1
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
2
|
Endogenous Peptide Inhibitors of HIV Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:65-85. [DOI: 10.1007/978-981-16-8702-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
McGowan IM, Tzakis N, Kosak B, Korczak B, Engstrom J, Tomaszewska-Kiecana M, Hartley O. Evaluation of the Safety, Acceptability, and Pharmacokinetic Profile of a Gel Formulation of OB-002 in Healthy Volunteers. AIDS Res Hum Retroviruses 2021; 37:453-460. [PMID: 33749321 DOI: 10.1089/aid.2021.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OB-002 is an extremely potent CCR5 antagonist that has previously been shown to completely block transmission in a nonhuman primate model of HIV infection. The purpose of this study was to characterize the safety, acceptability, and pharmacokinetic profile of a gel formulation of OB-002 (OB-002H). The trial had two phases, an open label single dose exposure (vaginal and rectal) and a randomized placebo controlled multiple dose phase during which study participants received five vaginal daily doses of OB-002H gel or matched placebo in a 2:1 ratio. Serum OB-002 levels were quantified at multiple time points up to 24 h after the first dose. A total of thirty female and male participants were enrolled in the study (12 in the single dose phase and 18 in the multiple dose phase). All adverse events were Grade 1 or 2, and the majority was unrelated to study product. Only two product-related transient Grade 2 events (both vulval dryness) occurred in the study, both in the OB-002H gel randomized multiple dose arm. All colposcopic and anoscopic assessments following product exposure were normal. There was no evidence of systemic absorption of OB-002. Overall, the product had a positive acceptability profile, and most study participants would consider using the product for protection against HIV or pregnancy. Future studies are needed to assess the extended safety and acceptability of OB-002H gel in sexually active participants. Clinical Trial Registration Number: NCT04791007.
Collapse
Affiliation(s)
- Ian Michael McGowan
- Orion Biotechnology Polska, Krakow, Poland
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | - Oliver Hartley
- Orion Biotechnology, Ottawa, Canada
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Yang S, Arrode-Bruses G, Frank I, Grasperge B, Blanchard J, Gettie A, Martinelli E, Ho EA. Anti-α 4β 7 monoclonal antibody-conjugated nanoparticles block integrin α 4β 7 on intravaginal T cells in rhesus macaques. SCIENCE ADVANCES 2020; 6:6/34/eabb9853. [PMID: 32937372 PMCID: PMC7442472 DOI: 10.1126/sciadv.abb9853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Intravenous administration of anti-α4β7 monoclonal antibody in macaques decreases simian immunodeficiency virus (SIV) vaginal infection and reduces gut SIV loads. Because of potential side effects of systemic administration, a prophylactic strategy based on mucosal administration of anti-α4β7 antibody may be safer and more effective. With this in mind, we developed a novel intravaginal formulation consisting of anti-α4β7 monoclonal antibody-conjugated nanoparticles (NPs) loaded in a 1% hydroxyethylcellulose (HEC) gel (NP-α4β7 gel). When intravaginally administered as a single dose in a rhesus macaque model, the formulation preferentially bound to CD4+ or CD3+ T cells expressing high levels of α4β7, and occupied ~40% of α4β7 expressed by these subsets and ~25% of all cells expressing α4β7 Blocking of the α4β7 was restricted to the vaginal tract without any changes detected systemically.
Collapse
Affiliation(s)
- Sidi Yang
- School of Pharmacy, University of Waterloo, 10 Victoria St. S A, Kitchener, Ontario N2G 1C5, Canada
| | - Geraldine Arrode-Bruses
- Center for Biomedical Research, Population Council, One Dag Hammarskjold Plaza, New York, NY 10017, USA
| | - Ines Frank
- Center for Biomedical Research, Population Council, One Dag Hammarskjold Plaza, New York, NY 10017, USA
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, 455 1st Avenue #7, New York, NY 10016, USA
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, One Dag Hammarskjold Plaza, New York, NY 10017, USA.
| | - Emmanuel A Ho
- School of Pharmacy, University of Waterloo, 10 Victoria St. S A, Kitchener, Ontario N2G 1C5, Canada.
| |
Collapse
|
5
|
In vitro release testing methods for drug-releasing vaginal rings. J Control Release 2019; 313:54-69. [PMID: 31626862 DOI: 10.1016/j.jconrel.2019.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022]
Abstract
Drug-releasing vaginal rings are torus-shaped devices, generally fabricated from thermoplastic polymers or silicone elastomers, used to administer pharmaceutical drugs to the human vagina for periods typically ranging from three weeks to twelve months. One of the most important product performance tests for vaginal rings is the in vitro release test. Although it has been fifty years since a vaginal ring device was first described in the scientific literature, and despite seven drug-releasing vaginal rings having been approved for market, there is no universally accepted method for testing in vitro drug release, and only one non-compendial shaking incubator method (for the estradiol-releasing ring Estring®) is described in the US Food and Drug Administration's Dissolution Methods Database. Here, for the first time, we critically review the diverse range of test methods that have been described in the scientific literature for testing in vitro release of drug-releasing vaginal rings. Issues around in vitro-in vivo correlation and modelling of in vitro release data are also discussed.
Collapse
|
6
|
McBride JW, Malcolm RK, Dias N, Cameron D, Offord RE, Hartley O, Kett VL, Devlin B, Boyd P. Development and pharmacokinetics of a combination vaginal ring for sustained release of dapivirine and the protein microbicide 5P12-RANTES. Int J Pharm 2019; 564:207-213. [PMID: 30999049 DOI: 10.1016/j.ijpharm.2019.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/16/2022]
Abstract
The past fifteen years have witnessed a resurgence of interest in vaginal ring technologies for drug delivery applications, mostly driven by the impetus for development of vaginally-administered antiretroviral microbicides to help reduce the high acquisition rates for human immunodeficiency virus (HIV) among Sub-Saharan African women. Currently, the lead candidate microbicide is a 28-day silicone elastomer vaginal ring releasing dapivirine (Ring-004), an experimental non-nucleoside reverse transcriptase inhibitor. The ring was tested in two pivotal Phase III clinical studies in 2016 and is currently undergoing review by the European Medicines Agency. Recently, we described a new type of silicone elastomer vaginal ring offering sustained release of the protein molecule 5P12-RANTES, a potent experimental chemokine analogue that potently blocks the HIV CCR5 coreceptor. Building on our previous work, here we report the preclinical development of a new combination vaginal ring that offers sustained release of both 5P12-RANTES and dapivirine, in which the 5P12-RANTES is incorporated into an exposed core within the ring body and the dapivirine in the sheath. In this way, in vitro release of dapivirine matches closely that for Ring-004. Also, we report the pharmacokinetic testing of this combination ring formulation in sheep, where vaginal concentrations of both drugs are maintained over 28 days at levels potentially useful for preventing HIV infection in women.
Collapse
Affiliation(s)
- John W McBride
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | | - Robin E Offord
- Mintaka Foundation for Medical Research, Geneva, Switzerland
| | - Oliver Hartley
- Mintaka Foundation for Medical Research, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vicky L Kett
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Brid Devlin
- International Partnership for Microbicides, Silver Spring, MD 20910, USA
| | - Peter Boyd
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
7
|
Yavuz B, Morgan JL, Herrera C, Harrington K, Perez-Ramirez B, LiWang PJ, Kaplan DL. Sustained release silk fibroin discs: Antibody and protein delivery for HIV prevention. J Control Release 2019; 301:1-12. [PMID: 30876951 PMCID: PMC6538278 DOI: 10.1016/j.jconrel.2019.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
With almost 2 million new HIV infections worldwide each year, the prevention of HIV infection is critical for stopping the pandemic. The only approved form of pre-exposure prophylaxis is a costly daily pill, and it is recognized that several options will be needed to provide protection to the various affected communities around the world. In particular, many at-risk people would benefit from a prevention method that is simple to use and does not require medical intervention or a strict daily regimen. We show that silk fibroin protein can be formulated into insertable discs that encapsulate either an antibody (IgG) or the potent HIV inhibitor 5P12-RANTES. Several formulations were studied, including silk layering, water vapor annealing and methanol treatment to stabilize the protein cargo and impact the release kinetics over weeks. In the case of IgG, high concentrations were released over a short time using methanol treatment, with more sustained results with the use of water vapor annealing and layering during device fabrication. For 5P12-RANTES, sustained release was obtained for 31 days using water vapor annealing. Further, we show that the released inhibitor 5P12-RANTES was functional both in vitro and in ex vivo colorectal tissue. This work shows that silk fibroin discs can be developed into formidable tools to prevent HIV infection.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology, University of California-Merced, Merced, CA, USA
| | - Carolina Herrera
- Department of Medicine, St. Mary's Campus Imperial College, London, UK
| | - Kristin Harrington
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Patricia J LiWang
- Department of Molecular Cell Biology, University of California-Merced, Merced, CA, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
8
|
McBride JW, Boyd P, Dias N, Cameron D, Offord RE, Hartley O, Kett VL, Malcolm RK. Vaginal rings with exposed cores for sustained delivery of the HIV CCR5 inhibitor 5P12-RANTES. J Control Release 2019; 298:1-11. [PMID: 30731150 PMCID: PMC6414755 DOI: 10.1016/j.jconrel.2019.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 11/29/2022]
Abstract
Antiretroviral-releasing vaginal rings are at the forefront of ongoing efforts to develop microbicide-based strategies for prevention of heterosexual transmission of the human immunodeficiency virus (HIV). However, traditional ring designs are generally only useful for vaginal administration of relatively potent, lipophilic, and small molecular weight drug molecules that have sufficient permeability in the non-biodegradable silicone elastomer or thermoplastic polymers. Here, we report a novel, easy-to-manufacture 'exposed-core' vaginal ring that provides sustained release of the protein microbicide candidate 5P12-RANTES, an experimental chemokine analogue that potently blocks the HIV CCR5 coreceptor. In vitro release, mechanical, and stability testing demonstrated the utility and practicality of this novel ring design. In a sheep pharmacokinetic model, a ring containing two ¼-length excipient-modified silicone elastomer cores - each containing lyophilised 5P12-RANTES and exposed to the external environment by two large windows - provided sustained concentrations of 5P12-RANTES in vaginal fluid and vaginal tissue between 10 and 10,000 ng/g over 28days, at least 50 and up to 50,000 times the reported in vitro IC50 value.
Collapse
Affiliation(s)
- John W McBride
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Peter Boyd
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | | - Robin E Offord
- Mintaka Foundation for Medical Research, Geneva, Switzerland
| | - Oliver Hartley
- Mintaka Foundation for Medical Research, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vicky L Kett
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
9
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
10
|
Falkenhagen A, Joshi S. HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:347-364. [PMID: 30340139 PMCID: PMC6197789 DOI: 10.1016/j.omtn.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
HIV entry is a highly specific and time-sensitive process that can be divided into receptor binding, coreceptor binding, and membrane fusion. Bifunctional antiviral proteins (bAVPs) exploit the multi-step nature of the HIV entry process by binding to two different extracellular targets. They are generated by expressing a fusion protein containing two entry inhibitors with a flexible linker. The resulting fusion proteins exhibit exceptional neutralization potency and broad cross-clade inhibition. In this review, we summarize the HIV entry process and provide an overview of the design, antiviral potency, and methods of delivery of bAVPs. Additionally, we discuss the advantages and limitations of bAVPs for HIV prevention and treatment.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
11
|
Secchi M, Grampa V, Vangelista L. Rational CCL5 mutagenesis integration in a lactobacilli platform generates extremely potent HIV-1 blockers. Sci Rep 2018; 8:1890. [PMID: 29382912 PMCID: PMC5790001 DOI: 10.1038/s41598-018-20300-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/16/2018] [Indexed: 11/10/2022] Open
Abstract
Efforts to improve existing anti-HIV-1 therapies or develop preventatives have identified CCR5 as an important target and CCL5 as an ideal scaffold to sculpt potent HIV-1 entry inhibitors. We created novel human CCL5 variants that exhibit exceptional anti-HIV-1 features using recombinant lactobacilli (exploited for live microbicide development) as a screening platform. Protein design, expression and anti-HIV-1 activity flowed in iterative cycles, with a stepwise integration of successful mutations and refinement of an initial CCL5 mutant battery towards the generation of two ultimate CCL5 derivatives, a CCR5 agonist and a CCR5 antagonist with similar anti-HIV-1 potency. The CCR5 antagonist was tested in human macrophages and against primary R5 HIV-1 strains, exhibiting cross-clade low picomolar IC50 activity. Moreover, its successful combination with several HIV-1 inhibitors provided the ground for conceiving therapeutic and preventative anti-HIV-1 cocktails. Beyond HIV-1 infection, these CCL5 derivatives may now be tested against several inflammation-related pathologies where the CCL5:CCR5 axis plays a relevant role.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Valentina Grampa
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milan, Italy
- INSERM, UMRS-839, Institut du Fer à Moulin, 75005, Paris, France
| | - Luca Vangelista
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milan, Italy.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 010000, Astana, Kazakhstan.
| |
Collapse
|