1
|
Abavisani M, Khoshrou A, Eshaghian S, Karav S, Sahebkar A. Overcoming antibiotic resistance: the potential and pitfalls of drug repurposing. J Drug Target 2024:1-55. [PMID: 39485073 DOI: 10.1080/1061186x.2024.2424895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Since its emergence shortly after the discovery of penicillin, antibiotic resistance has escalated dramatically, posing a significant health threat and economic burden. Combating antibiotic resistance, especially in Gram-negative bacteria (GNB) and drug-resistant Mycobacterium tuberculosis, necessitates innovative research, substantial financial investment, and global cooperation to safeguard public health and develop sustainable solutions. Drug repositioning, or drug repurposing, involves identifying new therapeutic applications for existing drugs, utilizing their established safety profiles and pharmacological data to swiftly provide effective treatments against resistant pathogens. Several drugs, including otilonium bromide, penfluridol, eltrombopag, ibuprofen, and ceritinib, have demonstrated potent antibacterial activity against multidrug-resistant (MDR) bacteria. These drugs can disrupt biofilms, damage bacterial membranes, and inhibit bacterial growth. Furthermore, the combination of repurposed drugs with conventional antibiotics can reduce the required dosage of individual drugs, mitigate side effects, and delay the development of resistance, making it a promising strategy against MDR bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. Despite its promise, drug repurposing faces challenges such as potential off-target effects, toxicity, and regulatory and intellectual property issues, necessitating rigorous evaluations and strategic solutions. This article aims to explore the potential of drug repurposing as a strategy to combat antibiotic resistance, examining its benefits, challenges, and future prospects. We address the legal, economic, and practical challenges associated with repurposing existing drugs, highlight successful examples, and propose solutions to enhance the efficacy and viability of this approach in combating MDR bacterial infections.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Souzan Eshaghian
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| |
Collapse
|
2
|
Pacios O, Herrera-Espejo S, Armán L, Ibarguren-Quiles C, Blasco L, Bleriot I, Fernández-García L, Ortiz-Cartagena C, Paniagua M, Barrio-Pujante A, Aracil B, Cisneros JM, Pachón-Ibáñez ME, Tomás M. Mitomycin C as an Anti-Persister Strategy against Klebsiella pneumoniae: Toxicity and Synergy Studies. Antibiotics (Basel) 2024; 13:815. [PMID: 39334989 PMCID: PMC11428439 DOI: 10.3390/antibiotics13090815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The combination of several therapeutic strategies is often seen as a good way to decrease resistance rates, since bacteria can more easily overcome single-drug treatments than multi-drug ones. This strategy is especially attractive when several targets and subpopulations are affected, as it is the case of Klebsiella pneumoniae persister cells, a subpopulation of bacteria able to transiently survive antibiotic exposures. This work aims to evaluate the potential of a repurposed anticancer drug, mitomycin C, combined with the K. pneumoniae lytic phage vB_KpnM-VAC13 in vitro and its safety in an in vivo murine model against two clinical isolates of this pathogen, one of them exhibiting an imipenem-persister phenotype. At the same time, we verified the absence of toxicity of mitomycin C at the concentration using the human chondrocyte cell line T/C28a2. The viability of these human cells was checked using both cytotoxicity assays and flow cytometry.
Collapse
Affiliation(s)
- Olga Pacios
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Soraya Herrera-Espejo
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (M.P.); (J.M.C.); (M.E.P.-I.)
| | - Lucía Armán
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Clara Ibarguren-Quiles
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Lucía Blasco
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- MEPRAM, Project of Personalized Medicine against Antimicrobial Resistance, 28029 Madrid, Spain;
| | - Inés Bleriot
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Laura Fernández-García
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Concha Ortiz-Cartagena
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - María Paniagua
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (M.P.); (J.M.C.); (M.E.P.-I.)
- CIBER of Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain
| | - Antonio Barrio-Pujante
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Belén Aracil
- MEPRAM, Project of Personalized Medicine against Antimicrobial Resistance, 28029 Madrid, Spain;
- CIBER of Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain
- Reference Laboratory of Antimicrobial Resistance, National Center of Microbiology, Health Institute Carlos III, Majadahonda, 28222 Madrid, Spain
| | - José Miguel Cisneros
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (M.P.); (J.M.C.); (M.E.P.-I.)
- MEPRAM, Project of Personalized Medicine against Antimicrobial Resistance, 28029 Madrid, Spain;
- CIBER of Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain
| | - María Eugenia Pachón-Ibáñez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (M.P.); (J.M.C.); (M.E.P.-I.)
- MEPRAM, Project of Personalized Medicine against Antimicrobial Resistance, 28029 Madrid, Spain;
- CIBER of Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain
| | - María Tomás
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- MEPRAM, Project of Personalized Medicine against Antimicrobial Resistance, 28029 Madrid, Spain;
| |
Collapse
|
3
|
Fernández‐García L, Kirigo J, Huelgas‐Méndez D, Benedik MJ, Tomás M, García‐Contreras R, Wood TK. Phages produce persisters. Microb Biotechnol 2024; 17:e14543. [PMID: 39096350 PMCID: PMC11297538 DOI: 10.1111/1751-7915.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Arguably, the greatest threat to bacteria is phages. It is often assumed that those bacteria that escape phage infection have mutated or utilized phage-defence systems; however, another possibility is that a subpopulation forms the dormant persister state in a manner similar to that demonstrated for bacterial cells undergoing nutritive, oxidative, and antibiotic stress. Persister cells do not undergo mutation and survive lethal conditions by ceasing growth transiently. Slower growth and dormancy play a key physiological role as they allow host phage defence systems more time to clear the phage infection. Here, we investigated how bacteria survive lytic phage infection by isolating surviving cells from the plaques of T2, T4, and lambda (cI mutant) virulent phages and sequencing their genomes. We found that bacteria in plaques can escape phage attack both by mutation (i.e. become resistant) and without mutation (i.e. become persistent). Specifically, whereas T4-resistant and lambda-resistant bacteria with over a 100,000-fold less sensitivity were isolated from plaques with obvious genetic mutations (e.g. causing mucoidy), cells were also found after T2 infection that undergo no significant mutation, retain wild-type phage sensitivity, and survive lethal doses of antibiotics. Corroborating this, adding T2 phage to persister cells resulted in 137,000-fold more survival compared to that of addition to exponentially growing cells. Furthermore, our results seem general in that phage treatments with Klebsiella pneumonia and Pseudomonas aeruginosa also generated persister cells. Hence, along with resistant strains, bacteria also form persister cells during phage infection.
Collapse
Affiliation(s)
- Laura Fernández‐García
- Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Microbiology Translational and Multidisciplinary (MicroTM)‐Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC)University of A Coruña (UDC)A CoruñaSpain
| | - Joy Kirigo
- Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Daniel Huelgas‐Méndez
- Department of Microbiology and Parasitology, Faculty of MedicineNational Autonomous University of MexicoMexico CityMexico
| | | | - María Tomás
- Microbiology Translational and Multidisciplinary (MicroTM)‐Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC)University of A Coruña (UDC)A CoruñaSpain
| | - Rodolfo García‐Contreras
- Department of Microbiology and Parasitology, Faculty of MedicineNational Autonomous University of MexicoMexico CityMexico
| | - Thomas K. Wood
- Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
4
|
Barrio-Pujante A, Bleriot I, Blasco L, Fernández-Garcia L, Pacios O, Ortiz-Cartagena C, Cuenca FF, Oteo-Iglesias J, Tomás M. Regulation of anti-phage defense mechanisms by using cinnamaldehyde as a quorum sensing inhibitor. Front Microbiol 2024; 15:1416628. [PMID: 38989015 PMCID: PMC11233531 DOI: 10.3389/fmicb.2024.1416628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Background Multidrug-resistant bacteria and the shortage of new antibiotics constitute a serious health problem. This problem has led to increased interest in the use of bacteriophages, which have great potential as antimicrobial agents but also carry the risk of inducing resistance. The objective of the present study was to minimize the development of phage resistance in Klebsiella pneumoniae strains by inhibiting quorum sensing (QS) and thus demonstrate the role of QS in regulating defense mechanisms. Results Cinnamaldehyde (CAD) was added to K. pneumoniae cultures to inhibit QS and thus demonstrate the role of the signaling system in regulating the anti-phage defense mechanism. The QS inhibitory activity of CAD in K. pneumoniae was confirmed by a reduction in the quantitative expression of the lsrB gene (AI-2 pathway) and by proteomic analysis. The infection assays showed that the phage was able to infect a previously resistant K. pneumoniae strain in the cultures to which CAD was added. The results were confirmed using proteomic analysis. Thus, anti-phage defense-related proteins from different systems, such as cyclic oligonucleotide-based bacterial anti-phage signaling systems (CBASS), restriction-modification (R-M) systems, clustered regularly interspaced short palindromic repeat-Cas (CRISPR-Cas) system, and bacteriophage control infection (BCI), were present in the cultures with phage but not in the cultures with phage and CAD. When the QS and anti-phage defense systems were inhibited by the combined treatment, proteins related to phage infection and proliferation, such as the tail fiber protein, the cell division protein DamX, and the outer membrane channel protein TolC, were detected. Conclusion Inhibition of QS reduces phage resistance in K. pneumoniae, resulting in the infection of a previously resistant strain by phage, with a significant increase in phage proliferation and a significant reduction in bacterial growth. QS inhibitors could be considered for therapeutic application by including them in phage cocktails or in phage-antibiotic combinations to enhance synergistic effects and reduce the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Antonio Barrio-Pujante
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Inés Bleriot
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Lucía Blasco
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Laura Fernández-Garcia
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Olga Pacios
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Concha Ortiz-Cartagena
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Felipe Fernández Cuenca
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla), Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, Madrid, Spain
| | - Jesús Oteo-Iglesias
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, Madrid, Spain
- Laboratorio de Referencia e Investigación de Resistencias a Antibióticos e Infecciones Sanitarias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Tomás
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, Madrid, Spain
| |
Collapse
|
5
|
Al-Anany AM, Fatima R, Nair G, Mayol JT, Hynes AP. Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny. mBio 2024; 15:e0050424. [PMID: 38757974 PMCID: PMC11237771 DOI: 10.1128/mbio.00504-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
A recent demonstration of synergy between a temperate phage and the antibiotic ciprofloxacin suggested a scalable approach to exploiting temperate phages in therapy, termed temperate phage-antibiotic synergy, which specifically interacted with the lysis-lysogeny decision. To determine whether this would hold true across antibiotics, we challenged Escherichia coli with the phage HK97 and a set of 13 antibiotics spanning seven classes. As expected, given the conserved induction pathway, we observed synergy with classes of drugs known to induce an SOS response: a sulfa drug, other quinolones, and mitomycin C. While some β-lactams exhibited synergy, this appeared to be traditional phage-antibiotic synergy, with no effect on the lysis-lysogeny decision. Curiously, we observed a potent synergy with antibiotics not known to induce the SOS response: protein synthesis inhibitors gentamicin, kanamycin, tetracycline, and azithromycin. The synergy results in an eightfold reduction in the effective minimum inhibitory concentration of gentamicin, complete eradication of the bacteria, and, when administered at sub-optimal doses, drastically decreases the frequency of lysogens emerging from the combined challenge. However, lysogens exhibit no increased sensitivity to the antibiotic; synergy was maintained in the absence of RecA; and the antibiotic reduced the initial frequency of lysogeny rather than selecting against formed lysogens. Our results confirm that SOS-inducing antibiotics broadly result in temperate-phage-specific synergy, but that other antibiotics can interact with temperate phages specifically and result in synergy. This is the first report of a means of chemically blocking entry into lysogeny, providing a new means for manipulating the key lysis-lysogeny decision.IMPORTANCEThe lysis-lysogeny decision is made by most bacterial viruses (bacteriophages, phages), determining whether to kill their host or go dormant within it. With over half of the bacteria containing phages waiting to wake, this is one of the most important behaviors in all of biology. These phages are also considered unusable for therapy because of this behavior. In this paper, we show that many antibiotics bias this behavior to "wake" the dormant phages, forcing them to kill their host, but some also prevent dormancy in the first place. These will be important tools to study this critical decision point and may enable the therapeutic use of these phages.
Collapse
Affiliation(s)
- Amany M Al-Anany
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rabia Fatima
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gayatri Nair
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jordan T Mayol
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alexander P Hynes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Sanchez-Torres V, Kirigo J, Wood TK. Implications of lytic phage infections inducing persistence. Curr Opin Microbiol 2024; 79:102482. [PMID: 38714140 DOI: 10.1016/j.mib.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Phage therapy holds much promise as an alternative to antibiotics for fighting infection. However, this approach is no panacea as recent results show that a small fraction of cells survives lytic phage infection due to both dormancy (i.e. formation of persister cells) and resistance (genetic change). In this brief review, we summarize evidence suggesting phages induce the persister state. Therefore, it is predicted that phage cocktails should be combined with antipersister compounds to eradicate bacterial infections.
Collapse
Affiliation(s)
- Viviana Sanchez-Torres
- Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
7
|
De Soir S, Parée H, Kamarudin NHN, Wagemans J, Lavigne R, Braem A, Merabishvili M, De Vos D, Pirnay JP, Van Bambeke F. Exploiting phage-antibiotic synergies to disrupt Pseudomonas aeruginosa PAO1 biofilms in the context of orthopedic infections. Microbiol Spectr 2024; 12:e0321923. [PMID: 38084971 PMCID: PMC10783084 DOI: 10.1128/spectrum.03219-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Biofilm-related infections are among the most difficult-to-treat infections in all fields of medicine due to their antibiotic tolerance and persistent character. In the field of orthopedics, these biofilms often lead to therapeutic failure of medical implantable devices and urgently need novel treatment strategies. This forthcoming article aims to explore the dynamic interplay between newly isolated bacteriophages and routinely used antibiotics and clearly indicates synergetic patterns when used as a dual treatment modality. Biofilms were drastically more reduced when both active agents were combined, thereby providing additional evidence that phage-antibiotic combinations lead to synergism and could potentially improve clinical outcome for affected patients.
Collapse
Affiliation(s)
- Steven De Soir
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Hortence Parée
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nur Hidayatul Nazirah Kamarudin
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, Belgium
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Annabel Braem
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Periyasami G, Karuppiah P, Karthikeyan P, Palaniappan S. Anti-infective Efficacy of Duloxetine against Catheter-Associated Urinary Tract Infections Caused by Gram-Positive Bacteria. ACS OMEGA 2023; 8:48317-48325. [PMID: 38144107 PMCID: PMC10734014 DOI: 10.1021/acsomega.3c07676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
Catheter-associated urinary tract infections (CAUTIs) frequently occur following the insertion of catheters in hospitalized patients, often leading to severe clinical complications. These complications are exacerbated by biofilm-forming organisms such as Staphylococcus aureus, contributing to the emergence of multidrug-resistant (MDR) strains, which complicates treatment strategies. This study aims to investigate the antibacterial, antibiofilm, and antiadhesive properties of duloxetine against S. aureus in the context of CAUTI. Our findings demonstrate that duloxetine exhibits significant antibacterial activity, as evidenced by the agar diffusion method. A minimal inhibitory concentration (MIC) of 37.5 μg/mL was established using the microdilution method. Notably, duloxetine displayed inhibitory effects against biofilm formation on polystyrene surfaces up to its MIC level, as demonstrated by the crystal violet method. Intriguingly, the study also revealed that duloxetine could prevent biofilm formation at lower concentrations and reduce mature biofilms, as confirmed by scanning electron microscopy (SEM) and quantitative biofilm assays. Furthermore, duloxetine-coated silicone catheter tubes exhibited antibacterial properties against S. aureus in a bladder model, visualized by confocal laser scanning microscopy (CLSM) and corroborated through FDA and PI staining, highlighting noticeable morphological changes in S. aureus post-treatment. In conclusion, this study presents duloxetine as a promising alternative agent with antibacterial and antiadhesive properties against S. aureus in the prevention and management of CAUTI, warranting further exploration in the clinical setting.
Collapse
Affiliation(s)
- Govindasami Periyasami
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ponmurugan Karuppiah
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Perumal Karthikeyan
- Department
of Chemistry and Biochemistry, Ohio State
University, 170A CBEC, 151 Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Selvakumar Palaniappan
- Department
of Food Science and Postharvest Technology, Haramaya Institute of
Technology, Haramaya University, Dire Dawa-P.O. Box 138, Ethiopia
| |
Collapse
|
9
|
Pacios O, Blasco L, Ortiz Cartagena C, Bleriot I, Fernández-García L, López M, Barrio-Pujante A, Cuenca FF, Aracil B, Oteo-Iglesias J, Tomás M. Molecular studies of phages- Klebsiella pneumoniae in mucoid environment: innovative use of mucolytic agents prior to the administration of lytic phages. Front Microbiol 2023; 14:1286046. [PMID: 37886069 PMCID: PMC10598653 DOI: 10.3389/fmicb.2023.1286046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Mucins are important glycoproteins that form a protective layer throughout the gastrointestinal and respiratory tracts. There is scientific evidence of increase in phage-resistance in the presence of mucin for some bacterial pathogens. Manipulation in mucin composition may ultimately influence the effectiveness of phage therapy. In this work, two clinical strains of K. pneumoniae (K3574 and K3325), were exposed to the lytic bacteriophage vB_KpnS-VAC35 in the presence and absence of mucin on a long-term co-evolution assay, in an attempt to mimic in vitro the exposure to mucins that bacteria and their phages face in vivo. Enumerations of the bacterial and phage counts at regular time intervals were conducted, and extraction of the genomic DNA of co-evolved bacteria to the phage, the mucin and both was performed. We determined the frequency of phage-resistant mutants in the presence and absence of mucin and including a mucolytic agent (N-acetyl L-cysteine, NAC), and sequenced them using Nanopore. We phenotypically demonstrated that the presence of mucin induces the emergence of bacterial resistance against lytic phages, effectively decreased in the presence of NAC. In addition, the genomic analysis revealed some of the genes relevant to the development of phage resistance in long-term co-evolution, with a special focus on the mucoid environment. Genes involved in the metabolism of carbohydrates were mutated in the presence of mucin. In conclusion, the use of mucolytic agents prior to the administration of lytic phages could be an interesting therapeutic option when addressing K. pneumoniae infections in environments where mucin is overproduced.
Collapse
Affiliation(s)
- Olga Pacios
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Lucía Blasco
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Concha Ortiz Cartagena
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Inés Bleriot
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Laura Fernández-García
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - María López
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Antonio Barrio-Pujante
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Felipe Fernández Cuenca
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla), Sevilla, Spain
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
| | - Belén Aracil
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
- Laboratorio de Referencia e Investigación de Resistencias a Antibióticos e Infecciones Sanitarias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
- Laboratorio de Referencia e Investigación de Resistencias a Antibióticos e Infecciones Sanitarias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Tomás
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
| |
Collapse
|
10
|
Khunti P, Chantakorn K, Tantibhadrasapa A, Htoo HH, Thiennimitr P, Nonejuie P, Chaikeeratisak V. A novel coli myophage and antibiotics synergistically inhibit the growth of the uropathogenic E. coli strain CFT073 in stoichiometric niches. Microbiol Spectr 2023; 11:e0088923. [PMID: 37732769 PMCID: PMC10580823 DOI: 10.1128/spectrum.00889-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023] Open
Abstract
Urinary tract infections are widespread bacterial infections affecting millions of people annually, with Escherichia coli being the most prevalent. Although phage therapy has recently gained interest as a promising alternative therapy for antibiotic-resistant bacteria, several studies have raised concerns regarding the evolution of phage resistance, making the therapy ineffective. In this study, we discover a novel coli myophage designated as Killian that targets E. coli strains, including the uropathogenic E. coli (UPEC) strain CFT073. It requires at least 20 minutes for 90% of its particles to adsorb to the host cells, undergoes subcellular activities for replication for 30 minutes, and eventually lyses the cells with a burst size of about 139 particles per cell. Additionally, Killian can withstand a wide variety of temperatures (4-50°C) and pHs (4-10). Genome analysis reveals that Killian's genome consists of 169,905 base pairs with 35.5% GC content, encoding 276 open reading frames; of these, 209 are functionally annotated with no undesirable genes detected, highlighting its potential as an antibiotic alternative against UPEC. However, after an 8-hour phage treatment at high multiplicities of infection, bacterial density continuously increases, indicating an onset of bacterial growth revival. Thus, the combination study between the phage and three different antibiotics, including amikacin, ciprofloxacin, and piperacillin, was performed and showed that certain pairs of phage and antibiotics exhibited synergistic interactions in suppressing the bacterial growth revival. These findings suggest that Killian-antibiotic combinations are effective in inhibiting the growth of UPEC. IMPORTANCE Phage therapy has recently been in the spotlight as a viable alternative therapy for bacterial infections. However, several studies have raised concerns about the emergence of phage resistance that occurs during treatment, making the therapy not much effective. Here, we present the discovery of a novel E. coli myophage that, by itself, can effectively kill the uropathogenic E. coli, but the emergence of bacterial growth revival was detected during the treatment. Phage and antibiotics are then combined to improve the efficiency of the phage in suppressing the bacterial re-growth. This research would pave the way for the future development of phage-antibiotic cocktails for the sustainable use of phages for therapeutic purposes.
Collapse
Affiliation(s)
- Patiphan Khunti
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | |
Collapse
|
11
|
Ortega-Nieto C, Losada-Garcia N, Pessela BC, Domingo-Calap P, Palomo JM. Design and Synthesis of Copper Nanobiomaterials with Antimicrobial Properties. ACS BIO & MED CHEM AU 2023; 3:349-358. [PMID: 37599792 PMCID: PMC10436259 DOI: 10.1021/acsbiomedchemau.2c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 08/22/2023]
Abstract
In this work, nanostructured copper materials have been designed, synthetized, and evaluated in order to produce a more efficient and sustainable copper bionanohybrid with catalytical and antimicrobial properties. Thus, conditions are sought where the most critical steps are reduced or minimized, such as the use of reducing agents or the cryogenization step. In addition, the new materials have been characterized through different techniques, and their oxidative and reductive capacities, as well as their antimicrobial activity, have been evaluated. The addition of different quantities of a reducing agent in the synthesis method generated copper bionanohybrids with different metallic species, nanoparticles sizes, and structures. The antimicrobial properties of the bionanohybrids were studied against different strains of Gram-positive and Gram-negative bacteria through two different methods: by counting the CFU and via the disk diffusion test, respectively. The bionanohybrids have demonstrated that different efficiencies depending on the bacterial strain were confronted with. The Cu-PHOS-100% R hybrids with the highest percentage of reduction showed the best antimicrobial efficiency against Escherichia coli and Klebsiella pneumoniae bacteria (>96 or >77% in 4 h, respectively) compared to 31% bacteria reduction using Cu-PHOS-0% R. Also, the antimicrobial activity against Bacillus subtilis materials was obtained with Cu-PHOS-100% R (31 mm inhibition zone and 125 μg/mL minimum inhibitory concentration value). Interestingly, the better antimicrobial activity of the nanobiohybrids against Gram-positive bacteria Mycobacterium smegmatis was obtained with some with a lower reduction step in the synthesis, Cu-PHOS-10% R or Cu-PHOS-20% R (>94% bacterial reduction in 4 h).
Collapse
Affiliation(s)
- Clara Ortega-Nieto
- Instituto
de Catalisis y Petroleoquimica (ICP), CSIC, Marie Curie 2, 28049 Madrid, Spain
| | - Noelia Losada-Garcia
- Instituto
de Catalisis y Petroleoquimica (ICP), CSIC, Marie Curie 2, 28049 Madrid, Spain
| | - Benevides C. Pessela
- Institute
of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, Cantoblanco, 28049 Madrid, Spain
| | - Pilar Domingo-Calap
- Institute
for Integrative Systems Biology (ISysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Jose M. Palomo
- Instituto
de Catalisis y Petroleoquimica (ICP), CSIC, Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
12
|
Zaki BM, Hussein AH, Hakim TA, Fayez MS, El-Shibiny A. Phages for treatment of Klebsiella pneumoniae infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:207-239. [PMID: 37739556 DOI: 10.1016/bs.pmbts.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen involved in both hospital- and community-acquired infections. K. pneumoniae is associated with various infections, including pneumonia, septicemia, meningitis, urinary tract infection, and surgical wound infection. K. pneumoniae possesses serious virulence, biofilm formation ability, and severe resistance to many antibiotics especially hospital-acquired strains, due to excessive use in healthcare systems. This limits the available effective antibiotics that can be used for patients suffering from K. pneumoniae infections; therefore, alternative treatments are urgently needed. Bacteriophages (for short, phages) are prokaryotic viruses capable of infecting, replicating, and then lysing (lytic phages) the bacterial host. Phage therapy exhibited great potential for treating multidrug-resistant bacterial infections comprising K. pneumoniae. Hence, this chapter emphasizes and summarizes the research articles in the PubMed database from 1948 until the 15th of December 2022, addressing phage therapy against K. pneumoniae. The chapter provides an overview of K. pneumoniae phages covering different aspects, including phage isolation, different morphotypes of isolated phages, in vitro characterization, anti-biofilm activity, various therapeutic forms, in vivo research and clinical studies.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Toka A Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed S Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
13
|
Mohammadi M, Saffari M, Siadat SD. Phage therapy of antibiotic-resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past to the future. Folia Microbiol (Praha) 2023; 68:357-368. [PMID: 37036571 DOI: 10.1007/s12223-023-01046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023]
Abstract
Klebsiella spp. is a commensal gram-negative bacterium and a member of the human microbiota. It is the leading cause of various hospital-acquired infections. The occurrence of multi-drug drug resistance and carbapenemase-producing strains of Klebsiella pneumoniae producing weighty contaminations is growing, and Klebsiella oxytoca is an arising bacterium. Alternative approaches to tackle contaminations led by these microorganisms are necessary as strains enhance opposing to last-stage antibiotics in the way that Colistin. The lytic bacteriophages are viruses that infect and rapidly eradicate bacterial cells and are strain-specific to their hosts. They and their proteins are immediately deliberate as opportunities or adjuncts to antibiotic therapy. There are several reports in vitro and in vivo form that proved the potential use of lytic phages to combat superbug stains of K. pneumoniae. Various reports dedicated that the phage area can be returned to the elimination of multi-drug resistance and carbapenemase resistance isolates of K. pneumoniae. This review compiles our current information on phages of Klebsiella spp. and highlights technological and biological issues related to the evolution of phage-based therapies targeting these bacterial hosts.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Davar Siadat
- Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Breijyeh Z, Karaman R. Design and Synthesis of Novel Antimicrobial Agents. Antibiotics (Basel) 2023; 12:628. [PMID: 36978495 PMCID: PMC10045396 DOI: 10.3390/antibiotics12030628] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The necessity for the discovery of innovative antimicrobials to treat life-threatening diseases has increased as multidrug-resistant bacteria has spread. Due to antibiotics' availability over the counter in many nations, antibiotic resistance is linked to overuse, abuse, and misuse of these drugs. The World Health Organization (WHO) recognized 12 families of bacteria that present the greatest harm to human health, where options of antibiotic therapy are extremely limited. Therefore, this paper reviews possible new ways for the development of novel classes of antibiotics for which there is no pre-existing resistance in human bacterial pathogens. By utilizing research and technology such as nanotechnology and computational methods (such as in silico and Fragment-based drug design (FBDD)), there has been an improvement in antimicrobial actions and selectivity with target sites. Moreover, there are antibiotic alternatives, such as antimicrobial peptides, essential oils, anti-Quorum sensing agents, darobactins, vitamin B6, bacteriophages, odilorhabdins, 18β-glycyrrhetinic acid, and cannabinoids. Additionally, drug repurposing (such as with ticagrelor, mitomycin C, auranofin, pentamidine, and zidovudine) and synthesis of novel antibacterial agents (including lactones, piperidinol, sugar-based bactericides, isoxazole, carbazole, pyrimidine, and pyrazole derivatives) represent novel approaches to treating infectious diseases. Nonetheless, prodrugs (e.g., siderophores) have recently shown to be an excellent platform to design a new generation of antimicrobial agents with better efficacy against multidrug-resistant bacteria. Ultimately, to combat resistant bacteria and to stop the spread of resistant illnesses, regulations and public education regarding the use of antibiotics in hospitals and the agricultural sector should be combined with research and technological advancements.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
15
|
Bleriot I, Blasco L, Pacios O, Fernández-García L, López M, Ortiz-Cartagena C, Barrio-Pujante A, Fernández-Cuenca F, Pascual Á, Martínez-Martínez L, Oteo-Iglesias J, Tomás M. Proteomic Study of the Interactions between Phages and the Bacterial Host Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0397422. [PMID: 36877024 PMCID: PMC10100988 DOI: 10.1128/spectrum.03974-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023] Open
Abstract
Phages and bacteria have acquired resistance mechanisms for protection. In this context, the aims of the present study were to analyze the proteins isolated from 21 novel lytic phages of Klebsiella pneumoniae in search of defense mechanisms against bacteria and also to determine the infective capacity of the phages. A proteomic study was also conducted to investigate the defense mechanisms of two clinical isolates of K. pneumoniae infected by phages. For this purpose, the 21 lytic phages were sequenced and de novo assembled. The host range was determined in a collection of 47 clinical isolates of K. pneumoniae, revealing the variable infective capacity of the phages. Genome sequencing showed that all of the phages were lytic phages belonging to the order Caudovirales. Phage sequence analysis revealed that the proteins were organized in functional modules within the genome. Although most of the proteins have unknown functions, multiple proteins were associated with defense mechanisms against bacteria, including the restriction-modification system, the toxin-antitoxin system, evasion of DNA degradation, blocking of host restriction and modification, the orphan CRISPR-Cas system, and the anti-CRISPR system. Proteomic study of the phage-host interactions (i.e., between isolates K3574 and K3320, which have intact CRISPR-Cas systems, and phages vB_KpnS-VAC35 and vB_KpnM-VAC36, respectively) revealed the presence of several defense mechanisms against phage infection (prophage, defense/virulence/resistance, oxidative stress and plasmid proteins) in the bacteria, and of the Acr candidate (anti-CRISPR protein) in the phages. IMPORTANCE Researchers, including microbiologists and infectious disease specialists, require more knowledge about the interactions between phages and their bacterial hosts and about their defense mechanisms. In this study, we analyzed the molecular mechanisms of viral and bacterial defense in phages infecting clinical isolates of K. pneumoniae. Viral defense mechanisms included restriction-modification system evasion, the toxin-antitoxin (TA) system, DNA degradation evasion, blocking of host restriction and modification, and resistance to the abortive infection system, anti-CRISPR and CRISPR-Cas systems. Regarding bacterial defense mechanisms, proteomic analysis revealed expression of proteins involved in the prophage (FtsH protease modulator), plasmid (cupin phosphomannose isomerase protein), defense/virulence/resistance (porins, efflux pumps, lipopolysaccharide, pilus elements, quorum network proteins, TA systems, and methyltransferases), oxidative stress mechanisms, and Acr candidates (anti-CRISPR protein). The findings reveal some important molecular mechanisms involved in the phage-host bacterial interactions; however, further study in this field is required to improve the efficacy of phage therapy.
Collapse
Affiliation(s)
- Inés Bleriot
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Lucia Blasco
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Olga Pacios
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Laura Fernández-García
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María López
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Concha Ortiz-Cartagena
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Antonio Barrio-Pujante
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Felipe Fernández-Cuenca
- Clinical Unit of Infectious Diseases and Microbiology, Hospital Universitario Virgen Macarena, Institute of Biomedicine of Seville (University Hospital Virgen Macarena/CSIC/University of Seville), Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Álvaro Pascual
- Clinical Unit of Infectious Diseases and Microbiology, Hospital Universitario Virgen Macarena, Institute of Biomedicine of Seville (University Hospital Virgen Macarena/CSIC/University of Seville), Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Martínez-Martínez
- Clinical Unit of Microbiology, Reina Sofía University Hospital, Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Maimonides Biomedical Research Institute (IMIBIC), Cordoba, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Tomás
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| |
Collapse
|
16
|
Xu W, Zhao Y, Qian C, Yao Z, Chen T, Wang L, Zhang Y, Chen L, Ye J, Zhou T. The identification of phage vB_1086 of multidrug-resistant Klebsiella pneumoniae and its synergistic effects with ceftriaxone. Microb Pathog 2022; 171:105722. [PMID: 35985450 DOI: 10.1016/j.micpath.2022.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The continued rise of Klebsiella pneumoniae resistance to antibiotics is precipitating a medical crisis. Bacteriophages have been hailed as one possible therapeutic option to enhance the efficacy of antibiotics. This study describes the genomic characterization and biological property of a new bacteriophage vB_1086 and its potential for phage therapy application against Klebsiella pneumoniae. METHODS In our study, the double-layer agar plate method isolated a lytic bacteriophage named vB_1086. Besides, we analyzed its biological characteristics and genetic background. Then the antibacterial ability of the bacteriophage vB_1086 combined with antibiotics were analyzed by the combined checkerboard method. The impact on the formation of biofilms was analyzed by crystal violet staining method. RESULTS vB_1086 is a lytic bacteriophage with stable biological characteristics and clear genetic background, showing good antibacterial activity in combination with ceftriaxone, and the combination of phage and meropenem can effectively inhibit the formation of biofilm. Besides, the combination of bacteriophage and antimicrobials can effectively alleviate the generation of bacterial resistance and reduce the dosage of antimicrobials. CONCLUSION vB_1086 is a novel phage. To some extent, these results provide valuable information that phage vB_1086 can be combined with antibiotics to reduce the dosage of antimicrobials and alleviate the generation of bacterial resistance.
Collapse
Affiliation(s)
- Wenya Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Department of Clinical Laboratory, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Changrui Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhuocheng Yao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
17
|
Fernández-García L, Muthami JM, Tomas M, Wood TK. What are the options for treating infections by persister-forming pathogens? Environ Microbiol 2022; 24:4500-4504. [PMID: 35912818 DOI: 10.1111/1462-2920.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.,Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Joy M Muthami
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maria Tomas
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
18
|
Michodigni NF, Nyachieo A, Akhwale JK, Magoma G, Ouédraogo AS, Kimang'a AN. Formulation of phage cocktails and evaluation of their interaction with antibiotics in inhibiting carbapenemase-producing Klebsiella pneumoniae in vitro in Kenya. Afr J Lab Med 2022; 11:1803. [PMID: 35937762 PMCID: PMC9350486 DOI: 10.4102/ajlm.v11i1.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/12/2022] [Indexed: 11/01/2022] Open
Abstract
Background The development of alternative control measures, such as phage therapy or adjunctive therapy, is urgently needed to manage the dissemination of carbapenemase-producing Klebsiella pneumoniae. Objective This study aimed to evaluate the therapeutic potential of formulated phage cocktails and their interaction with select antibiotics in inhibiting the growth of carbapenemase-producing K. pneumoniae clinical isolate in vitro in Kenya. Methods The study was conducted from February 2021 to October 2021 at the Institute of Primate Research, Nairobi, Kenya. Phage cocktails were formulated based on the morphology and biological properties of precipitated Klebsiella phages. The efficacy of individual bacteriophages and phage cocktails as well as their combination with antibiotics were determined for their inhibitory activity on carbapenemase-producing K. pneumoniae (KP20). Results The precipitated bacteriophages were members of Myoviridae, Siphoviridae and Podoviridae. Regarding the evaluation of the phage cocktails, the absorbances at 600 nm of the bacterial culture treated with the two-phage cocktail (2φ MA) ranged from 0.173 to 0.246 at 16 h and 20 h whereas it peaked from 2.116 to 2.190 for the positive control. Moreover, the results of the adjunctive therapy showed that the optical density at 600 nm of the bacterial culture treated with 2φ MA was 0.186 at 24 h post-incubation time while it was 0.099 with the bacterial culture treated with imipenem in combination with 2φ MA. Conclusion This study demonstrated that the two-phage cocktail in combination with imipenem was able to synergistically delay the increase in carbapenemase-producing K. pneumoniae growth in vitro.
Collapse
Affiliation(s)
- Noutin F Michodigni
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
- Department of Reproductive Health and Biology, Institute of Primate Research (IPR), Nairobi, Kenya
| | - Atunga Nyachieo
- Department of Reproductive Health and Biology, Institute of Primate Research (IPR), Nairobi, Kenya
| | - Juliah K Akhwale
- Department of Zoology, School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Gabriel Magoma
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
- Department of Biochemistry, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Abdoul-Salam Ouédraogo
- Department of Medical Microbiology Laboratories, Souro-Sanou Teaching Hospital, Bobo-Dioulasso, Burkina Faso
| | - Andrew N Kimang'a
- Department of Medical Microbiology, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| |
Collapse
|
19
|
Phage–Antibiotic Therapy as a Promising Strategy to Combat Multidrug-Resistant Infections and to Enhance Antimicrobial Efficiency. Antibiotics (Basel) 2022; 11:antibiotics11050570. [PMID: 35625214 PMCID: PMC9137994 DOI: 10.3390/antibiotics11050570] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) bacteria have highlighted the importance of the development of new antimicrobial agents. While bacteriophages (phages) are widely studied as alternative agents to antibiotics, combined treatments using phages and antibiotics have exhibited Phage–Antibiotic Synergy (PAS), in which antibiotics promote phage replication and extraordinary antimicrobial efficacy with reduced development of bacterial resistance. This review paper on the current progress of phage–antibiotic therapy includes aspects of the mechanisms of PAS and the therapeutic performance of PAS in combating multidrug-resistant bacterial infections. The choice of phages and antibiotics, the administration time and sequence, and the concentrations of the two agents impact the bacterial inhibitory effects to different extents.
Collapse
|
20
|
Geng J, Liu H, Chen S, Long J, Jin Y, Yang H, Duan G. Comparative genomic analysis of Escherichia coli strains obtained from continuous imipenem stress evolution. FEMS Microbiol Lett 2022; 369:6526866. [PMID: 35147175 DOI: 10.1093/femsle/fnac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
The carbapenem-resistant Escherichia coli (E. coli) has aroused increasing attention worldwide, especially in terms of imipenem (IMP) resistance. The molecular mechanism of IMP resistance remains unclear. This study aimed to explore the resistance mechanisms of IMP in E. coli. Susceptible Sx181-0-1 strain was induced into resistance strains by adaptive laboratory evolution. The drug resistance spectrum was measured using the disk diffusion and microbroth dilution methods. Whole-genome sequencing and resequencing were used to analyze the non-synonymous single-nucleotide polymorphisms (nsSNPs) between the primary susceptible strain and resistant strains. The expression levels of these genes with nsSNPs were identified by real-time quantitative PCR (RT-qPCR). Resistance phenotype appeared in the induced 15th generation (induction time = 183 h). Sx181-32 and Sx181-256, which had minimum inhibitory concentrations of IMP of 8 and 64 µg mL-1, were isolated during continuous subculture exposed to increasing concentrations of IMP, respectively. Nineteen nsSNPs were observed both in Sx181-32 and Sx181-256, including rpsU, sdaC, zwf, ttuC, araJ, dacC, mrdA, secF, dacD, lpxD, mrcB, ftsI, envZ, and two unknown function genes (orf01892 and orf01933). Among these 15 genes, five genes (dacC, mrdA, lpxD, mrcB, and ftsI) were mainly involved in cell wall synthesis. The mrdA (V338A, L378P, and M574I) and mrcB (P784L, A736V, and T708A) had three amino acid substitutions, respectively. The expression levels of rpsU, ttuC and orf01933 were elevated in both Sx181-32 and Sx181-256 compared to Sx181-0-1. The expression levels of these genes were elevated in Sx181-256, except for araJ. Bacteria developed resistance to antimicrobials by regulating various biological processes, among which the most involved is the cell wall synthesis (dacC, mrdA, lpxD, mrcB, and ftsI). The combination mutations of mrdA, envZ, and ftsI genes may increase the resistance to IMP. Our study could improve the understanding of the molecular mechanism underlying the IMP resistance of E. coli.
Collapse
Affiliation(s)
- Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huiying Liu
- People's Hospital of Henan University of Chinese Medicine, Zhengzhou, China.,People's Hospital of Zhengzhou, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Phenotypic and Genomic Comparison of Klebsiella pneumoniae Lytic Phages: vB_KpnM-VAC66 and vB_KpnM-VAC13. Viruses 2021; 14:v14010006. [PMID: 35062209 PMCID: PMC8778798 DOI: 10.3390/v14010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Klebsiella pneumoniae is a human pathogen that worsens the prognosis of many immunocompromised patients. Here, we annotated and compared the genomes of two lytic phages that infect clinical strains of K. pneumoniae (vB_KpnM-VAC13 and vB_KpnM-VAC66) and phenotypically characterized vB_KpnM-VAC66 (time of adsorption of 12 min, burst size of 31.49 ± 0.61 PFU/infected cell, and a host range of 20.8% of the tested strains). Transmission electronic microscopy showed that vB_KpnM-VAC66 belongs to the Myoviridae family. The genomic analysis of the phage vB_KpnM-VAC66 revealed that its genome encoded 289 proteins. When compared to the genome of vB_KpnM-VAC13, they showed a nucleotide similarity of 97.56%, with a 93% of query cover, and the phylogenetic study performed with other Tevenvirinae phages showed a close common ancestor. However, there were 21 coding sequences which differed. Interestingly, the main differences were that vB_KpnM-VAC66 encoded 10 more homing endonucleases than vB_KpnM-VAC13, and that the nucleotidic and amino-acid sequences of the L-shaped tail fiber protein were highly dissimilar, leading to different three-dimensional protein predictions. Both phages differed significantly in their host range. These viruses may be useful in the development of alternative therapies to antibiotics or as a co-therapy increasing its antimicrobial potential, especially when addressing multidrug resistant (MDR) pathogens.
Collapse
|