain Korea 21 Project for the Medical Sciences, Yonsei University College of Medicine
| | - Sang-Nae Cho
- Department of Microbiology and the Brain Korea 21 Project for the Medical Sciences, Yonsei University College of Medicine
| | - Ae Nim Pae
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST)
| | - Eunice Eunkyeong Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST)
- Department of Biological Chemistry, University of Science and Technology
| | | | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST)
- Department of Biological Chemistry, University of Science and Technology
| |
Collapse
|
28
|
Mathur T, Kalia V, Barman TK, Singhal S, Khan S, Upadhyay DJ, Rattan A, Raj VS. Anti-anaerobic potential of ranbezolid: insight into its mechanism of action against Bacteroides fragilis. Int J Antimicrob Agents 2012; 41:36-40. [PMID: 23142085 DOI: 10.1016/j.ijantimicag.2012.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
This study reports the anti-anaerobic properties of ranbezolid, a new investigational oxazolidinone. A time-kill kinetics study against anaerobes showed that ranbezolid was superior to linezolid and killed the anaerobic pathogens at 4-8h, except for Bacteroides fragilis where killing was observed at 24h. In addition, the time-kill kinetics study showed a concentration-dependent bactericidal potential of ranbezolid against anaerobes. Ranbezolid showed 5.39log(10) reduction and linezolid showed 1.15log(10) reduction in murine disk implant infection with B. fragilis ATCC 25285. Ranbezolid was very potent and showed fast protein synthesis inhibition against B. fragilis, a Gram-negative anaerobe. In addition, non-specific cell wall synthesis inhibition was also observed with ranbezolid. The potent and fast protein synthesis inhibition along with an additional mode of action of cell wall synthesis inhibition could be responsible for the cidal effect of ranbezolid against Gram-negative anaerobes.
Collapse
Affiliation(s)
- Tarun Mathur
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R&D III, Sector 18, Gurgaon, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
In vitro and in vivo activities of the novel Ketolide RBx 14255 against Clostridium difficile. Antimicrob Agents Chemother 2012; 56:5986-9. [PMID: 22869573 DOI: 10.1128/aac.00015-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MIC(90) of RBx 14255, a novel ketolide, against Clostridium difficile was 4 μg/ml (MIC range, 0.125 to 8 μg/ml), and this drug was found to be more potent than comparator drugs. An in vitro time-kill kinetics study of RBx 14255 showed time-dependent bacterial killing for C. difficile. Furthermore, in the hamster model of C. difficile infection, RBx 14255 demonstrated greater efficacy than metronidazole and vancomycin, making it a promising candidate for C. difficile treatment.
Collapse
|
30
|
Khera MK, Cliffe IA, Prakash O. Synthesis and in vitro activity of novel 1,2,4-triazolo[4,3-a]pyrimidine oxazolidinone antibacterial agents. Part II. Bioorg Med Chem Lett 2011; 21:5266-9. [DOI: 10.1016/j.bmcl.2011.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 11/28/2022]
|
31
|
Mathur T, Kumar M, Barman TK, Kumar GR, Kalia V, Singhal S, Raj VS, Upadhyay DJ, Das B, Bhatnagar PK. Activity of RBx 11760, a novel biaryl oxazolidinone, against Clostridium difficile. J Antimicrob Chemother 2011; 66:1087-95. [PMID: 21393140 DOI: 10.1093/jac/dkr033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES RBx 11760, a novel oxazolidinone, was investigated for in vitro and in vivo activity against Clostridium difficile. METHODS The in vitro activity of RBx 11760 and three other agents against 50 diverse C. difficile clinical isolates and other obligate anaerobic bacteria was determined. The effect of RBx 11760 on sporulation and toxin production was determined against different C. difficile isolates. We used a hamster infection model to investigate the efficacy of RBx 11760, vancomycin and metronidazole. The mechanism of action of RBx 11760 against C. difficile ATCC 43255 was determined by macromolecular synthesis inhibition. RESULTS RBx 11760 MICs were in the range of 0.5-1 mg/L for C. difficile isolates, and it demonstrated concentration-dependent killing of C. difficile ATCC 43255 and C. difficile 6387 up to 2-4× MIC (1-2 mg/L). RBx 11760, at concentrations as low as 0.25-0.5 mg/L, resulted in a significant reduction in de novo toxin production as well as sporulation in different C. difficile isolates. In contrast, vancomycin, metronidazole and linezolid had little or no effect on toxin production and appeared to promote the formation of spores. In the hamster infection model, treatment with RBx 11760 resulted in prolonged survival of animals as compared with vancomycin or metronidazole, which correlated well with the histopathology results. Macromolecular labelling results suggest that RBx 11760 is a potent inhibitor of bacterial protein synthesis. CONCLUSIONS RBx 11760 showed excellent in vitro and in vivo activity against C. difficile, and it could be a promising novel candidate for future drug development against C. difficile infection.
Collapse
Affiliation(s)
- Tarun Mathur
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, Gurgaon, Haryana, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hurdle JG, O'Neill AJ, Chopra I, Lee RE. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 2011; 9:62-75. [PMID: 21164535 DOI: 10.1038/nrmicro2474] [Citation(s) in RCA: 602] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Persistent infections involving slow-growing or non-growing bacteria are hard to treat with antibiotics that target biosynthetic processes in growing cells. Consequently, there is a need for antimicrobials that can treat infections containing dormant bacteria. In this Review, we discuss the emerging concept that disrupting the bacterial membrane bilayer or proteins that are integral to membrane function (including membrane potential and energy metabolism) in dormant bacteria is a strategy for treating persistent infections. The clinical applicability of these approaches is exemplified by the efficacy of lipoglycopeptides that damage bacterial membranes and of the diarylquinoline TMC207, which inhibits membrane-bound ATP synthase. Despite some drawbacks, membrane-active agents form an important new means of eradicating recalcitrant, non-growing bacteria.
Collapse
Affiliation(s)
- Julian G Hurdle
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA.
| | | | | | | |
Collapse
|
33
|
Discovery of a novel nitroimidazolyl–oxazolidinone hybrid with potent anti Gram-positive activity: Synthesis and antibacterial evaluation. Eur J Med Chem 2011; 46:65-70. [DOI: 10.1016/j.ejmech.2010.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 11/23/2022]
|
34
|
Abstract
Protein synthesis is one of the major targets in the cell for antibiotics. This review endeavors to provide a comprehensive "post-ribosome structure" A-Z of the huge diversity of antibiotics that target the bacterial translation apparatus, with an emphasis on correlating the vast wealth of biochemical data with more recently available ribosome structures, in order to understand function. The binding site, mechanism of action, and modes of resistance for 26 different classes of protein synthesis inhibitors are presented, ranging from ABT-773 to Zyvox. In addition to improving our understanding of the process of translation, insight into the mechanism of action of antibiotics is essential to the development of novel and more effective antimicrobial agents to combat emerging bacterial resistance to many clinically-relevant drugs.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, LMU, Munich, Germany.
| |
Collapse
|