1
|
Glans H, Matos GM, Bradley M, Downing T, Andersson B. Genetic coping mechanisms observed in Leishmania tropica, from the Middle East region, enhance the survival of the parasite after drug exposure. PLoS One 2024; 19:e0310821. [PMID: 39625894 PMCID: PMC11614225 DOI: 10.1371/journal.pone.0310821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/07/2024] [Indexed: 12/06/2024] Open
Abstract
INTRODUCTION Cutaneous leishmaniasis caused by L. tropica is common in the Middle East and treatment failure and drug resistance are known to occur. Several genetic mechanisms: aneuploidy, recombination and loss of heterozygosity, single nucleotide polymorphism (SNP) changes, copy number variation (CNV), and mutation of the H locus associated with drug resistance have been described. MATERIALS AND METHODS We studied SNP and CNV patterns in 22 isolates of L. tropica from Afghanistan, Iran and Syria in a geographic, phylogenetic and antimony exposure context. RESULTS A high SNP frequency was observed in isolates from Syria on chromosome 23, including the H locus, linked to different ancestry at that chromosome segment. Among the isolates from Afghanistan and Iran, an elevated frequency of nonsynonymous SNPs was observed on several chromosomes. Changes in CNV patterns were seen in isolates exposed to drug pressure, especially for the ferric iron reductase gene. Expanded genes were categorised into five functional categories: translational elongation, mitochondrial transmembrane transport, positive regulation of cellular component organisation, response to stimulus and response to hypoxia. No CNV was identified at the H locus, the MAPK1 gene, the APQ1 gene, nor chromosomes 23, 31 or 36 regardless of previous antimonial exposure. DISCUSSION In our study, Leishmania tropica had a jump in the nonsynonymous SNP rates at chromosome 23, including the H locus. CNV was observed among isolates exposed to antimonials, especially involving the gene encoding a ferric iron reductase. Several essential genetic coping mechanisms in the cell were enhanced when exposed to antimony, possibly for the survival of the parasite. Our work supports the perspective that Leishmania uses several mechanisms to adapt to environmental changes and drug exposure.
Collapse
Affiliation(s)
- Hedvig Glans
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel M. Matos
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bradley
- Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
- The Pirbright Institute, Woking, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Moncada-Diaz MJ, Rodríguez-Almonacid CC, Quiceno-Giraldo E, Khuong FTH, Muskus C, Karamysheva ZN. Molecular Mechanisms of Drug Resistance in Leishmania spp. Pathogens 2024; 13:835. [PMID: 39452707 PMCID: PMC11510721 DOI: 10.3390/pathogens13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis, a neglected tropical disease, that disproportionately affects underdeveloped countries. This disease has major health, economic, and social implications, particularly because of the limited treatment options, high cost, the severe side effects associated with available therapeutics, and the high rate of treatment failure caused by the parasites' growing resistance to current medications. In this review, we describe first the common strategies used by pathogens to develop drug resistance and then focus on the arsenal of available drugs to treat leishmaniasis, their modes of action, and the molecular mechanisms contributing to drug resistance in Leishmania spp., including the role of genomic, transcriptional, and translational control. We focus more specifically on our recent discovery of translational reprogramming as a major driver of drug resistance leading to coordinated changes in the translation of transcripts and orchestrating changes in metabolome and lipidome to support drug resistance. A thorough understanding of these mechanisms is essential to identify the key elements needed to combat resistance and improve leishmaniasis treatment methods.
Collapse
Affiliation(s)
- Maria Juliana Moncada-Diaz
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Cristian Camilo Rodríguez-Almonacid
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Eyson Quiceno-Giraldo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Francis T. H. Khuong
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Zemfira N. Karamysheva
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| |
Collapse
|
3
|
Downing T, Angelopoulos N. A primer on correlation-based dimension reduction methods for multi-omics analysis. J R Soc Interface 2023; 20:20230344. [PMID: 37817584 PMCID: PMC10565429 DOI: 10.1098/rsif.2023.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
The continuing advances of omic technologies mean that it is now more tangible to measure the numerous features collectively reflecting the molecular properties of a sample. When multiple omic methods are used, statistical and computational approaches can exploit these large, connected profiles. Multi-omics is the integration of different omic data sources from the same biological sample. In this review, we focus on correlation-based dimension reduction approaches for single omic datasets, followed by methods for pairs of omics datasets, before detailing further techniques for three or more omic datasets. We also briefly detail network methods when three or more omic datasets are available and which complement correlation-oriented tools. To aid readers new to this area, these are all linked to relevant R packages that can implement these procedures. Finally, we discuss scenarios of experimental design and present road maps that simplify the selection of appropriate analysis methods. This review will help researchers navigate emerging methods for multi-omics and integrating diverse omic datasets appropriately. This raises the opportunity of implementing population multi-omics with large sample sizes as omics technologies and our understanding improve.
Collapse
Affiliation(s)
- Tim Downing
- Pirbright Institute, Pirbright, Surrey, UK
- Department of Biotechnology, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
4
|
Branched chain amino acids catabolism as a source of new drug targets in pathogenic protists. Exp Parasitol 2023; 249:108499. [PMID: 36898495 DOI: 10.1016/j.exppara.2023.108499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Leucine, isoleucine, and valine, collectively termed Branched Chain Amino Acids (BCAA), are hydrophobic amino acids (AAs) and are essential for most eukaryotes since in these organisms they cannot be biosynthesized and must be supplied by the diet. These AAs are structurally relevant for muscle cells and, of course, important for the protein synthesis process. The metabolism of BCAA and its participation in different biological processes in mammals have been relatively well described. However, for other organisms as pathogenic parasites, the literature is really scarce. Here we review the BCAA catabolism, compile evidence on their relevance for pathogenic eukaryotes with special emphasis on kinetoplastids and highlight unique aspects of this underrated pathway.
Collapse
|
5
|
Dinani MS, Noushabadi SAE, Namdar F, Abharian PH, Hejazi SH, Sebghatollahi Z. In Vitro Study of the Leishmanicidal Activity of Perovskia Abrotanoides Terpenoid-Rich Fractions Against Leishmania Major (MRHO/IR/75/ER). Adv Biomed Res 2023; 12:67. [PMID: 37200741 PMCID: PMC10186040 DOI: 10.4103/abr.abr_175_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 05/20/2023] Open
Abstract
Background Cutaneous leishmaniasis (CL) is an ulcerative skin disease caused by some species of the genus Leishmania. Evidence shows that Perovskia abrotanoides is an important herbal medicine against Leishmania. This study was conducted to investigate the killing effect of terpenoid-rich fractions on promastigotes of L. major (MRHO/IR/75/ER). Material and Method The eluates of reverse phased medium pressure liquid chromatography (RP-MPLC) of the extract were subjected to thin-layer chromatography (TLC) and categorized into six final fractions. Primary proton nuclear magnetic resonance (H-NMR) spectroscopy confirmed fractions' nature. Fractions 4, 5, and 6 (F4, F5, F6) were identified as terpenoid-rich content. Two concentrations of 50 and 100 μg/ml were prepared to test leishmanicidal activity. Followed by treating promastigotes of L. major by the fractions in incubation times of 12, 24, and 48 hours, their viability was determined using a cell proliferation MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Result F4, F5, and F6 showed significant killing activity on promastigotes of L. major in a concentration-dependent manner. The viability of promastigotes was significantly reduced at a concentration of 100 μg/ml compared to 50 μg/ml (P-value <0.05). Also, over time a significant decreasing trend in the viability of promastigotes confirmed the time-dependent manner of the fractions (P-value <0.01). Furthermore, F5 had the highest leishmanicidal activity at the first incubation time compared with other fractions. Conclusion Terpenoid-rich fractions of the P. abrotanoides have a leishmanicidal activity that depends on time and concentration. Among them, F5 has the highest potency that may contain potent terpenoid constituents.
Collapse
Affiliation(s)
- Masoud Sadeghi Dinani
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed A. Emarati Noushabadi
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Namdar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Parastoo Hassani Abharian
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S. H. Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Sebghatollahi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Address for correspondence: Mrs. Zahra Sebghatollahi, Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
6
|
Ghosh S, Kumar V, Verma A, Sharma T, Pradhan D, Selvapandiyan A, Salotra P, Singh R. Genome-wide analysis reveals allelic variation and chromosome copy number variation in paromomycin-resistant Leishmania donovani. Parasitol Res 2022; 121:3121-3132. [PMID: 36056959 DOI: 10.1007/s00436-022-07645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
In the absence of adequate diagnosis and treatment, leishmaniasis remains a major public health concern on a global scale. Drug resistance remains a key obstacle in controlling and eliminating visceral leishmaniasis. The therapeutic gap due to lack of target-specific medicine and vaccine can be minimized by obtaining parasite's genomic information. This study compared whole-genome sequence of paromomycin-resistant parasite (K133PMM) developed through in vitro adaptation and selection with sensitive Leishmania clinical isolate (K133WT). We found a large number of upstream and intergenic gene variations in K133PMM. There were 259 single nucleotide polymorphisms (SNPs), 187 insertion-deletion (InDels), and 546 copy number variations (CNVs) identified. Most of the genomic variations were found in the gene's upstream and non-coding regions. Ploidy estimation revealed chromosome 5 in tetrasomy and 6, 9, and 12 in trisomy, uniquely in K133PMM. These contain the genes for protein degradation, parasite motility, autophagy, cell cycle maintenance, and drug efflux membrane transporters. Furthermore, we also observed reduction in ploidy of chromosomes 15, 20, and 23, in the resistant parasite containing mostly the genes for hypothetical proteins and membrane transporters. We chronicled correlated genomic conversion and aneuploidy in parasites and hypothesize that this led to rapid evolutionary changes in response to drug induced pressure, which causes them to become resistant.
Collapse
Affiliation(s)
- Sushmita Ghosh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Vinay Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Tanya Sharma
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, 110029, India
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, 110029, India
| | | | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
7
|
Genomic and Phenotypic Characterization of Experimentally Selected Resistant Leishmania donovani Reveals a Role for Dynamin-1-Like Protein in the Mechanism of Resistance to a Novel Antileishmanial Compound. mBio 2022; 13:e0326421. [PMID: 35012338 PMCID: PMC8749414 DOI: 10.1128/mbio.03264-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The implementation of prospective drug resistance (DR) studies in the research-and-development (R&D) pipeline is a common practice for many infectious diseases but not for neglected tropical diseases (NTDs). Here, we explored and demonstrated the importance of this approach using as paradigms Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GlaxoSmithKline (GSK) "Leishbox" to treat VL. We experimentally selected resistance to TCMDC-143345 in vitro and characterized resistant parasites at the genomic and phenotypic levels. We found that it took more time to develop resistance to TCMDC-143345 than to other drugs in clinical use and that there was no cross-resistance to these drugs, suggesting a new and unique mechanism. By whole-genome sequencing, we found two mutations in the gene encoding the L. donovani dynamin-1-like protein (LdoDLP1) that were fixed at the highest drug pressure. Through phylogenetic analysis, we identified LdoDLP1 as a family member of the dynamin-related proteins, a group of proteins that impacts the shapes of biological membranes by mediating fusion and fission events, with a putative role in mitochondrial fission. We found that L. donovani lines genetically engineered to harbor the two identified LdoDLP1 mutations were resistant to TCMDC-143345 and displayed altered mitochondrial properties. By homology modeling, we showed how the two LdoDLP1 mutations may influence protein structure and function. Taken together, our data reveal a clear involvement of LdoDLP1 in the adaptation/reduced susceptibility of L. donovani to TCMDC-143345. IMPORTANCE Humans and their pathogens are continuously locked in a molecular arms race during which the eventual emergence of pathogen drug resistance (DR) seems inevitable. For neglected tropical diseases (NTDs), DR is generally studied retrospectively once it has already been established in clinical settings. We previously recommended to keep one step ahead in the host-pathogen arms race and implement prospective DR studies in the R&D pipeline, a common practice for many infectious diseases but not for NTDs. Here, using Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GSK Leishbox to treat VL, as paradigms, we experimentally selected resistance to the compound and proceeded to genomic and phenotypic characterization of DR parasites. The results gathered in the present study suggest a new DR mechanism involving the L. donovani dynamin-1-like protein (LdoDLP1) and demonstrate the practical relevance of prospective DR studies.
Collapse
|
8
|
Metabolomics reveal alterations in arachidonic acid metabolism in Schistosoma mekongi after exposure to praziquantel. PLoS Negl Trop Dis 2021; 15:e0009706. [PMID: 34473691 PMCID: PMC8412319 DOI: 10.1371/journal.pntd.0009706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mekong schistosomiasis is a parasitic disease caused by the blood-dwelling fluke Schistosoma mekongi. This disease contributes to human morbidity and mortality in the Mekong region, posing a public health threat to people in the area. Currently, praziquantel (PZQ) is the drug of choice for the treatment of Mekong schistosomiasis. However, the molecular mechanisms of PZQ action remain unclear, and Schistosoma PZQ resistance has been reported occasionally. Through this research, we aimed to use a metabolomic approach to identify the potentially altered metabolic pathways in S. mekongi associated with PZQ treatment. METHODOLOGY/PRINCIPAL FINDINGS Adult stage S. mekongi were treated with 0, 20, 40, or 100 μg/mL PZQ in vitro. After an hour of exposure to PZQ, schistosome metabolites were extracted and studied with mass spectrometry. The metabolomic data for the treatment groups were analyzed with the XCMS online platform and compared with data for the no treatment group. After low, medium (IC50), and high doses of PZQ, we found changes in 1,007 metabolites, of which phosphatidylserine and anandamide were the major differential metabolites by multivariate and pairwise analysis. In the pathway analysis, arachidonic acid metabolism was found to be altered following PZQ treatment, indicating that this pathway may be affected by the drug and potentially considered as a novel target for anti-schistosomiasis drug development. CONCLUSIONS/SIGNIFICANCE Our findings suggest that arachidonic acid metabolism is a possible target in the parasiticidal effects of PZQ against S. mekongi. Identifying potential targets of the effective drug PZQ provides an interesting viewpoint for the discovery and development of new agents that could enhance the prevention and treatment of schistosomiasis.
Collapse
|
9
|
Hendrickx S, Reis-Cunha JL, Forrester S, Jeffares DC, Caljon G. Experimental Selection of Paromomycin Resistance in Leishmania donovani Amastigotes Induces Variable Genomic Polymorphisms. Microorganisms 2021; 9:microorganisms9081546. [PMID: 34442625 PMCID: PMC8398221 DOI: 10.3390/microorganisms9081546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
The relatively high post-treatment relapse rates of paromomycin (PMM) in visceral leishmaniasis treatment and the swift emergence of experimental drug resistance challenge its broad application and urge for rational use and monitoring of resistance. However, no causal molecular mechanisms to Leishmania PMM resistance have been identified so far. To gain insights into potential resistance mechanisms, twelve experimentally selected Leishmania donovani clonal lines and the non-cloned preselection population, with variable degrees of PMM resistance, were subjected to whole genome sequencing. To identify genomic variations potentially associated with resistance, SNPs, Indels, chromosomal somy and gene copy number variations were compared between the different parasite lines. A total of 11 short nucleotide variations and the copy number alterations in 39 genes were correlated to PMM resistance. Some of the identified genes are involved in transcription, translation and protein turn-over (transcription elongation factor-like protein, RNA-binding protein, ribosomal protein L1a, 60S ribosomal protein L6, eukaryotic translation initiation factor 4E-1, proteasome regulatory non-ATP-ase subunit 3), virulence (major surface protease gp63, protein-tyrosine phosphatase 1-like protein), mitochondrial function (ADP/ATP mitochondrial carrier-like protein), signaling (phosphatidylinositol 3-related kinase, protein kinase putative and protein-tyrosine phosphatase 1-like protein) and vesicular trafficking (ras-related protein RAB1). These results indicate that, in Leishmania, the aminoglycoside PMM affects protein translational processes and underlines the complex and probably multifactorial origin of resistance.
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium;
| | - João Luís Reis-Cunha
- Department of Biology and York Biomedical Research Institute, University of York, York YO31 5DD, UK; (J.L.R.-C.); (S.F.)
| | - Sarah Forrester
- Department of Biology and York Biomedical Research Institute, University of York, York YO31 5DD, UK; (J.L.R.-C.); (S.F.)
| | - Daniel C. Jeffares
- Department of Biology and York Biomedical Research Institute, University of York, York YO31 5DD, UK; (J.L.R.-C.); (S.F.)
- Correspondence: (D.C.J.); (G.C.); Tel.: +32-3-265-26-01 (G.C.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium;
- Correspondence: (D.C.J.); (G.C.); Tel.: +32-3-265-26-01 (G.C.)
| |
Collapse
|
10
|
Van Bockstal L, Hendrickx S, Maes L, Caljon G. Sand Fly Studies Predict Transmission Potential of Drug-resistant Leishmania. Trends Parasitol 2020; 36:785-795. [PMID: 32713762 DOI: 10.1016/j.pt.2020.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
Leishmania parasites have the capacity to rapidly adapt to changing environments in their digenetic life cycle which alternates between a vertebrate and an invertebrate host. Emergence of resistance following drug exposure can evoke phenotypic alterations that affect several aspects of parasite fitness in both hosts. Current studies of the impact of resistance are mostly limited to interactions with the mammalian host and characterization of in vitro parasite growth and differentiation. Development in the vector and transmission capacity have been largely ignored. This review reflects on the impact of drug resistance on its spreading potential with specific focus on the use of the sand fly infection model to evaluate parasite development in the vector and the ensuing transmission potential of drug-resistant phenotypes.
Collapse
Affiliation(s)
- Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| |
Collapse
|
11
|
Ahmed H, Carter KC, Williams RA. Structure and Antiparasitic Activity Relationship of Alkylphosphocholine Analogues against Leishmania donovani. Microorganisms 2020; 8:microorganisms8081117. [PMID: 32722326 PMCID: PMC7463460 DOI: 10.3390/microorganisms8081117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
Miltefosine (Milt) is the only oral treatment for visceral leishmaniasis (VL) but its use is associated with adverse effects, e.g., teratogenicity, vomiting, diarrhoea. Understanding how its chemical structure induces cytotoxicity, whilst not compromising its anti-parasitic efficacy, could identify more effective compounds. Therefore, we systemically modified the compound’s head, tail and linker tested the in vitro activity of three alkylphosphocholines (APC) series against Leishmania donovani strains with different sensitivities to antimony. The analogue, APC12, with an alkyl carbon chain of 12 atoms, was also tested for anti-leishmanial in vivo activity in a murine VL model. All APCs produced had anti-leishmanial activity in the micromolar range (IC50 and IC90, 0.46– > 82.21 µM and 4.14–739.89 µM; 0.01– > 8.02 µM and 0.09–72.18 µM, respectively, against promastigotes and intracellular amastigotes). The analogue, APC12 was the most active, was 4–10 fold more effective than the parent Milt molecule (APC16), irrespective of the strain’s sensitivity to antimony. Intravenous administration of 40 mg/kg APC12 to L. donovani infected BALB/c mice reduced liver and spleen parasite burdens by 60 ± 11% and 60 ± 19%, respectively, while oral administration reduced parasite load in the bone marrow by 54 ± 34%. These studies confirm that it is possible to alter the Milt structure and produce more active anti-leishmanial compounds.
Collapse
Affiliation(s)
- Humera Ahmed
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland School of Science and Sport High Street Paisley, Scotland PA1 2BE, UK;
| | - Katharine C. Carter
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde 121 Cathedral Street Glasgow, Scotland G4 ONR, UK;
| | - Roderick A.M. Williams
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland School of Science and Sport High Street Paisley, Scotland PA1 2BE, UK;
- Correspondence:
| |
Collapse
|
12
|
Can We Harness Immune Responses to Improve Drug Treatment in Leishmaniasis? Microorganisms 2020; 8:microorganisms8071069. [PMID: 32709117 PMCID: PMC7409143 DOI: 10.3390/microorganisms8071069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease that has been neglected in priority for control and eradication of malaria, tuberculosis, and HIV/AIDS. Collectively, over one seventh of the world’s population is at risk of being infected with 0.7–1.2 million new infections reported annually. Clinical manifestations range from self-healing cutaneous lesions to fatal visceral disease. The first anti-leishmanial drugs were introduced in the 1950′s and, despite several shortcomings, remain the mainstay for treatment. Regardless of this and the steady increase in infections over the years, particularly among populations of low economic status, research on leishmaniasis remains under funded. This review looks at the drugs currently in clinical use and how they interact with the host immune response. Employing chemoimmunotherapeutic approaches may be one viable alternative to improve the efficacy of novel/existing drugs and extend their lifespan in clinical use.
Collapse
|
13
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|