1
|
Kagi T, Inoue A, Noguchi T, Suzuki W, Takano S, Otani K, Naganuma R, Sekiguchi Y, Hirata Y, Shindo S, Hwang GW, Matsuzawa A. The NLRP3 Inflammasome Is a Major Cause of Acute Renal Failure Induced by Polypeptide Antibiotics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1807-1818. [PMID: 38639584 DOI: 10.4049/jimmunol.2300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Drug-induced acute renal failure (ARF) is a public health concern that hinders optimal drug therapy. However, pathological mechanisms of drug-induced ARF remain to be elucidated. Here, we show that a pathological process of drug-induced ARF is mediated by proinflammatory cross-talk between kidney tubular cells and macrophages. Both polymyxin B and colistin, polypeptide antibiotics, frequently cause ARF, stimulated the ERK and NF-κB pathways in kidney tubular cells, and thereby upregulated M-CSF and MCP-1, leading to infiltration of macrophages into the kidneys. Thereafter, the kidney-infiltrated macrophages were exposed to polypeptide antibiotics, which initiated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Interestingly, blockade of the NLRP3 activation clearly ameliorated the pathology of ARF induced by polypeptide antibiotics, suggesting that a combination of the distinct cellular responses to polypeptide antibiotics in kidney tubular cells and macrophages plays a key role in the pathogenesis of colistin-induced ARF. Thus, our results provide a concrete example of how drugs initiate ARF, which may give insight into the underlying pathological process of drug-induced ARF.
Collapse
Affiliation(s)
- Tomohiro Kagi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Saya Takano
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohei Otani
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Rio Naganuma
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sawako Shindo
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Environmental Toxicology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
de Oliveira BKF, de Oliveira Silva E, Ventura S, Vieira GHF, de Pina Victoria CD, Volpini RA, de Fátima Fernandes Vattimo M. Amazonia Phytotherapy Reduces Ischemia and Reperfusion Injury in the Kidneys. Cells 2023; 12:1688. [PMID: 37443721 PMCID: PMC10341095 DOI: 10.3390/cells12131688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Acute kidney injury (AKI) is defined as a sudden decrease in kidney function. Phytomedicines have shown positive effects in the treatment of AKI worldwide. The aim of this study was to evaluate the effect of Abuta grandifolia on the renal function of rats submitted to AKI. A phytochemical study of the plant was performed through liquid chromatography coupled with mass spectrometry (CL-EM) and DPPH and ABTS antioxidant tests. Renal function tests were performed in 20 male adult Wistar rats weighing from 250 to 300 g distributed in the following groups: SHAM (submitted to laparotomy with simulation of renal ischemia); ABUTA (animals that received 400 mg/kg of AG, orally-VO, once a day, for 5 days, with simulation of renal ischemia); I/N (animals submitted to laparotomy for clamping of bilateral renal pedicles for 30 min, followed by reperfusion); ABUTA + I/R (animals that received AG-400 mg/kg, 1× per day, VO, for 5 days, submitted to renal ischemia after treatment with herbal medicine). The results suggest that the consumption of Abuta grandifolia promoted renoprotection, preventing the reduction of renal function induced by ischemia, oxidizing activity, and deleterious effects on the renal tissue, confirmed by the decrease of oxidative metabolites and increase of antioxidants in the animals' organisms.
Collapse
Affiliation(s)
| | - Eloiza de Oliveira Silva
- School of Nursing, University of São Paulo, São Paulo 05403-000, Brazil; (E.d.O.S.); (S.V.); (G.H.F.V.); (C.D.d.P.V.); (M.d.F.F.V.)
| | - Sara Ventura
- School of Nursing, University of São Paulo, São Paulo 05403-000, Brazil; (E.d.O.S.); (S.V.); (G.H.F.V.); (C.D.d.P.V.); (M.d.F.F.V.)
| | | | - Carla Djamila de Pina Victoria
- School of Nursing, University of São Paulo, São Paulo 05403-000, Brazil; (E.d.O.S.); (S.V.); (G.H.F.V.); (C.D.d.P.V.); (M.d.F.F.V.)
| | | | | |
Collapse
|
3
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
4
|
da Fonseca CD, Watanabe M, Couto SMF, dos Santos AAC, Borges FT, Vattimo MDFF. The renoprotective effects of Heme Oxygenase-1 during contrast-induced acute kidney injury in preclinical diabetic models. Clinics (Sao Paulo) 2021; 76:e3002. [PMID: 34669875 PMCID: PMC8491594 DOI: 10.6061/clinics/2021/e3002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Contrast-induced acute kidney injury (CI-AKI) is an important clinical problem that can be aggravated by diabetes mellitus, a major risk factor. However, heme oxygenase-1 (HO-1), a promising therapeutic target, can exert antioxidant effects against CI-AKI. Thus, we investigated the role of HO-1 in CI-AKI in the presence of diabetes mellitus. METHODS Twenty-eight male Wistar rats weighing 250-300g were subjected to left uninephrectomy, and concomitantly, diabetes induced by streptozotocin (65 mg/kg). After 12 weeks, iodinated contrast (meglumine ioxithalamate, 6 mL/kg) and hemin (HO-1 inducer-10 mg/k) were administered 60 min before iodinated contrast treatment. The rats were randomly divided into four groups: control, diabetes mellitus (DM), DM iodinated contrast (DMIC), and DMIC hemin (DMICH). Kidney function, albuminuria, oxidative profile, and histology were assessed. All experimental data were subjected to statistical analyses. RESULTS CI-AKI in preclinical diabetic models decreased creatinine clearance and increased urinary neutrophil gelatinase-associated lipocalin (NGAL) levels and the degree of albuminuria. Additionally, the levels of oxidative and nitrosative stress metabolites (urinary peroxides, thiobarbituric acid-reactive substances, and NO) were elevated, while thiol levels in kidney tissue were reduced. Kidney histology showed tubular cell vacuolization and edema. HO-1 inducer treatment improved kidney function and reduced urinary the NGAL levels. The oxidative profile showed an increase in the endogenous thiol-based antioxidant levels. Additionally, the tubular injury score was reduced following HO-1 treatment. CONCLUSIONS Our findings highlight the renoprotective effects of HO-1 in CI-AKI and preclinical diabetic models. Therefore, HO-1 ameliorates kidney dysfunction, reduces oxidative stress, and prevents cell necrosis.
Collapse
Affiliation(s)
- Cassiane Dezoti da Fonseca
- Escola Paulista de Enfermagem, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
- Laboratorio Experimental de Modelos Animais (LEMA), Escola de Enfermagem, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Mirian Watanabe
- Centro Universitario das Faculdades Metropolitanas Unidas (FMU), Sao Paulo, SP, BR
| | | | | | - Fernanda Teixeira Borges
- Programa de Pos-graduacao Interdisciplinar em Ciencias da Saude, Universidade Cruzeiro do Sul, Sao Paulo SP, BR
- Divisao de Nefrologia, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
5
|
Dai C, Wang Y, Sharma G, Shen J, Velkov T, Xiao X. Polymyxins-Curcumin Combination Antimicrobial Therapy: Safety Implications and Efficacy for Infection Treatment. Antioxidants (Basel) 2020; 9:antiox9060506. [PMID: 32526966 PMCID: PMC7346118 DOI: 10.3390/antiox9060506] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of antimicrobial resistance in Gram-negative bacteria poses a huge health challenge. The therapeutic use of polymyxins (i.e., colistin and polymyxin B) is commonplace due to high efficacy and limiting treatment options for multidrug-resistant Gram-negative bacterial infections. Nephrotoxicity and neurotoxicity are the major dose-limiting factors that limit the therapeutic window of polymyxins; nephrotoxicity is a complication in up to ~60% of patients. The emergence of polymyxin-resistant strains or polymyxin heteroresistance is also a limiting factor. These caveats have catalyzed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and resistant organisms and/or minimize the unwanted side effects. Curcumin—an FDA-approved natural product—exerts many pharmacological activities. Recent studies showed that polymyxins–curcumin combinations showed a synergistically inhibitory effect on the growth of bacteria (e.g., Gram-positive and Gram-negative bacteria) in vitro. Moreover, curcumin co-administration ameliorated colistin-induced nephrotoxicity and neurotoxicity by inhibiting oxidative stress, mitochondrial dysfunction, inflammation and apoptosis. In this review, we summarize the current knowledge-base of polymyxins–curcumin combination therapy and discuss the underlying mechanisms. For the clinical translation of this combination to become a reality, further research is required to develop novel polymyxins–curcumin formulations with optimized pharmacokinetics and dosage regimens.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, the University of Melbourne, Parkville 3052, Australia;
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| |
Collapse
|
6
|
Cordeiro PM, Fernandes SM, Fonseca CDD, Watanabe M, Lopes SM, Vattimo MDFF. Effects of Justicia acuminatissima, or Amazonian Sara Tudo, on ischemic acute kidney injury: an experimental study. Rev Esc Enferm USP 2019; 53:e03487. [PMID: 31433017 DOI: 10.1590/s1980-220x2018019203487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/31/2018] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To evaluate the effects of Justicia acuminatissima , or Amazonian Sara Tudo , on renal hemodynamics, oxidative profile, and renal histology in rats with ischemic acute kidney injury. METHOD Preclinical assay with adult male Wistar rats, weighing from 250 g to 350 g, distributed into Sham, ischemia, and ischemia + Sara Tudo groups. Hemodynamic parameters, renal function, oxidative stress, and renal histology were evaluated. RESULTS Pretreatment with Sara Tudo reduced the functional injury, which was shown by the increase in creatinine clearance and thiols; reduction of oxidative markers, renal vascular resistance, and tubulointerstitial injury in the renal tissue; and the significant improvement in renal blood flow. CONCLUSION The renoprotection provided by Justicia acuminatissima , or Sara Tudo , in cases of ischemic acute kidney injury was characterized by a marked improvement in renal function, reducing the oxidative injury, and impacting on renal histology positively.
Collapse
Affiliation(s)
| | - Sheila Marques Fernandes
- Universidade de São Paulo, Escola de Enfermagem, Laboratório Experimental de Modelos Animais, São Paulo, SP, Brazil
| | - Cassiane Dezoti da Fonseca
- Universidade de São Paulo, Escola de Enfermagem, Laboratório Experimental de Modelos Animais, São Paulo, SP, Brazil
| | - Mirian Watanabe
- Universidade de São Paulo, Escola de Enfermagem, Laboratório Experimental de Modelos Animais, São Paulo, SP, Brazil
| | - Sérgio Martins Lopes
- Universidade de São Paulo, Escola de Enfermagem, Laboratório Experimental de Modelos Animais, São Paulo, SP, Brazil
| | | |
Collapse
|
7
|
Yokosawa T, Yamada M, Noguchi T, Suzuki S, Hirata Y, Matsuzawa A. Pro-caspase-3 protects cells from polymyxin B-induced cytotoxicity by preventing ROS accumulation. J Antibiot (Tokyo) 2019; 72:848-852. [PMID: 31371783 DOI: 10.1038/s41429-019-0216-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022]
Abstract
Polymyxin B (PMB), a last-line antibiotic used against antibiotic-resistant superbugs, causes undesirable cytotoxic side effects. However, its mechanisms remain unknown. In this study, we unexpectedly found that caspase-3, a main executor of apoptosis, plays a protective role in PMB-induced cytotoxicity. Caspase-3 knockout (KO) cells exhibited higher susceptibility to PMB-induced cytotoxicity compared with wild-type (WT) cells, accompanied by increased levels of reactive oxygen species (ROS). Interestingly, co-treatment with the antioxidant N-acetylcysteine (NAC) rescued cell viability to a similar extent as WT cells. Furthermore, PMB failed to facilitate the processing of inactive caspase-3 (pro-caspase-3) into active forms, suggesting that pro-caspase-3 nonenzymatically suppresses PMB-driven ROS accumulation and its cytotoxicity. Thus, our findings that demonstrate the potential ability of PMB to stimulate ROS generation, but which is normally masked by pro-caspase-3-dependent mechanisms, may provide novel insights into the mechanisms of PMB-induced side effects.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Saki Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
8
|
Azad MAK, Nation RL, Velkov T, Li J. Mechanisms of Polymyxin-Induced Nephrotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:305-319. [PMID: 31364084 DOI: 10.1007/978-3-030-16373-0_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polymyxin-induced nephrotoxicity is the major dose-limiting factor and can occur in up to 60% of patients after intravenous administration. This chapter reviews the latest literature on the mechanisms of polymyxin-induced nephrotoxicity and its amelioration. After filtration by glomeruli, polymyxins substantially accumulate in renal proximal tubules via receptor-mediated endocytosis mainly by megalin and PEPT2. It is believed that subsequently, a cascade of interconnected events occur, including the activation of death receptor and mitochondrial apoptotic pathways, mitochondrial damage, endoplasmic reticulum stress, oxidative stress and cell cycle arrest. The current literature shows that oxidative stress plays a key role in polymyxin-induced kidney damage. Use of antioxidants have a potential in the attenuation of polymyxin-induced nephrotoxicity, thereby widening the therapeutic window. Mechanistic findings on polymyxin-induced nephrotoxicity are critical for the optimization of their use in the clinic and the discovery of safer polymyxin-like antibiotics.
Collapse
Affiliation(s)
- Mohammad A K Azad
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Melbourne, VIC, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton Campus, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Martins ALCDL, Watanabe M, Fernandes SM, Fonseca CDD, Vattimo MDFF. Diabetes Mellitus: fator de risco para toxicidade de medicamentos. Rev Esc Enferm USP 2018; 52:e03347. [DOI: 10.1590/s1980-220x2017033503347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/31/2018] [Indexed: 11/22/2022] Open
Abstract
RESUMO Objetivo Avaliar o efeito do antibiótico gentamicina em modelo experimental na presença de Diabetes Mellitus por meio da função renal e perfil oxidativo. Método Ratos Wistar, adultos, machos, foram distribuídos nos grupos: Citrato; Gentamicina (Genta), (gentamicina 100 mg/kg de peso corporal, 1 vez ao dia, intraperitoneal, i.p., 5 dias); DM (60 mg/kg de STZ, intravenosa, i.v., dose única, diluída em tampão citrato) e DM+Genta. Foram avaliados os parâmetros fisiológicos, a função renal (clearance de creatinina), a lesão oxidativa (peróxidos e substâncias reativas ao ácido tiobarbitúrico − TBARS urinários) e a hemodinâmica renal. Resultados O grupo Diabetes Mellitus apresentou hiperglicemia crônica, associada à perda de peso corporal, polifagia, polidipsia e poliúria, além de redução da função renal, com aumento na excreção de metabólitos oxidativos. A administração de gentamicina induziu a redução do fluxo sanguíneo renal e o aumento da resistência vascular renal em ratos saudáveis. A associação do Diabetes Mellitus com gentamicina resultou em redução adicional na função renal e elevação de metabólitos oxidativos, com aumento de resistência vascular renal. Conclusão A existência de Diabetes Mellitus determinou a elevação da nefrotoxicidade da gentamicina e se confirmou como fator de risco para nefrotoxicidade de medicamentos.
Collapse
Affiliation(s)
| | - Mirian Watanabe
- Universidade de São Paulo, Brasil; Universidades Metropolitanas Unidas, Brasil
| | | | | | | |
Collapse
|
10
|
Vasco CF, Watanabe M, Fonseca CDD, Vattimo MDFF. Sepsis-induced acute kidney injury: kidney protection effects by antioxidants. Rev Bras Enferm 2018; 71:1921-1927. [DOI: 10.1590/0034-7167-2017-0469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT Objective: To evaluate the antioxidant action of N-acetylcysteine and diosmin-hesperidin in an experimental model of sepsis-induced acute kidney injury in rats. Methods: The study used 20 Wistar adult male rats divided into the following groups: control (laparotomy with no induction of abdominal sepsis), sepsis (experimental model of sepsis with cecal ligation and puncture), N-acetylcysteine + sepsis and diosmin-hesperidin + sepsis. The evaluation contemplated physiological parameters (temperature, glycemia, and average blood pressure), kidney function (creatinine clearance), oxidative stress (urinary peroxides) and kidney histology. Results: The animals submitted to cecal ligation and puncture (sepsis) presented lower body temperature, lower average blood pressure, reduced creatinine clearance and increased urinary hydrogen peroxide levels. Treatment with diosmin-hesperidin improved kidney function and led to a reduction in the excretion of oxidative metabolites. Conclusion: The present study highlighted the protective antioxidant action of diosmin-hesperidin in the experimental model of sepsis-induced acute kidney injury.
Collapse
|
11
|
Dai C, Tang S, Wang Y, Velkov T, Xiao X. Baicalein acts as a nephroprotectant that ameliorates colistin-induced nephrotoxicity by activating the antioxidant defence mechanism of the kidneys and down-regulating the inflammatory response. J Antimicrob Chemother 2018; 72:2562-2569. [PMID: 28859441 DOI: 10.1093/jac/dkx185] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/19/2017] [Indexed: 01/05/2023] Open
Abstract
Background Nephrotoxicity is the major adverse effect patients experience during colistin therapy. The development of effective nephroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. Objectives To investigate the nephroprotective effect of baicalein, a component of the root of Scutellaria baicalensis, against colistin-induced nephrotoxicity using a mouse model. Methods C57BL/6 mice were randomly divided into the following groups: control, baicalein 100 mg/kg/day (administered orally), colistin (18 mg/kg/day administered intraperitoneally) and colistin (18 mg/kg/day) plus baicalein (25, 50 and 100 mg/kg/day). After 7 day treatments, histopathological damage, the markers of renal functions, oxidative stress and inflammation were examined. The expressions of Nrf2, HO-1 and NF-κB mRNAs were also further examined using quantitative RT-PCR examination. Results Baicalein co-administration markedly attenuated colistin-induced oxidative and nitrative stress, apoptosis, the infiltration of inflammatory cells, and caused decreases in IL-1β and TNF-α levels (all P < 0.05 or 0.01) in the kidney tissues. Baicalein co-administration up-regulated expression of Nrf2 and HO-1 mRNAs and down-regulated the expression of NF-κB mRNA, compared with those in the colistin alone group. Conclusions To the best of our knowledge, this is the first study demonstrating the protective effect of baicalein on colistin-induced nephrotoxicity and apoptosis by activating the antioxidant defence mechanism in kidneys and down-regulating the inflammatory response. Our study highlights that oral baicalein could potentially ameliorate nephrotoxicity in patients undergoing polymyxin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yang Wang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xilong Xiao
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
12
|
Akintunde JK, Abubakar OK. Novel therapeutic approaches of natural oil from black seeds and its underlying mechanisms against kidney dysfunctions in haloperidol-induced male rats. Drug Metab Pers Ther 2018; 32:97-107. [PMID: 28384101 DOI: 10.1515/dmpt-2016-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/07/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Antipsychotic drugs could be nephrotoxic in schizophrenia patients. METHODS The present study investigated the protective effect of oil from black seed on kidney dysfunctions using several biological approaches in adult rats. The animals were divided into six groups (n=10): normal control rats; haloperidol (HAL)-induced rats: induced rats were pre-, co- and post-treated with black seed oil (BSO), respectively, and the last group was treated with the oil only. The treatment was done through oral administration, and the experiment lasted 14 days. RESULTS Therapeutic administration of HAL to rats caused reduction in both enzymatic and non-enzymatic proteins mediated by stable OH˙ and DPPH free radicals. K+, Na+ and MDA contents as well as 51 nucleotidase, aldose-reductase activities were increased with corresponding decrease in the activity of lactate dehydrogenase (LDH) in HAL-induced toxicity rats. Contrariwise, differential treatments with BSO prevented and reversed the nephrotoxicity by depleting K+, Na+, MDA contents and aldose-reductase activity, and AMP hydrolysis with increased adenosine triphosphate (ATP) in the PMFs of rat kidney. The cytotoxicity of HAL elicited on both inner renal cortex and outer medulla was equally alleviated by combined active molecules of oil from black seed (OBS). However, pre-, co- and post-treatment demonstrate significant approaches in averting nephrotoxicity of neuroleptic drug (HAL) via several biological mechanisms. CONCLUSIONS This study therefore validates the use of black seed oil as therapy particularly for individuals with renal dysfunctions.
Collapse
|
13
|
Methionine Ameliorates Polymyxin-Induced Nephrotoxicity by Attenuating Cellular Oxidative Stress. Antimicrob Agents Chemother 2017; 62:AAC.01254-17. [PMID: 29061752 DOI: 10.1128/aac.01254-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/13/2017] [Indexed: 11/20/2022] Open
Abstract
Polymyxins are a last line of defense against multidrug-resistant Gram-negative pathogens. Recent pharmacological data show that intravenous polymyxins can cause nephrotoxicity in up to 60% of patients, and the plasma concentrations of polymyxins achieved with the currently recommended dosage regimens are suboptimal in a large proportion of patients. Simply increasing the daily dose of polymyxins is not possible due to nephrotoxicity. This study aimed to examine the protective effect of methionine against polymyxin-induced nephrotoxicity. Methionine (400 mg/kg of body weight), polymyxin B (35 mg/kg), a combination of methionine (100 or 400 mg/kg) and polymyxin B, and saline were administered to mice twice daily over 3.5 days. Kidneys were collected immediately at the end of the experiment for histological examination. The effect of methionine on the pharmacokinetics of polymyxin B was investigated in rats. The attenuation of polymyxin B (0.75 mM)-induced mitochondrial superoxide production by methionine (10.0 mM) was examined in rat kidney (NRK-52E) cells. Histological results revealed that the polymyxin-induced nephrotoxicity in mice was ameliorated by methionine in a dose-dependent manner. The methionine doses were well tolerated in the mice and rats, and the pharmacokinetics of polymyxin B in rats were not affected by methionine. In the group receiving polymyxin B-methionine, the total body clearance of polymyxin B was very similar to that in the group receiving polymyxin B alone (3.71 ± 0.57 versus 3.12 ± 1.66 ml/min/kg, P > 0.05). A substantial attenuation of polymyxin-induced mitochondrial superoxide production in NRK-52E cells was observed following pretreatment with methionine. Our results demonstrate that coadministration of methionine significantly ameliorated polymyxin-induced nephrotoxicity and decreased mitochondrial superoxide production in renal tubular cells.
Collapse
|
14
|
Ali MAM, Heeba GH, El-Sheikh AAK. Modulation of heme oxygenase-1 expression and activity affects streptozotocin-induced diabetic nephropathy in rats. Fundam Clin Pharmacol 2017; 31:546-557. [PMID: 28543864 DOI: 10.1111/fcp.12296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/24/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Heme oxygenase (HO)-1 has exhibited nephro-protective actions in different animal models; however, its full mechanistic potential in diabetic nephropathy (DN) has not yet been elucidated. Hence, the present study has been undertaken by inducing DN in rats using streptozotocin (50 mg/kg i.p.), with or without either HO-1 inducer; hemin (HM; 40 μmol/kg, s.c.), or HO-1 blocker; zinc protoporphyrin-IX (ZnPP; 50 μmol/kg, i.p.), for one month. Compared to control, rats with DN suffered from hyperglycemia and hyperlipidemia, with signs of renal damage, as assessed by distortion in renal histopathologic architecture and kidney function. Renal oxidative/nitrosative stress was evident by increased malondialdehyde, nitric oxide, myeloperoxidase, with decreased reduced glutathione, superoxide dismutase, and catalase. DN group also exhibited high renal expression of the pro-inflammatory cytokine; tumor necrosis factor (TNF)-α, and the apoptotic marker; caspase 3, assessed by Western blot. Renal HO-1 protein expression and activity were increased in DN rats compared to control. Administration of HM, but not ZnPP, to DN rats improved kidney function, histopathologic features, lipid profile, TNF-α, and caspase 3 expressions, with no effect on blood glucose level. HM increased, while ZnPP decreased renal HO-1 activity in DN rats. It is noteworthy that neither intervention affected HO-1 activity or renal oxidative capacity in non-diabetic rats. Interestingly, the expression of HO-1 was upregulated by both HM and ZnPP in DN rats. In conclusion, activation of HO-1 via HM ameliorated renal damage in STZ-induced DN in rats, probably through antioxidant, anti-nitrosative, anti-inflammatory, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Marwa A M Ali
- El-Fekrya Central Hospital, Minia Directorate of Health, Ministry of Health, El-Minia, Egypt
| | - Gehan H Heeba
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Minia University, 61511, Minia, Egypt
| | - Azza A K El-Sheikh
- Pharmacology Department, Faculty of Medicine, Minia University, 61511, Minia, Egypt.,Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Fernandes SM, Cordeiro PM, Watanabe M, Fonseca CDD, Vattimo MDFF. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2016; 60:443-449. [PMID: 27812607 PMCID: PMC10118643 DOI: 10.1590/2359-3997000000188] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/20/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the role of oxidative stress in an experimental model of streptozotocin-induced diabetic nephropathy in rats. MATERIALS AND METHODS Wistar, adult, male rats were used in the study. Animals were divided in the following groups: Citrate (control, citrate buffer 0.01M, pH 4.2 was administrated intravenously - i.v - in the caudal vein), Uninephrectomy+Citrate (left uninephrectomy-20 days before the study), DM (streptozotocin, 65 mg/kg, i.v, on the 20th day of the study), Uninephrectomy+DM. Physiological parameters (water and food intake, body weight, blood glucose, kidney weight, and relative kidney weight); renal function (creatinine clearance), urine albumin (immunodiffusion method); oxidative metabolites (urinary peroxides, thiobarbituric acid reactive substances, and thiols in renal tissue), and kidney histology were evaluated. RESULTS Polyphagia, polydipsia, hyperglycemia, and reduced body weight were observed in diabetic rats. Renal function was reduced in diabetic groups (creatinine clearance, p < 0.05). Uninephrectomy potentiated urine albumin and increased kidney weight and relative kidney weight in diabetic animals (p < 0.05). Urinary peroxides and thiobarbituric acid reactive substances were increased, and the reduction in thiol levels demonstrated endogenous substrate consumption in diabetic groups (p < 0.05). The histological analysis revealed moderate lesions of diabetic nephropathy. CONCLUSION This study confirms lipid peroxidation and intense consumption of the antioxidant defense system in diabetic rats. The association of hyperglycemia and uninephrectomy resulted in additional renal injury, demonstrating that the model is adequate for the study of diabetic nephropathy.
Collapse
|
16
|
Vattimo MDFF, Watanabe M, da Fonseca CD, Neiva LBDM, Pessoa EA, Borges FT. Polymyxin B Nephrotoxicity: From Organ to Cell Damage. PLoS One 2016; 11:e0161057. [PMID: 27532263 PMCID: PMC4988638 DOI: 10.1371/journal.pone.0161057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/30/2016] [Indexed: 12/20/2022] Open
Abstract
Polymyxins have a long history of dose-limiting toxicity, but the underlying mechanism of polymyxin B-induced nephrotoxicity is unclear. This study investigated the link between the nephrotoxic effects of polymyxin B on renal metabolic functions and mitochondrial morphology in rats and on the structural integrity of LLC-PK1 cells. Fifteen Wistar rats were divided into two groups: Saline group, rats received 3 mL/kg of 0.9% NaCl intraperitoneally (i.p.) once a day for 5 days; Polymyxin B group, rats received 4 mg/kg/day of polymyxin B i.p. once a day for 5 days. Renal function, renal hemodynamics, oxidative stress, mitochondrial injury and histological characteristics were assessed. Cell membrane damage was evaluated via lactate dehydrogenase and nitric oxide levels, cell viability, and apoptosis in cells exposed to 12.5 μM, 75 μM and 375 μM polymyxin B. Polymyxin B was immunolocated using Lissamine rhodamine-polymyxin B in LLC-PK1 cells. Polymyxin B administration in rats reduced creatinine clearance and increased renal vascular resistance and oxidative damage. Mitochondrial damage was confirmed by electron microscopy and cytosolic localization of cytochrome c. Histological analysis revealed tubular dilatation and necrosis in the renal cortex. The reduction in cell viability and the increase in apoptosis, lactate dehydrogenase levels and nitric oxide levels confirmed the cytotoxicity of polymyxin B. The incubation of LLC-PK1 cells resulted in mitochondrial localization of polymyxin B. This study demonstrates that polymyxin B nephrotoxicity is characterized by mitochondrial dysfunction and free radical generation in both LLC-PK1 cells and rat kidneys. These data also provide support for clinical studies on the side effects of polymyxin B.
Collapse
Affiliation(s)
| | - Mirian Watanabe
- Experimental Laboratory of Animal Models (LEMA), School of Nursing of the University of Sao Paulo, Sao Paulo, Brazil
| | - Cassiane Dezoti da Fonseca
- Experimental Laboratory of Animal Models (LEMA), School of Nursing of the University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana Barros de Moura Neiva
- Experimental Laboratory of Animal Models (LEMA), School of Nursing of the University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
17
|
Jeong ES, Kim G, Moon KS, Kim YB, Oh JH, Kim HS, Jeong J, Shin JG, Kim DH. Characterization of urinary metabolites as biomarkers of colistin-induced nephrotoxicity in rats by a liquid chromatography/mass spectrometry-based metabolomics approach. Toxicol Lett 2016; 248:52-60. [PMID: 26947560 DOI: 10.1016/j.toxlet.2016.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/18/2022]
Abstract
Colistin is a polypeptide antibiotic that effectively treats infections caused by multidrug-resistant Gram-negative bacteria, but its clinical use is limited due to nephrotoxicity. The purpose of the present study was to identify biomarkers of colistin-induced nephrotoxicity and to further characterize the mechanisms underlying this process by analyzing urinary metabolites using untargeted metabolomic approach. Rats receiving intraperitoneal administration of colistin sodium methanesulfonate (CMS) (25 or 50mg/kg) exhibited histopathological changes in the kidney and increased blood urea nitrogen levels. Additionally, the levels of phenylalanine, tryptophan, and tyrosine in the urine of the CMS-treated group were significantly higher than those of the control group, suggesting that colistin caused proximal tubular damage. Urinary acetylcarnitine and butyrylcarnitine levels also increased after CMS treatment, but the levels of purine metabolites and metabolites related to the tricarboxylic acid cycle were reduced. The most significant increase in the CMS-treated groups was observed in creatine levels. CMS-induced selective nephrotoxicity may be attributed to relatively high tissue concentrations of colistin in the kidney. Taken together, our results indicate that high levels of colistin in the kidney caused perturbations in the tricarboxylic acid cycle, amino acid metabolism, creatine metabolism, and purine metabolism and ultimately led to kidney injury.
Collapse
Affiliation(s)
- Eun Sook Jeong
- Department of Pharmacology and Pharmacogenomics Research center, Inje University, College of Medicine, Bokjiro 75, Busanjin-Gu, Busan 614-735 South Korea
| | - Gabin Kim
- Department of Pharmacology and Pharmacogenomics Research center, Inje University, College of Medicine, Bokjiro 75, Busanjin-Gu, Busan 614-735 South Korea
| | - Kyoung-Sik Moon
- Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-343, South Korea
| | - Yong-Bum Kim
- Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-343, South Korea
| | - Jung-Hwa Oh
- Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-343, South Korea
| | - Ho-Sook Kim
- Department of Pharmacology and Pharmacogenomics Research center, Inje University, College of Medicine, Bokjiro 75, Busanjin-Gu, Busan 614-735 South Korea
| | - Jayoung Jeong
- Ministry of Food and Drug Safety, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 361-951, South Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Pharmacogenomics Research center, Inje University, College of Medicine, Bokjiro 75, Busanjin-Gu, Busan 614-735 South Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Pharmacogenomics Research center, Inje University, College of Medicine, Bokjiro 75, Busanjin-Gu, Busan 614-735 South Korea.
| |
Collapse
|
18
|
Schlottfeldt FDS, Fernandes SM, Martins DM, Cordeiro P, Fonseca CDD, Watanabe M, Vattimo MDFF. Prevention of amphotericin B nephrotoxicity through use of phytotherapeutic medication. Rev Esc Enferm USP 2015; 49 Spec No:74-9. [PMID: 26761695 DOI: 10.1590/s0080-623420150000700011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022] Open
Abstract
Objective To evaluate the effect of diosmin and hesperidin flavonoids in the prevention of amphotericin B nephrotoxicity, through an experimental model on rats. Method Adult, male Wistar rats were distributed into the following groups: saline; diosmin hesperidin (animals that received 50 mg/kg of diosmin hesperidin, drinking water, for ten days); amphotericin B (animals that received 15 mg/kg/day of amphotericin B through intraperitoneal treatment for five days); amphotericin B+diosmin hesperidin. Renal function, fractional excretion of sodium; potassium and magnesium and oxidative metabolites were evaluated. Results Treatment with amphotericin B reduced renal function, as shown by the clearance of creatinine, increased tubular function markers and fractional excretion of sodium, potassium, magnesium and oxidative metabolites. Pre-treatment with diosmin hesperidin ameliorated clearance of creatinine and reduced tubular and oxidative injury. Conclusion Administration of amphotericin B resulted in reduction of renal function with tubular injury, and diosmin hesperidin showing an antioxidant protective effect on the kidneys.
Collapse
Affiliation(s)
| | | | | | | | | | - Mirian Watanabe
- Escola de Enfermagem, Universidade de São Paulo, São Paulo, SP, Brasil
| | | |
Collapse
|
19
|
Azad MAK, Roberts KD, Yu HH, Liu B, Schofield AV, James SA, Howard DL, Nation RL, Rogers K, de Jonge MD, Thompson PE, Fu J, Velkov T, Li J. Significant accumulation of polymyxin in single renal tubular cells: a medicinal chemistry and triple correlative microscopy approach. Anal Chem 2015; 87:1590-5. [PMID: 25553489 PMCID: PMC4318625 DOI: 10.1021/ac504516k] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Polymyxin is the last-line therapy
against Gram-negative ‘superbugs’;
however, dose-limiting nephrotoxicity can occur in up to 60% of patients
after intravenous administration. Understanding the accumulation and
concentration of polymyxin within renal tubular cells is essential
for the development of novel strategies to ameliorate its nephrotoxicity
and to develop safer, new polymyxins. We designed and synthesized
a novel dual-modality iodine-labeled fluorescent probe for quantitative
mapping of polymyxin in kidney proximal tubular cells. Measured by
synchrotron X-ray fluorescence microscopy, polymyxin concentrations
in single rat (NRK-52E) and human (HK-2) kidney tubular cells were
approximately 1930- to 4760-fold higher than extracellular concentrations.
Our study is the first to quantitatively measure the significant uptake
of polymyxin in renal tubular cells and provides crucial information
for the understanding of polymyxin-induced nephrotoxicity. Importantly,
our approach represents a significant methodological advancement in
determination of drug uptake for single-cell pharmacology.
Collapse
Affiliation(s)
- Mohammad A K Azad
- Drug Delivery, Disposition and Dynamics, and ‡Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lycopene attenuates colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway. Antimicrob Agents Chemother 2014; 59:579-85. [PMID: 25385104 DOI: 10.1128/aac.03925-14] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nephrotoxicity is the major dose-limiting factor for the clinical use of colistin against multidrug-resistant (MDR) Gram-negative bacteria. This study aimed to investigate the protective effect of lycopene on colistin-induced nephrotoxicity in a mouse model. Fifty mice were randomly divided into 5 groups: the control group (saline solution), the lycopene group (20 mg/kg of body weight/day administered orally), the colistin group (15 mg/kg/day administered intravenously), the colistin (15 mg/kg/day) plus lycopene (5 mg/kg/day) group, and the colistin (15 mg/kg/day) plus lycopene (20 mg/kg/day) group; all mice were treated for 7 days. At 12 h after the last dose, blood was collected for measurements of blood urea nitrogen (BUN) and serum creatinine levels. The kidney tissue samples were obtained for examination of biomarkers of oxidative stress and apoptosis, histopathological assessment, and quantitative reverse transcription-PCR (qRT-PCR) analysis. Colistin treatment significantly increased concentrations of BUN and serum creatinine, tubular apoptosis/necrosis, lipid peroxidation, and heme oxygenase 1 (HO-1) activity, while the treatment decreased the levels of endogenous antioxidant biomarkers glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Notably, the changes in the levels of all biomarkers were attenuated in the kidneys of mice treated with colistin by lycopene (5 or 20 mg/kg). Lycopene treatment, especially in the colistin plus lycopene (20 mg/kg) group, significantly downregulated the expression of NF-κB mRNA (P < 0.01) but upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both P < 0.01) in the kidney compared with the results seen with the colistin group. Our data demonstrated that coadministration of 20 mg/kg/day lycopene can protect against colistin-induced nephrotoxicity in mice. This effect may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.
Collapse
|
21
|
Santos FDN, Watanabe M, Vasco CF, Fonseca CDD, Vattimo MDFF. Antioxidant protection of statins in acute kidney injury induced by sepsis. Rev Esc Enferm USP 2014; 48:820-6. [DOI: 10.1590/s0080-6234201400005000007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/28/2014] [Indexed: 12/18/2022] Open
Abstract
Objective Evaluating the effect of preconditioning with simvastatin in acute kidney injury induced by sepsis. Method Male adult Wistar rats were divided into the following groups: SHAM (control); SHAM+Statin (0.5 mg/kg simvastatin, orally); Sepsis (cecal puncture ligation – CPL); Sepsis+Statin. Physiological parameters, peritoneal fluid culture, renal function, oxidative metabolites, severity of acute kidney injury and animal survival were evaluated. Results The treatment with simvastatin in induced sepsis showed elevation of creatinine clearance with attenuation of generation of oxidative metabolites, lower severity of acute kidney injury and reduced mortality. Conclusion This investigation confirmed the renoprotection with antioxidant principle of the simvastatin in acute kidney injury induced by sepsis in an experimental model.
Collapse
|
22
|
Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and endoplasmic reticulum pathways. Antimicrob Agents Chemother 2014; 58:4075-85. [PMID: 24798292 DOI: 10.1128/aac.00070-14] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nephrotoxicity is the dose-limiting factor for colistin, but the exact mechanism is unknown. This study aimed to investigate the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in colistin-induced nephrotoxicity. Mice were intravenously administered 7.5 or 15 mg of colistin/kg of body weight/day (via a 3-min infusion and divided into two doses) for 7 days. Renal function, oxidative stress, and apoptosis were measured. Representative biomarkers involved in the mitochondrial, death receptor, and endoplasmic reticulum pathways were investigated, and the key markers involved in apoptosis and autophagy were examined. After 7-day colistin treatment, significant increase was observed with blood urea nitrogen, serum creatinine, and malondialdehyde, while activities of superoxide dismutase (SOD) and catalase decreased in the kidneys. Acute tubular necrosis and mitochondrial dysfunction were detected, and colistin-induced apoptosis was characterized by DNA fragmentation, cleavage of poly(ADP-ribose) polymerase (PARP-1), increase of 8-hydroxydeoxyguanosine (8-OHdG), and activation of caspases (caspase-8, -9, and -3). It was evident that colistin-induced apoptosis involved the mitochondrial pathway (downregulation of Bcl-2 and upregulation of cytochrome C [cytC] and Bax), death receptor pathway (upregulation of Fas, FasL, and Fas-associated death domain [FADD]), and endoplasmic reticulum pathway (upregulation of Grp78/Bip, ATF6, GADD153/CHOP, and caspase-12). In the 15-mg/kg/day colistin group, expression of the cyclin-dependent kinase 2 (CDK2) and phosphorylated JNK (p-JNK) significantly increased (P < 0.05), while in the 7.5-mg/kg/day colistin group, a large number of autophagolysosomes and classic autophagy were observed. Western blot results of Beclin-1 and LC3B indicated that autophagy may play a protective role in colistin-induced nephrotoxicity. In conclusion, this is the first study to demonstrate that all three major apoptosis pathways and autophagy are involved in colistin-induced nephrotoxicity.
Collapse
|
23
|
Gohar EY, El-gowilly SM, El-Gowelli HM, El-Demellawy MA, El-Mas MM. PI3K/Akt-independent NOS/HO activation accounts for the facilitatory effect of nicotine on acetylcholine renal vasodilations: modulation by ovarian hormones. PLoS One 2014; 9:e95079. [PMID: 24733557 PMCID: PMC3986343 DOI: 10.1371/journal.pone.0095079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
We investigated the effect of chronic nicotine on cholinergically-mediated renal vasodilations in female rats and its modulation by the nitric oxide synthase (NOS)/heme oxygenase (HO) pathways. Dose-vasodilatory response curves of acetylcholine (0.01–2.43 nmol) were established in isolated phenylephrine-preconstricted perfused kidneys obtained from rats treated with or without nicotine (0.5–4.0 mg/kg/day, 2 weeks). Acetylcholine vasodilations were potentiated by low nicotine doses (0.5 and 1 mg/kg/day) in contrast to no effect for higher doses (2 and 4 mg/kg/day). The facilitatory effect of nicotine was acetylcholine specific because it was not observed with other vasodilators such as 5′-N-ethylcarboxamidoadenosine (NECA, adenosine receptor agonist) or papaverine. Increases in NOS and HO-1 activities appear to mediate the nicotine-evoked enhancement of acetylcholine vasodilation because the latter was compromised after pharmacologic inhibition of NOS (L-NAME) or HO-1 (zinc protoporphyrin, ZnPP). The renal protein expression of phosphorylated Akt was not affected by nicotine. We also show that the presence of the two ovarian hormones is necessary for the nicotine augmentation of acetylcholine vasodilations to manifest because nicotine facilitation was lost in kidneys of ovariectomized (OVX) and restored after combined, but not individual, supplementation with medroxyprogesterone acetate (MPA) and estrogen (E2). Together, the data suggests that chronic nicotine potentiates acetylcholine renal vasodilation in female rats via, at least partly, Akt-independent HO-1 upregulation. The facilitatory effect of nicotine is dose dependent and requires the presence of the two ovarian hormones.
Collapse
Affiliation(s)
- Eman Y. Gohar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M. El-gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M. El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maha A. El-Demellawy
- Medical Biotechnology Department, City for Scientific Research & Technology Applications, Borg El-Arab, Alexandria, Egypt
| | - Mahmoud M. El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- * E-mail:
| |
Collapse
|
24
|
Nascimento ELD, Watanabe M, Fonseca CDD, Schlottfeldt FDS, Vattimo MDFF. Renoprotective effect of the Echinodorus macrophyllus in induced renal injury. ACTA PAUL ENFERM 2014. [DOI: 10.1590/1982-0194201400004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE: Evaluating the renoprotective effect of Echinodorus macrophyllusin acute kidney injury induced by cyclophosphamide in rats.METHODS: Experimental research with Wistar rats, male adults, distributed into groups, namely: Control - administration of 1.5 ml sodium chloride 0.9% intraperitoneally; Echinodorous - administration of 2g/kg of Echinodorus macrophyllus by gavage for five days; Cyclophosphamide - administration of cyclophosphamide 150mg/kg intraperitoneally; and Cyclosphosphamide + Echinodorus - administration of Echinodorus macrophyllus and cyclophosphamide. Renal function (creatinine clearance) and the oxidative metabolites (peroxides and urinary substances reactive to thiobarbituric acid, thiols in kidney tissue) were evaluated.RESULTS: Preconditioning with Echinodorus macrophyllus elevated the creatinine clearance and reduced the levels of oxidative metabolites.CONCLUSION: The antioxidant action of Echinodorus macrophyllus has demonstrated renoprotective effects evidenced by the reduction of oxidative stress in acute renal injury induced by cyclophosphamide in rats.
Collapse
|
25
|
Polymyxin B Induces Apoptosis in Kidney Proximal Tubular Cells. Antimicrob Agents Chemother 2013; 57:4329-4335. [PMID: 23796937 DOI: 10.1128/aac.02587-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 06/20/2013] [Indexed: 12/21/2022] Open
Abstract
The nephrotoxicity of polymyxins is a major dose-limiting factor for treatment of infections caused by multidrug-resistant Gram-negative pathogens. The mechanism(s) of polymyxin-induced nephrotoxicity is not clear. This study aimed to investigate polymyxin B-induced apoptosis in kidney proximal tubular cells. Polymyxin B-induced apoptosis in NRK-52E cells was examined by caspase activation, DNA breakage, and translocation of membrane phosphatidylserine using Red-VAD-FMK [Val-Ala-Asp(O-Me) fluoromethyl ketone] staining, a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and double staining with annexin V-propidium iodide (PI). The concentration dependence (50% effective concentration [EC50]) and time course for polymyxin B-induced apoptosis were measured in NRK-52E and HK-2 cells by fluorescence-activated cell sorting (FACS) with annexin V and PI. Polymyxin B-induced apoptosis in NRK-52E cells was confirmed by positive labeling from Red-VAD-FMK staining, TUNEL assay, and annexin V-PI double staining. The EC50 (95% confidence interval [CI]) of polymyxin B for the NRK-52E cells was 1.05 (0.91 to 1.22) mM and was 0.35 (0.29 to 0.42) mM for HK-2 cells. At lower concentrations of polymyxin B, minimal apoptosis was observed, followed by a sharp rise in the apoptotic index at higher concentrations in both cell lines. After treatment of NRK-52E cells with 2.0 mM polymyxin B, the percentage of apoptotic cells (mean ± standard deviation [SD]) was 10.9% ± 4.69% at 6 h and reached plateau (>80%) at 24 h, whereas treatment with 0.5 mM polymyxin B for 24 h led to 93.6% ± 5.57% of HK-2 cells in apoptosis. Understanding the mechanism of polymyxin B-induced apoptosis will provide important information for discovering less nephrotoxic polymyxin-like lipopeptides.
Collapse
|
26
|
Speculative strategies for new antibacterials: all roads should not lead to Rome. J Antibiot (Tokyo) 2013; 66:371-86. [PMID: 23612725 DOI: 10.1038/ja.2013.27] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/28/2022]
Abstract
In concert with improvements in personal hygiene and public sanitation, the discovery and development of antibiotics during the latter half of the last century has reduced substantially the morbidity and mortality associated with bacterial diseases. However, the past decade has witnessed a sharp reduction in interest in antibacterial drug development by 'big pharma', compounded by a decline in the breadth of chemical space for new antibacterial molecules and a failure to exploit the plethora of cellular processes potentially targetable by novel classes of antibacterial molecules. This review focuses on some strategies relating to antibacterial chemotherapy, paths less trodden, which the author considers worthy of further exploration.
Collapse
|