1
|
Frolova D, Lima L, Roberts LW, Bohnenkämper L, Wittler R, Stoye J, Iqbal Z. Applying rearrangement distances to enable plasmid epidemiology with pling. Microb Genom 2024; 10:001300. [PMID: 39401066 PMCID: PMC11472880 DOI: 10.1099/mgen.0.001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Plasmids are a key vector of antibiotic resistance, but the current bioinformatics toolkit is not well suited to tracking them. The rapid structural changes seen in plasmid genomes present considerable challenges to evolutionary and epidemiological analysis. Typical approaches are either low resolution (replicon typing) or use shared k-mer content to define a genetic distance. However, this distance can both overestimate plasmid relatedness by ignoring rearrangements, and underestimate by over-penalizing gene gain/loss. Therefore a model is needed which captures the key components of how plasmid genomes evolve structurally - through gene/block gain or loss, and rearrangement. A secondary requirement is to prevent promiscuous transposable elements (TEs) leading to over-clustering of unrelated plasmids. We choose the 'Double Cut and Join Indel' (DCJ-Indel) model, in which plasmids are studied at a coarse level, as a sequence of signed integers (representing genes or aligned blocks), and the distance between two plasmids is the minimum number of rearrangement events or indels needed to transform one into the other. We show how this gives much more meaningful distances between plasmids. We introduce a software workflow pling (https://github.com/iqbal-lab-org/pling), which uses the DCJ-Indel model, to calculate distances between plasmids and then cluster them. In our approach, we combine containment distances and DCJ-Indel distances to build a TE-aware plasmid network. We demonstrate superior performance and interpretability to other plasmid clustering tools on the 'Russian Doll' dataset and a hospital transmission dataset.
Collapse
Affiliation(s)
- Daria Frolova
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Leandro Lima
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Leah Wendy Roberts
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Leonard Bohnenkämper
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Graduate School "Digital Infrastructure for the Life Sciences" (DILS), Bielefeld University, Bielefeld, Germany
| | - Roland Wittler
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jens Stoye
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Zamin Iqbal
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
- Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
2
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Lin ZJ, Zhou ZC, Shuai XY, Shan XY, Zhou JY, Chen H. Deciphering Multidrug-Resistant Plasmids in Disinfection Residual Bacteria from a Wastewater Treatment Plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6793-6803. [PMID: 38574343 DOI: 10.1021/acs.est.3c10895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Current disinfection processes pose an emerging environmental risk due to the ineffective removal of antibiotic-resistant bacteria, especially disinfection residual bacteria (DRB) carrying multidrug-resistant plasmids (MRPs). However, the characteristics of DRB-carried MRPs are poorly understood. In this study, qPCR analysis reveals that the total absolute abundance of four plasmids in postdisinfection effluent decreases by 1.15 log units, while their relative abundance increases by 0.11 copies/cell compared to investigated wastewater treatment plant (WWTP) influent. We obtain three distinctive DRB-carried MRPs (pWWTP-01-03) from postdisinfection effluent, each carrying 9-11 antibiotic-resistant genes (ARGs). pWWTP-01 contains all 11 ARGs within an ∼25 Kbp chimeric genomic island showing strong patterns of recombination with MRPs from foodborne outbreaks and hospitals. Antibiotic-, disinfectant-, and heavy-metal-resistant genes on the same plasmid underscore the potential roles of disinfectants and heavy metals in the coselection of ARGs. Additionally, pWWTP-02 harbors an adhesin-type virulence operon, implying risks of both antibiotic resistance and pathogenicity upon entering environments. Furthermore, some MRPs from DRB are capable of transferring and could confer selective advantages to recipients under environmentally relevant antibiotic pressure. Overall, this study advances our understanding of DRB-carried MRPs and highlights the imminent need to monitor and control wastewater MRPs for environmental security.
Collapse
Affiliation(s)
- Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Yu Shan
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jin-Yu Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
- International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Alav I, Pordelkhaki P, de Resende PE, Partington H, Gibbons S, Lord RM, Buckner MMC. Cobalt complexes modulate plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Sci Rep 2024; 14:8103. [PMID: 38582880 PMCID: PMC10998897 DOI: 10.1038/s41598-024-58895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024] Open
Abstract
Antimicrobial resistance genes (ARG), such as extended-spectrum β-lactamase (ESBL) and carbapenemase genes, are commonly carried on plasmids. Plasmids can transmit between bacteria, disseminate globally, and cause clinically important resistance. Therefore, targeting plasmids could reduce ARG prevalence, and restore the efficacy of existing antibiotics. Cobalt complexes possess diverse biological activities, including antimicrobial and anticancer properties. However, their effect on plasmid conjugation has not been explored yet. Here, we assessed the effect of four previously characterised bis(N-picolinamido)cobalt(II) complexes lacking antibacterial activity on plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Antimicrobial susceptibility testing of these cobalt complexes confirmed the lack of antibacterial activity in E. coli and K. pneumoniae. Liquid broth and solid agar conjugation assays were used to screen the activity of the complexes on four archetypical plasmids in E. coli J53. The cobalt complexes significantly reduced the conjugation of RP4, R6K, and R388 plasmids, but not pKM101, on solid agar in E. coli J53. Owing to their promising activity, the impact of cobalt complexes was tested on the conjugation of fluorescently tagged extended-spectrum β-lactamase encoding pCTgfp plasmid in E. coli and carbapenemase encoding pKpQILgfp plasmid in K. pneumoniae, using flow cytometry. The complexes significantly reduced the conjugation of pKpQILgfp in K. pneumoniae but had no impact on pCTgfp conjugation in E. coli. The cobalt complexes did not have plasmid-curing activity, suggesting that they target conjugation rather than plasmid stability. To our knowledge, this is the first study to report reduced conjugation of clinically relevant plasmids with cobalt complexes. These cobalt complexes are not cytotoxic towards mammalian cells and are not antibacterial, therefore they could be optimised and employed as inhibitors of plasmid conjugation.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Parisa Pordelkhaki
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pedro Ernesto de Resende
- School of Pharmacy, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Hannah Partington
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Simon Gibbons
- Natural & Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman
| | - Rianne M Lord
- School of Chemistry, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Michelle M C Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
5
|
Wang P, Li C, Yin Z, Jiang X, Li X, Mu X, Wu N, Chen F, Zhou D. Genomic epidemiology and heterogeneity of Providencia and their blaNDM-1-carrying plasmids. Emerg Microbes Infect 2023; 12:2275596. [PMID: 37874004 PMCID: PMC10796120 DOI: 10.1080/22221751.2023.2275596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Providencia as an opportunistic pathogen can cause serious infection, and moreover the emergence of multi-drug-resistant Providencia strains poses a potentially life-threatening risk to public health. However, a comprehensive genomic study to reveal the population structure and dissemination of Providencia is still lacking. In this study, we conducted a genomic epidemiology analysis on the 580 global sequenced Providencia isolates, including 257 ones sequenced in this study (42 ones were fully sequenced). We established a genome sequence-based species classification scheme for Providencia, redefining the conventional 11 Providencia species into seven genocomplexes that were further divided into 18 genospecies, providing an extensively updated reference for Providencia species discrimination based on the largest Providencia genome dataset to date. We then dissected the profile of antimicrobial resistance genes and the prevalence of multi-drug-resistant Providencia strains among these genocomplexes/genospecies, disclosing the presence of diverse and abundant antimicrobial resistance genes and high resistance ratios against multiple classes of drugs in Providencia. We further dissected the genetic basis for the spread of blaNDM-1 in Providencia. blaNDM-1 genes were mainly carried by five incompatible (Inc) groups of plasmids: IncC, IncW, IncpPROV114-NR, IncpCHS4.1-3, and IncpPrY2001, and the last three were newly designated in this study. By tracking the spread of blaNDM-1-carrying plasmids, IncC, IncpPROV114-NR, IncpCHS4.1-3, and IncpPrY2001 plasmids were found to be highly involved in parallel horizontal transfer or vertical clonal expansion of blaNDM-1 among Providencia. Overall, our study provided a comprehensive genomic view of species differentiation, antimicrobial resistance prevalence, and plasmid-mediated blaNDM-1 dissemination in Providencia.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, People’s Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiaoyuan Jiang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, People’s Republic of China
| | - Xinyue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiaofei Mu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Nier Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, People’s Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Thakur PK, Deb R, Pegu SR, Parihar R, Niharika J, Jyoti Das P, Sengar GS, Sonowal J, Chaudhary P, Selvaradjou A, Raj A, Gupta VK. Characterization of piggery farm waste-borne bacterial transposable elements associated with antimicrobial resistance phenotypes. Comp Immunol Microbiol Infect Dis 2023; 98:102005. [PMID: 37352625 DOI: 10.1016/j.cimid.2023.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Even though there is a link between antibiotic resistance and the presence of transposable elements few research has looked at the prevalence and distribution of transposable elements/ integrons in piggery farm samples. Present study identified the presence of six transposable elements namely Tn6763 (Accession number: OQ565300), Tn6764, (Accession number: OQ565299), Tn6765 (Accession number: OQ409902), Tn2003 (Accession number: OQ503494), Tn6072 (Accession number: OQ565298) and Tn6020 (Accession number: OQ503493) in piggery farm waste from India which are belongs to Enterobacteriaceae family. In a conjugative experiment, Klebsiella isolates carrying Tn6020 having the resistant phenotypes for nalidixic acid was used as donor cells while Escherichia coli DH5α Cells carrying chloramphenicol resistant plasmid was employed as recipient cells. Transconjugant bacterial colonies were shown to carry the Tn6020 transposable elements with both nalidixic acid (donor cell origin) and chloramphenicol (recipient cell origin) resistant antibiotic phenotypes. Given the presence of transposable elements in 21.4% of resistant Enterobacteriaceae strains, preventative measures are vital for avoiding the spread of mobile genetic resistance determinants in the piggery sector and to monitor their emergence.
Collapse
Affiliation(s)
- Priyanka Kumari Thakur
- ICAR-National Research Centre on Pig, Guwahati, Assam, India; All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Centre on Pig, Guwahati, Assam, India.
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Guwahati, Assam, India.
| | - Ranjeet Parihar
- ICAR-National Research Centre on Pig, Guwahati, Assam, India; All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal, India
| | - Jagana Niharika
- ICAR-National Research Centre on Pig, Guwahati, Assam, India; All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal, India
| | | | | | | | - Parul Chaudhary
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | | | - Atul Raj
- All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal, India
| | | |
Collapse
|
7
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
8
|
Ahmad N, Joji RM, Shahid M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front Cell Infect Microbiol 2023; 12:1065796. [PMID: 36726644 PMCID: PMC9884834 DOI: 10.3389/fcimb.2022.1065796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets.
Collapse
Affiliation(s)
| | | | - Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
9
|
Zeng Z, Lei L, Li L, Hua S, Li W, Zhang L, Lin Q, Zheng Z, Yang J, Dou X, Li L, Li X. In silico characterization of bla NDM-harboring plasmids in Klebsiella pneumoniae. Front Microbiol 2022; 13:1008905. [PMID: 36504778 PMCID: PMC9727287 DOI: 10.3389/fmicb.2022.1008905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae is a primary culprit of antibiotic-resistant nosocomial infections worldwide, and infections caused by NDM-producing strains are a major threat due to limited therapeutic options. The majority of bla NDM cases occur on plasmids; therefore, we explored the relationships between plasmids and bla NDM genes in K. pneumoniae by analyzing the variants of bla NDM, replicon types, conjugative transfer regions of 171 bla NDM-harboring plasmids from 4,451 K. pneumoniae plasmids. Of the nine identified bla NDM variants, bla NDM-1 (73.68%) and bla NDM-5 (16.37%) were the most dominant. Over half of the bla NDM-harboring plasmids of K. pneumoniae were classified into IncF plasmids. IncX3 single-replicon plasmids (46-57 kb) carried genes encoding relaxases of the MOBP family, T4CP genes of the VirD4/TraG subfamily, and VirB-like T4SS gene clusters, which were mainly geographically distributed in China. We found 10 bla NDM-harboring IncN plasmids (38.38-63.05 kb) carrying the NW-type origin of transfer (oriT) regions, genes coding for relaxases of MOBF family, genes encoding T4CPs of the TrwB/TraD subfamily, and Trw-like T4SS gene clusters, which were also mainly geographically distributed in China. Moreover, we identified 21 IncC plasmids carrying bla NDM-1 (140.1-329.2 kb), containing the A/C-type oriTs, genes encoding relaxases of MOBH family, genes encoding T4CPs belonging to TrwB/TraD subfamily, and Tra_F-like T4SS gene clusters. The bla NDM-harboring IncC plasmids were widely geographically distributed all over the world, mainly in the United States, China and Viet Nam. These findings enhance our understanding of the diversity of bla NDM-harboring plasmids in K. pneumoniae.
Collapse
Affiliation(s)
- Zhu Zeng
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Lei
- Department of Cadre Health Care, Guizhou Provincial People's Hospital, Guiyang, China
| | - Linman Li
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengni Hua
- Department of Radiation Oncology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Wenting Li
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Limei Zhang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Qiuping Lin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Zhixiong Zheng
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Jing Yang
- Department of Pulmonary and Critical Care Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Xiaohui Dou
- Health Management Center, Zhuhai People’s Hospital (Zhuhai Hospital affiliated With Jinan University), Zhuhai, China,*Correspondence: Luan Li, ; Xiaobin Li, ; Xiaohui Dou,
| | - Luan Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Luan Li, ; Xiaobin Li, ; Xiaohui Dou,
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China,*Correspondence: Luan Li, ; Xiaobin Li, ; Xiaohui Dou,
| |
Collapse
|
10
|
Feng C, Gao M, Jiang W, Shi W, Li A, Liu S, Zhang L, Zhang X, Li Q, Lin H, Lu J, Li K, Zhang H, Hu Y, Bao Q, Lin X. Identification of a novel aminoglycoside O-nucleotidyltransferase AadA33 in Providencia vermicola. Front Microbiol 2022; 13:990739. [PMID: 36177473 PMCID: PMC9513248 DOI: 10.3389/fmicb.2022.990739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
A novel chromosome-encoded aminoglycoside O-nucleotidyltransferase AadA33 was identified in Providencia vermicola strain P13. The AadA33 shares the highest amino acid identity of 51.28% with the function characterized AadA31. Antibiotic susceptibility testing and enzyme kinetics analysis revealed that the function of AadA33 is to mediate spectinomycin and streptomycin resistance. The recombinant strain harboring aadA33 (pUCP20-aadA33/Escherichia coli DH5α) displayed >256- and 128-fold increases in the minimum inhibitory concentration levels to spectinomycin and streptomycin, respectively, compared with the control strains pUCP20/DH5α. Enzyme kinetic parameters manifested the substrate of AadA33 including spectinomycin and streptomycin, with kcat/Km of 3.28 × 104 (M−1 s−1) and 3.37 × 104 (M−1 s−1), respectively. Bioinformatics analysis revealed its structural mechanism of antimicrobial resistance, genetic context, and phylogenetic relationship with other aminoglycoside O-nucleotidyltransferases. This study of AadA33 contributed to understanding the function and resistance mechanism of aminoglycoside O-nucleotidyltransferase.
Collapse
Affiliation(s)
- Chunlin Feng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weiyan Jiang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Anqi Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuang Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hailong Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yunliang Hu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- *Correspondence: Qiyu Bao,
| | - Xi Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Xi Lin,
| |
Collapse
|
11
|
Characterization of the DNA Binding Domain of StbA, A Key Protein of A New Type of DNA Segregation System. J Mol Biol 2022; 434:167752. [PMID: 35868361 DOI: 10.1016/j.jmb.2022.167752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
Low-copy-number plasmids require sophisticated genetic devices to achieve efficient segregation of plasmid copies during cell division. Plasmid R388 uses a unique segregation mechanism, based on StbA, a small multifunctional protein. StbA is the key protein in a segregation system not involving a plasmid-encoded NTPase partner, it regulates the expression of several plasmid operons, and it is the main regulator of plasmid conjugation. The mechanisms by which StbA, together with the centromere-like sequence stbS, achieves segregation, is largely uncharacterized. To better understand the molecular basis of R388 segregation, we determined the crystal structure of the conserved N-terminal domain of StbA to 1.9 Å resolution. It folds into an HTH DNA-binding domain, structurally related to that of the PadR subfamily II of transcriptional regulators. StbA is organized in two domains. Its N-terminal domain carries the specific stbS DNA binding activity. A truncated version of StbA, deleted of its C-terminal domain, displays only partial activities in vivo, indicating that the non-conserved C-terminal domain is required for efficient segregation and subcellular plasmid positioning. The structure of StbA DNA-binding domain also provides some insight into how StbA monomers cooperate to repress transcription by binding to the stbDR and to form the segregation complex with stbS.
Collapse
|
12
|
Coluzzi C, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. Evolution of plasmid mobility: origin and fate of conjugative and non-conjugative plasmids. Mol Biol Evol 2022; 39:6593704. [PMID: 35639760 PMCID: PMC9185392 DOI: 10.1093/molbev/msac115] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugation drives the horizontal transfer of adaptive traits across prokaryotes. One-fourth of the plasmids encode the functions necessary to conjugate autonomously, the others being eventually mobilizable by conjugation. To understand the evolution of plasmid mobility, we studied plasmid size, gene repertoires, and conjugation-related genes. Plasmid gene repertoires were found to vary rapidly in relation to the evolutionary rate of relaxases, for example, most pairs of plasmids with 95% identical relaxases have fewer than 50% of homologs. Among 249 recent transitions of mobility type, we observed a clear excess of plasmids losing the capacity to conjugate. These transitions are associated with even greater changes in gene repertoires, possibly mediated by transposable elements, including pseudogenization of the conjugation locus, exchange of replicases reducing the problem of incompatibility, and extensive loss of other genes. At the microevolutionary scale of plasmid taxonomy, transitions of mobility type sometimes result in the creation of novel taxonomic units. Interestingly, most transitions from conjugative to mobilizable plasmids seem to be lost in the long term. This suggests a source-sink dynamic, where conjugative plasmids generate nonconjugative plasmids that tend to be poorly adapted and are frequently lost. Still, in some cases, these relaxases seem to have evolved to become efficient at plasmid mobilization in trans, possibly by hijacking multiple conjugative systems. This resulted in specialized relaxases of mobilizable plasmids. In conclusion, the evolution of plasmid mobility is frequent, shapes the patterns of gene flow in bacteria, the dynamics of gene repertoires, and the ecology of plasmids.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| |
Collapse
|
13
|
Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection. Nat Ecol Evol 2022; 6:555-564. [PMID: 35347261 DOI: 10.1038/s41559-022-01705-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/17/2022] [Indexed: 12/30/2022]
Abstract
The spread of genes encoding antibiotic resistance is often mediated by horizontal gene transfer (HGT). Many of these genes are associated with transposons, a type of mobile genetic element that can translocate between the chromosome and plasmids. It is widely accepted that the translocation of antibiotic resistance genes onto plasmids potentiates their spread by HGT. However, it is unclear how this process is modulated by environmental factors, especially antibiotic treatment. To address this issue, we asked whether antibiotic exposure would select for the transposition of resistance genes from chromosomes onto plasmids and, if so, whether antibiotic concentration could tune the distribution of resistance genes between chromosomes and plasmids. We addressed these questions by analysing the transposition dynamics of synthetic and natural transposons that encode resistance to different antibiotics. We found that stronger antibiotic selection leads to a higher fraction of cells carrying the resistance on plasmids because the increased copy number of resistance genes on multicopy plasmids leads to higher expression of those genes and thus higher cell survival when facing antibiotic selection. Once they have transposed to plasmids, antibiotic resistance genes are primed for rapid spread by HGT. Our results provide quantitative evidence for a mechanism by which antibiotic selection accelerates the spread of antibiotic resistance in microbial communities.
Collapse
|
14
|
Usui M, Fukuda A, Suzuki Y, Nakajima C, Tamura Y. Broad-host-range IncW plasmid harbouring tet(X) in Escherichia coli isolated from pigs in Japan. J Glob Antimicrob Resist 2021; 28:97-101. [PMID: 34936926 DOI: 10.1016/j.jgar.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Tetracyclines are used in veterinary medicine for livestock. Tigecycline, a semisynthetic tetracycline derivative, is the last resort antimicrobial used to treat multidrug-resistant gram-negative bacterial infections. The prevalence of variants of mobile tigecycline resistance gene tet(X) in livestock is increasing worldwide. However, the prevalence of Tet(X) among livestock in Japan is obscure. This study was conducted to clarify the prevalence of Tet(X) in pigs in Japan, focusing on isolation and molecular characterisation of plasmid-mediated tet(X)-positive Escherichia coli through retrospective analysis. METHODS We retrospectively screened for tigecycline-resistant E. coli strains isolated from pigs. The tigecycline-resistant strain and tet(X)-harbouring plasmid were characterised. RESULTS The IncW plasmid harbouring the tet(X) variant (previously named as tet(X6)) was detected in one E. coli isolate from pigs (0.8%, 1/120) in 2012. The tet(X) plasmid was transferable by conjugation into the E. coli ML4909 recipient strain. Some mobile gene elements (TnAs3 and ISVsa3) were observed in the region surrounding tet(X). The tet(X)-harbouring plasmid shared a conserved backbone IncW plasmid R388, which is a broad-host-range plasmid. CONCLUSIONS The emergence and spread of tet(X) variants in Enterobacterales poses a public health concern. To the best of our knowledge, this is the first report of the emergence of the IncW plasmid harbouring tet(X). Using tetracyclines in livestock exerts selective pressure on the tet(X) plasmid; therefore, prudent use of tetracyclines is required.
Collapse
Affiliation(s)
- Masaru Usui
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | - Akira Fukuda
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Yutaka Tamura
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| |
Collapse
|
15
|
Characterization of the specific DNA-binding properties of Tnp26, the transposase of insertion sequence IS26. J Biol Chem 2021; 297:101165. [PMID: 34487761 PMCID: PMC8477213 DOI: 10.1016/j.jbc.2021.101165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
The bacterial insertion sequence (IS) IS26 mobilizes and disseminates antibiotic resistance genes. It differs from bacterial IS that have been studied to date as it exclusively forms cointegrates via either a copy-in (replicative) or a recently discovered targeted conservative mode. To investigate how the Tnp26 transposase recognizes the 14-bp terminal inverted repeats (TIRs) that bound the IS, amino acids in two domains in the N-terminal (amino acids M1-P56) region were replaced. These changes substantially reduced cointegration in both modes. Tnp26 was purified as a maltose-binding fusion protein and shown to bind specifically to dsDNA fragments that included an IS26 TIR. However, Tnp26 with an R49A or a W50A substitution in helix 3 of a predicted trihelical helix-turn-helix domain (amino acids I13-R53) or an F4A or F9A substitution replacing the conserved amino acids in a unique disordered N-terminal domain (amino acids M1-D12) did not bind. The N-terminal M1-P56 fragment also bound to the TIR but only at substantially higher concentrations, indicating that other parts of Tnp26 enhance the binding affinity. The binding site was confined to the internal part of the TIR, and a G to T nucleotide substitution in the TGT at positions 6 to 8 of the TIR that is conserved in most IS26 family members abolished binding of both Tnp26 (M1-M234) and Tnp26 M1-P56 fragment. These findings indicate that the helix-turn-helix and disordered domains of Tnp26 play a role in Tnp26-TIR complex formation. Both domains are conserved in all members of the IS26 family.
Collapse
|
16
|
Targeted Conservative Cointegrate Formation Mediated by IS 26 Family Members Requires Sequence Identity at the Reacting End. mSphere 2021; 6:6/1/e01321-20. [PMID: 33504667 PMCID: PMC7885326 DOI: 10.1128/msphere.01321-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IS26 forms cointegrates using two distinct routes, a copy-in mechanism involving one insertion sequence (IS) and a target and a targeted conservative mechanism involving two ISs in different DNA molecules. In this study, the ability of IS26 and some close relatives, IS1006, IS1008, and a natural hybrid, IS1006/IS1008, which are found predominantly in Acinetobacter spp., to interact was examined. IS1006/1008 consists of 175 bp from IS1006 at the left end, with the remainder from IS1008. These ISs all have the same 14-bp terminal inverted repeats, and the Tnp26, Tnp1006, and Tnp1008 transposases, with pairwise identities of 83.7% to 93.1%, should be able to recognize each other's ends. In a recA-negative Escherichia coli strain, IS1006, IS1008, and IS1006/1008 each formed cointegrates via the copy-in route and via the targeted conservative route, albeit at frequencies for the targeted reaction at least 10-fold lower than for IS26 However, using mixed pairs, targeted cointegration was detected only when IS1008 was paired with the IS1006/1008 hybrid, which also encodes Tnp1008, and the targeted cointegrates formed all arose from a reaction occurring at the end where the DNA sequences are identical. The reaction also occurred at the end with extended DNA identity using IS26 paired with IS26::catA1, an artificially constructed IS26 derivative that includes the catA1 gene. Thus, both identical transposases and identical DNA sequences at the reacting end were required. These features indicate that the targeted conservative pathway proceeds via a single transposase-catalyzed strand transfer, followed by migration and resolution of the Holliday junction formed.IMPORTANCE The IS26 family includes the ISs that are commonly found associated with antibiotic resistance genes in multiply resistant Gram-negative and Gram-positive bacteria. IS26 is most prevalent in Gram-negative species and can generate the clusters of antibiotic resistance genes interspersed with directly oriented IS26 seen in multiply resistant pathogens. This ability relies on the novel dual mechanistic capabilities of IS26 family members. However, the mechanism underlying the recently discovered targeted conservative mode of cointegrate formation mediated by IS26, IS257/IS431, and IS1216, which is unlike any previously studied IS movement mechanism, is not well understood. An important question is what features of the IS and the transposase are key to allowing IS26 family members to undertake targeted conservative reaction. In this study, this question was addressed using mixed-partner crosses involving IS26 and naturally occurring close relatives of IS26 that are found near resistance genes in Acinetobacter baumannii and are widespread in Acinetobacter species.
Collapse
|
17
|
Racewicz P, Majewski M, Madeja ZE, Łukomska A, Kubiak M. Role of integrons in the proliferation of multiple drug resistance in selected bacteria occurring in poultry production. Br Poult Sci 2020; 61:122-131. [PMID: 31774316 DOI: 10.1080/00071668.2019.1697426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The increase in microbial resistance, and in particular multiple drug resistance (MDR), is an increasing threat to public health. The uncontrolled use of antibiotics and antibacterial chemotherapeutics in the poultry industry, especially in concentrations too low to cause inhibition, and the occurrence of residues in feed and in the environment play a significant role in the development of resistance among zoonotic food-borne microorganisms.2. Determining the presence and transmission methods of resistance in bacteria is crucial for tracking and preventing antibiotic resistance. Horizontal transfer of genetic elements responsible for drug resistance is considered to be the main mechanism for the spread of antibiotic resistance.3. Of the many well-known genetic elements responsible for horizontal gene transfer, integrons are among the most important factors contributing to multiple drug resistance. The mechanism of bacterial drug resistance acquisition through integrons is one of the essential elements of MDR prevention in animal production.
Collapse
Affiliation(s)
- P Racewicz
- Department of Animal Breeding and Product Quality Assessment, Poznan University of Life Sciences, Poznan, Poland
| | - M Majewski
- Department of Animal Breeding and Product Quality Assessment, Poznan University of Life Sciences, Poznan, Poland
| | - Z E Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - A Łukomska
- Department of Internal Diseases and Diagnosis, Poznan University of Life Sciences, Poznan, Poland
| | - M Kubiak
- Department of Internal Diseases and Diagnosis, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
18
|
IS 26 Family Members IS 257 and IS 1216 Also Form Cointegrates by Copy-In and Targeted Conservative Routes. mSphere 2020; 5:5/1/e00811-19. [PMID: 31915227 PMCID: PMC6952201 DOI: 10.1128/msphere.00811-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IS26 differs from other studied ISs in the reactions that it can undertake. The differences make IS26 uniquely suited to its key role in the recruitment and spread of antibiotic resistance genes in Gram-negative bacteria. However, whether other ISs in the IS6/IS26 family can perform the same reactions is not known. IS257/IS431 and IS1216 isoforms found associated with antibiotic resistance genes in the Gram-positive bacteria staphylococci, enterococci, streptococci, and clostridia are related to IS26. However, the way that they move had not been investigated, limiting interpretation of their role in resistance gene dissemination and in the formation of cointegrates and complex resistance regions in staphylococci and enterococci. Here, they are shown to share the broad catalytic capabilities of IS26, demonstrating that it is likely that all members of the redefined IS6/IS26 family of bacterial ISs likewise are able to use both the copy-in and conservative routes. IS26 has been shown to form cointegrates both by a copy-in mechanism involving one insertion sequence (IS) and a target and by a targeted conservative mechanism involving two ISs. IS26 is the flagship of a group of 65 bacterial ISs in the recently redefined IS6/IS26 family. Here, whether other family members can also use two mechanisms was examined using members of the IS257/IS431 and IS1216 isoform groups, which are associated with antibiotic resistance genes in staphylococci and enterococci, respectively. Transposases Tnp257 and Tnp1216 have 39% and 47% amino acid identities, respectively, with Tnp26 and are 62% identical to one another. Using a novel transposition assay, pUC-based plasmids carrying these ISs integrated into the chromosome of a temperature-sensitive polAEscherichia coli strain grown at the restrictive temperature. In the cointegrates, the plasmid carrying IS257 was flanked by various 8-bp target site duplications, consistent with random target selection. However, in a mating-out assay, only the targeted conservative reaction was detectable at a low frequency in a recA-negative E. coli strain, indicating that IS257 is at least 100-fold less active than IS26. For IS1216, in mating-out assays, both copy-in and targeted conservative cointegrate formation were detectable at frequencies similar to those observed for IS26. Duplication of various 8-bp target sites was detected for the copy-in route. For both IS257 and IS1216, when both of the plasmids carried an IS, the targeted conservative route occurred at a significantly higher frequency than the copy-in route, and only cointegrates formed by the conservative route were detected. IMPORTANCE IS26 differs from other studied ISs in the reactions that it can undertake. The differences make IS26 uniquely suited to its key role in the recruitment and spread of antibiotic resistance genes in Gram-negative bacteria. However, whether other ISs in the IS6/IS26 family can perform the same reactions is not known. IS257/IS431 and IS1216 isoforms found associated with antibiotic resistance genes in the Gram-positive bacteria staphylococci, enterococci, streptococci, and clostridia are related to IS26. However, the way that they move had not been investigated, limiting interpretation of their role in resistance gene dissemination and in the formation of cointegrates and complex resistance regions in staphylococci and enterococci. Here, they are shown to share the broad catalytic capabilities of IS26, demonstrating that it is likely that all members of the redefined IS6/IS26 family of bacterial ISs likewise are able to use both the copy-in and conservative routes.
Collapse
|
19
|
Mukherjee SK, Mukherjee M. Characterization and Bio-Typing of Multidrug Resistance Plasmids From Uropathogenic Escherichia coli Isolated From Clinical Setting. Front Microbiol 2019; 10:2913. [PMID: 31921080 PMCID: PMC6930805 DOI: 10.3389/fmicb.2019.02913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/03/2019] [Indexed: 12/30/2022] Open
Abstract
Urinary tract infection is primarily caused by Escherichia coli. Multidrug resistance and their rapid dissemination in this pathogenic microbe complicate therapeutic strategies and threaten public health. Conjugation systems responsible for interbacterial transmission of antibiotic resistance are plasmid-encoded and can be classified as the P, F, and I types. Specific pili types and pili associated proteins were related to the transfer among this gram-negative organism and were thought to depend on contacts created by these structures at the time of DNA transport. In this study, conjugation system types of the plasmids that harbor multidrug resistant genes (aac-1b-cr, oqxAB, qnrB, qnrS, bla TEM, bla OXA) amongst 19 E. coli uropathogenic isolates were characterized under ciprofloxacin/ceftazidime selection individually by pili and pili associated gene types. Investigations indicated incidence of single plasmid of multiple replicon type amongst the transconjugants. bla TEM, bla CTX-M, bla OXA, aac-1b-cr, oqxAB, qnrB, qnrS genes in varied combination were observed to be successfully co-transmitted against ceftazidme/ciprofloxacin selection. Seven primer pair sets were selected that encodes pili and pili associated genes (traF, trwJ, traE, trhE, traG, pilM, pilx4) by nucleotide database search tools using annotated plasmids of different incompatibility types to assign the conjugation system type of the transmissible resistant plasmids by PCR. traF was predominant irrespective of drug selection that indicated F-type conjugation system was responsible for transmission of resistant plasmids which results in the rapid dissemination of antibiotic resistance in the isolates screened. Therefore this is a first report of its kind that investigated pili and pili associated genes to bio-type multidrug resistant plasmids and their transmission in clinical settings amongst uropathogenic E. coli circulated in the eastern part of India.
Collapse
Affiliation(s)
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, India
| |
Collapse
|
20
|
Bougnom BP, McNally A, Etoa FX, Piddock LJ. Antibiotic resistance genes are abundant and diverse in raw sewage used for urban agriculture in Africa and associated with urban population density. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:146-154. [PMID: 31078086 DOI: 10.1016/j.envpol.2019.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
A comparative study was conducted to (1) assess the potential of raw sewage used for urban agriculture to disseminate bacterial resistance in two cities of different size in Cameroon (Central Africa) and (2) compare the outcome with data obtained in Burkina Faso (West Africa). In each city, raw sewage samples were sampled from open-air canals in three neighbourhoods. After DNA extraction, the microbial population structure and function, presence of pathogens, antibiotic resistance genes and Enterobacteriaceae plasmids replicons were analysed using whole genome shotgun sequencing and bioinformatics. Forty-three pathogen-specific virulenc e factor genes were detected in the sewage. Eighteen different incompatibility groups of Enterobacteriaceae plasmid replicon types (ColE, A/C, B/O/K/Z, FIA, FIB, FIC, FII, H, I, N, P, Q, R, T, U, W, X, and Y) implicated in the spread of drug-resistance genes were present in the sewage samples. One hundred thirty-six antibiotic resistance genes commonly associated with MDR plasmid carriage were identified in both cities. Enterobacteriaceae plasmid replicons and ARGs found in Burkina Faso wastewaters were also present in Cameroon waters. The abundance of Enterobacteriaceae, plasmid replicons and antibiotic resistance genes was greater in Yaounde, the city with the greater population. In conclusion, the clinically relevant environmental resistome found in raw sewage used for urban agriculture is common in West and Central Africa. The size of the city impacts on the abundance of drug-resistant genes in the raw sewage while ESBL gene abundance is related to the prevalence of Enterobacteriaceae along with plasmid Enterobacteriaceae abundance associated to faecal pollution.
Collapse
Affiliation(s)
- Blaise P Bougnom
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK; Department of Microbiology, Faculty of Science, University of Yaounde 1, P.O. Box, 812, Yaounde, Cameroon
| | - Alan McNally
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK
| | - François-X Etoa
- Department of Microbiology, Faculty of Science, University of Yaounde 1, P.O. Box, 812, Yaounde, Cameroon
| | - Laura Jv Piddock
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
21
|
An improved plasmid size standard, 39R861+. Plasmid 2019; 102:6-9. [DOI: 10.1016/j.plasmid.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 11/23/2022]
|
22
|
Pong CH, Harmer CJ, Ataide SF, Hall RM. An IS26variant with enhanced activity. FEMS Microbiol Lett 2019; 366:5308830. [DOI: 10.1093/femsle/fnz031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/05/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Carol H Pong
- School of Life and Environmental Sciences, Molecular Bioscience Building G08, Cnr Maze Crescent and Butlin Avenue, The University of Sydney, NSW 2006, Australia
| | - Christopher J Harmer
- School of Life and Environmental Sciences, Molecular Bioscience Building G08, Cnr Maze Crescent and Butlin Avenue, The University of Sydney, NSW 2006, Australia
| | - Sandro F Ataide
- School of Life and Environmental Sciences, Molecular Bioscience Building G08, Cnr Maze Crescent and Butlin Avenue, The University of Sydney, NSW 2006, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, Molecular Bioscience Building G08, Cnr Maze Crescent and Butlin Avenue, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Yano H, Shintani M, Tomita M, Suzuki H, Oshima T. Reconsidering plasmid maintenance factors for computational plasmid design. Comput Struct Biotechnol J 2018; 17:70-81. [PMID: 30619542 PMCID: PMC6312765 DOI: 10.1016/j.csbj.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plasmids are genetic parasites of microorganisms. The genomes of naturally occurring plasmids are expected to be polished via natural selection to achieve long-term persistence in the microbial cell population. However, plasmid genomes are extremely diverse, and the rules governing plasmid genomes are not fully understood. Therefore, computationally designing plasmid genomes optimized for model and nonmodel organisms remains challenging. Here, we summarize current knowledge of the plasmid genome organization and the factors that can affect plasmid persistence, with the aim of constructing synthetic plasmids for use in gram-negative bacteria. Then, we introduce publicly available resources, plasmid data, and bioinformatics tools that are useful for computational plasmid design.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
24
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1279] [Impact Index Per Article: 182.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Zrimec J, Lapanje A. DNA structure at the plasmid origin-of-transfer indicates its potential transfer range. Sci Rep 2018; 8:1820. [PMID: 29379098 PMCID: PMC5789077 DOI: 10.1038/s41598-018-20157-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/10/2018] [Indexed: 11/29/2022] Open
Abstract
Horizontal gene transfer via plasmid conjugation enables antimicrobial resistance (AMR) to spread among bacteria and is a major health concern. The range of potential transfer hosts of a particular conjugative plasmid is characterised by its mobility (MOB) group, which is currently determined based on the amino acid sequence of the plasmid-encoded relaxase. To facilitate prediction of plasmid MOB groups, we have developed a bioinformatic procedure based on analysis of the origin-of-transfer (oriT), a merely 230 bp long non-coding plasmid DNA region that is the enzymatic substrate for the relaxase. By computationally interpreting conformational and physicochemical properties of the oriT region, which facilitate relaxase-oriT recognition and initiation of nicking, MOB groups can be resolved with over 99% accuracy. We have shown that oriT structural properties are highly conserved and can be used to discriminate among MOB groups more efficiently than the oriT nucleotide sequence. The procedure for prediction of MOB groups and potential transfer range of plasmids was implemented using published data and is available at http://dnatools.eu/MOB/plasmid.html.
Collapse
Affiliation(s)
- Jan Zrimec
- Institute of Metagenomics and Microbial Technologies, 1000, Ljubljana, Slovenia. .,Faculty of Health Sciences, University of Primorska, 6320, Izola, Slovenia. .,Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| | - Aleš Lapanje
- Institute of Metagenomics and Microbial Technologies, 1000, Ljubljana, Slovenia. .,Department of Nanotechnology, Saratov State University, 410012, Saratov, Russian Federation. .,Department of Environmental Sciences, Institute Jožef Štefan, 1000, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Getino M, Palencia-Gándara C, Garcillán-Barcia MP, de la Cruz F. PifC and Osa, Plasmid Weapons against Rival Conjugative Coupling Proteins. Front Microbiol 2017; 8:2260. [PMID: 29201021 PMCID: PMC5696584 DOI: 10.3389/fmicb.2017.02260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022] Open
Abstract
Bacteria display a variety of mechanisms to control plasmid conjugation. Among them, fertility inhibition (FI) systems prevent conjugation of co-resident plasmids within donor cells. Analysis of the mechanisms of inhibition between conjugative plasmids could provide new alternatives to fight antibiotic resistance dissemination. In this work, inhibition of conjugation of broad host range IncW plasmids was analyzed in the presence of a set of co-resident plasmids. Strong FI systems against plasmid R388 conjugation were found in IncF/MOBF12 as well as in IncI/MOBP12 plasmids, represented by plasmids F and R64, respectively. In both cases, the responsible gene was pifC, known also to be involved in FI of IncP plasmids and Agrobacterium T-DNA transfer to plant cells. It was also discovered that the R388 gene osa, which affects T-DNA transfer, also prevented conjugation of IncP-1/MOBP11 plasmids represented by plasmids RP4 and R751. Conjugation experiments of different mobilizable plasmids, helped by either FI-susceptible or FI-resistant transfer systems, demonstrated that the conjugative component affected by both PifC and Osa was the type IV conjugative coupling protein. In addition, in silico analysis of FI proteins suggests that they represent recent acquisitions of conjugative plasmids, i.e., are not shared by members of the same plasmid species. This implies that FI are rapidly-moving accessory genes, possibly acting on evolutionary fights between plasmids for the colonization of specific hosts.
Collapse
Affiliation(s)
- María Getino
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| | - Carolina Palencia-Gándara
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| |
Collapse
|
27
|
Harmer CJ, Hall RM. Targeted conservative formation of cointegrates between two DNA molecules containing IS26occurs via strand exchange at either IS end. Mol Microbiol 2017; 106:409-418. [DOI: 10.1111/mmi.13774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences; The University of Sydney; Sydney New South Wales Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences; The University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
28
|
Hall JPJ, Williams D, Paterson S, Harrison E, Brockhurst MA. Positive selection inhibits gene mobilisation and transfer in soil bacterial communities. Nat Ecol Evol 2017; 1:1348-1353. [PMID: 28890938 PMCID: PMC5584672 DOI: 10.1038/s41559-017-0250-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James P J Hall
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK. .,Department of Biology, University of York, York, YO10 5DD, UK.
| | - David Williams
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, L69 7ZB, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, L69 7ZB, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
29
|
Wolters B, Widyasari-Mehta A, Kreuzig R, Smalla K. Contaminations of organic fertilizers with antibiotic residues, resistance genes, and mobile genetic elements mirroring antibiotic use in livestock? Appl Microbiol Biotechnol 2016; 100:9343-9353. [DOI: 10.1007/s00253-016-7742-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 11/29/2022]
|
30
|
Novel R-plasmid conjugal transfer inhibitory and antibacterial activities of phenolic compounds from Mallotus philippensis (Lam.) Mull. Arg. J Glob Antimicrob Resist 2016; 5:15-21. [DOI: 10.1016/j.jgar.2016.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022] Open
|
31
|
Abstract
Transposons of the Tn3 family form a widespread and remarkably homogeneous group of bacterial transposable elements in terms of transposition functions and an extremely versatile system for mediating gene reassortment and genomic plasticity owing to their modular organization. They have made major contributions to antimicrobial drug resistance dissemination or to endowing environmental bacteria with novel catabolic capacities. Here, we discuss the dynamic aspects inherent to the diversity and mosaic structure of Tn3-family transposons and their derivatives. We also provide an overview of current knowledge of the replicative transposition mechanism of the family, emphasizing most recent work aimed at understanding this mechanism at the biochemical level. Previous and recent data are put in perspective with those obtained for other transposable elements to build up a tentative model linking the activities of the Tn3-family transposase protein with the cellular process of DNA replication, suggesting new lines for further investigation. Finally, we summarize our current view of the DNA site-specific recombination mechanisms responsible for converting replicative transposition intermediates into final products, comparing paradigm systems using a serine recombinase with more recently characterized systems that use a tyrosine recombinase.
Collapse
|
32
|
Harmer CJ, Hall RM. The A to Z of A/C plasmids. Plasmid 2015; 80:63-82. [DOI: 10.1016/j.plasmid.2015.04.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
33
|
Garcillán-Barcia MP, Ruiz del Castillo B, Alvarado A, de la Cruz F, Martínez-Martínez L. Degenerate primer MOB typing of multiresistant clinical isolates of E. coli uncovers new plasmid backbones. Plasmid 2014; 77:17-27. [PMID: 25463772 DOI: 10.1016/j.plasmid.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/08/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022]
Abstract
Degenerate Primer MOB Typing is a PCR-based protocol for the classification of γ-proteobacterial transmissible plasmids in five phylogenetic relaxase MOB families. It was applied to a multiresistant E. coli collection, previously characterized by PCR-based replicon-typing, in order to compare both methods. Plasmids from 32 clinical isolates of multiresistant E. coli (19 extended spectrum beta-lactamase producers and 13 non producers) and their transconjugants were analyzed. A total of 95 relaxases were detected, at least one per isolate, underscoring the high potential of these strains for antibiotic-resistance transmission. MOBP12 and MOBF12 plasmids were the most abundant. Most MOB subfamilies detected were present in both subsets of the collection, indicating a shared mobilome among multiresistant E. coli. The plasmid profile obtained by both methods was compared, which provided useful data upon which decisions related to the implementation of detection methods in the clinic could be based. The phylogenetic depth at which replicon and MOB-typing classify plasmids is different. While replicon-typing aims at plasmid replication regions with non-degenerate primers, MOB-typing classifies plasmids into relaxase subfamilies using degenerate primers. As a result, MOB-typing provides a deeper phylogenetic depth than replicon-typing and new plasmid groups are uncovered. Significantly, MOB typing identified 17 plasmids and an integrative and conjugative element, which were not detected by replicon-typing. Four of these backbones were different from previously reported elements.
Collapse
Affiliation(s)
- M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, España.
| | - Belén Ruiz del Castillo
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla y Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, España
| | - Andrés Alvarado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, España
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, España
| | - Luis Martínez-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla y Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, España; Departamento de Biología Molecular, Universidad de Cantabria, Santander, España
| |
Collapse
|
34
|
Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. mBio 2014; 5:e01801-14. [PMID: 25293759 PMCID: PMC4196232 DOI: 10.1128/mbio.01801-14] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insertion sequence IS26 plays a key role in disseminating antibiotic resistance genes in Gram-negative bacteria, forming regions containing more than one antibiotic resistance gene that are flanked by and interspersed with copies of IS26. A model presented for a second mode of IS26 movement that explains the structure of these regions involves a translocatable unit consisting of a unique DNA segment carrying an antibiotic resistance (or other) gene and a single IS copy. Structures resembling class I transposons are generated via RecA-independent incorporation of a translocatable unit next to a second IS26 such that the ISs are in direct orientation. Repeating this process would lead to arrays of resistance genes with directly oriented copies of IS26 at each end and between each unique segment. This model requires that IS26 recognizes another IS26 as a target, and in transposition experiments, the frequency of cointegrate formation was 60-fold higher when the target plasmid contained IS26. This reaction was conservative, with no additional IS26 or target site duplication generated, and orientation specific as the IS26s in the cointegrates were always in the same orientation. Consequently, the cointegrates were identical to those formed via the known mode of IS26 movement when a target IS26 was not present. Intact transposase genes in both IS26s were required for high-frequency cointegrate formation as inactivation of either one reduced the frequency 30-fold. However, the IS26 target specificity was retained. Conversion of each residue in the DDE motif of the Tnp26 transposase also reduced the cointegration frequency. Resistance to antibiotics belonging to several of the different classes used to treat infections is a critical problem. Multiply antibiotic-resistant bacteria usually carry large regions containing several antibiotic resistance genes, and in Gram-negative bacteria, IS26 is often seen in these clusters. A model to explain the unusual structure of regions containing multiple IS26 copies, each associated with a resistance gene, was not available, and the mechanism of their formation was unexplored. IS26-flanked structures deceptively resemble class I transposons, but this work reveals that the features of IS26 movement do not resemble those of the IS and class I transposons studied to date. IS26 uses a novel movement mechanism that defines a new family of mobile genetic elements that we have called “translocatable units.” The IS26 mechanism also explains the properties of IS257 (IS431) and IS1216, which belong to the same IS family and mobilize resistance genes in Gram-positive staphylococci and enterococci.
Collapse
|
35
|
Herrick J, Haynes R, Heringa S, Brooks J, Sobota L. Coselection for resistance to multiple late-generation human therapeutic antibiotics encoded on tetracycline resistance plasmids captured from uncultivated stream and soil bacteria. J Appl Microbiol 2014; 117:380-9. [DOI: 10.1111/jam.12538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Affiliation(s)
- J.B. Herrick
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - R. Haynes
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - S. Heringa
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - J.M. Brooks
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - L.T. Sobota
- Department of Biology; James Madison University; Harrisonburg VA USA
| |
Collapse
|
36
|
Shifts in abundance and diversity of mobile genetic elements after the introduction of diverse pesticides into an on-farm biopurification system over the course of a year. Appl Environ Microbiol 2014; 80:4012-20. [PMID: 24771027 DOI: 10.1128/aem.04016-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biopurification systems (BPS) are used on farms to control pollution by treating pesticide-contaminated water. It is assumed that mobile genetic elements (MGEs) carrying genes coding for enzymes involved in degradation might contribute to the degradation of pesticides. Therefore, the composition and shifts of MGEs, in particular, of IncP-1 plasmids carried by BPS bacterial communities exposed to various pesticides, were monitored over the course of an agricultural season. PCR amplification of total community DNA using primers targeting genes specific to different plasmid groups combined with Southern blot hybridization indicated a high abundance of plasmids belonging to IncP-1, IncP-7, IncP-9, IncQ, and IncW, while IncU and IncN plasmids were less abundant or not detected. Furthermore, the integrase genes of class 1 and 2 integrons (intI1, intI2) and genes encoding resistance to sulfonamides (sul1, sul2) and streptomycin (aadA) were detected and seasonality was revealed. Amplicon pyrosequencing of the IncP-1 trfA gene coding for the replication initiation protein revealed high IncP-1 plasmid diversity and an increase in the abundance of IncP-1β and a decrease in the abundance of IncP-1ε over time. The data of the chemical analysis showed increasing concentrations of various pesticides over the course of the agricultural season. As an increase in the relative abundances of bacteria carrying IncP-1β plasmids also occurred, this might point to a role of these plasmids in the degradation of many different pesticides.
Collapse
|
37
|
Negative feedback and transcriptional overshooting in a regulatory network for horizontal gene transfer. PLoS Genet 2014; 10:e1004171. [PMID: 24586200 PMCID: PMC3937220 DOI: 10.1371/journal.pgen.1004171] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/26/2013] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major force driving bacterial evolution. Because of their ability to cross inter-species barriers, bacterial plasmids are essential agents for HGT. This ability, however, poses specific requisites on plasmid physiology, in particular the need to overcome a multilevel selection process with opposing demands. We analyzed the transcriptional network of plasmid R388, one of the most promiscuous plasmids in Proteobacteria. Transcriptional analysis by fluorescence expression profiling and quantitative PCR revealed a regulatory network controlled by six transcriptional repressors. The regulatory network relied on strong promoters, which were tightly repressed in negative feedback loops. Computational simulations and theoretical analysis indicated that this architecture would show a transcriptional burst after plasmid conjugation, linking the magnitude of the feedback gain with the intensity of the transcriptional burst. Experimental analysis showed that transcriptional overshooting occurred when the plasmid invaded a new population of susceptible cells. We propose that transcriptional overshooting allows genome rebooting after horizontal gene transfer, and might have an adaptive role in overcoming the opposing demands of multilevel selection. In the environment, bacteria often evolve by the acquisition of new genes from different species. Plasmids are small DNA molecules that mediate horizontal gene transfer in bacteria, thus they are fundamental agents for the spread of antibiotic resistances. Plasmids replicate inside the bacterial cytoplasm, and propagate infectiously by contact. Plasmids control these two ways of multiplication, but like many other symbionts they suffer from a tradeoff. If plasmids become very infective, they can spread fast and successfully, but this damages the bacterial hosts they depend upon. If, on the contrary, plasmids become very mild, the host is able to grow better but the ability of plasmids to infect new hosts is hampered. We have studied the regulatory mechanisms plasmids use to overcome this paradox. We discovered that negative feedback, a regulatory motif ubiquitous in the plasmid network, allows transient activation of plasmid functions immediately after plasmids invade a new host. This might be an adaptive strategy for plasmids to be highly infective without damaging their hosts, and it illustrates a natural mechanism for DNA transplantation that could be implemented in synthetic genomic transplants.
Collapse
|
38
|
Antimicrobial resistance in the food chain: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:2643-69. [PMID: 23812024 PMCID: PMC3734448 DOI: 10.3390/ijerph10072643] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.
Collapse
|
39
|
Cain AK, Hall RM. Evolution of IncHI1 plasmids: two distinct lineages. Plasmid 2013; 70:201-8. [PMID: 23567475 DOI: 10.1016/j.plasmid.2013.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
The IncHI1 plasmid pSRC27-H from Salmonella enterica serovar Typhimurium carries a region containing several genes that confer resistance to different antibiotics, and this resistance region is in the same position as related resistance regions in a group of sequenced IncHI1 plasmids from various sources that includes pHCM1. Four further additional segments are found in pHCM1 relative to another IncHI1 plasmid, R27. Using PCR or DNA sequencing to detect the presence or absence of each of these additional segments in the same position in the IncHI1 backbone, plasmid pSRC27-H was found to include them. However, in one case the additional segment was smaller in pSRC27-H, lacking a transposon carrying a second resistance region in pHCM1. The sequences of IncHI1 plasmids, pO111_1 and pMAK1, were also examined and found to share the same or closely related additional segments. The structure of the additional material in pHCM1, pO111_1 and pMAK1 was examined, and potential novel transposons were identified. These additional segments define an IncHI1 lineage (pHCM1, pO111_1, pMAK1, pSRC27-H) which we designated type 2 to distinguish it from type 1 (R27, pAKU_1, pP-stx-12). A segment from the Escherichia coli genome and an adjacent copy of IS1 in pHCM1 was defined by comparison to pO111_1 and pMAK1, which lack it. pSRC27-H also lacks it. This structure is present in the same position in R27 and type 1 plasmids, but in the opposite orientation, and appears to have been incorporated via IS1-mediated transposition. The PCRs developed provide a simple means of distinguishing type 1 and type 2 IncHI1 plasmids based on the presence or absence of variable regions.
Collapse
Affiliation(s)
- Amy K Cain
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
40
|
Król JE, Wojtowicz AJ, Rogers LM, Heuer H, Smalla K, Krone SM, Top EM. Invasion of E. coli biofilms by antibiotic resistance plasmids. Plasmid 2013; 70:110-9. [PMID: 23558148 DOI: 10.1016/j.plasmid.2013.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/08/2013] [Accepted: 03/21/2013] [Indexed: 12/21/2022]
Abstract
In spite of the contribution of plasmids to the spread of antibiotic resistance in human pathogens, little is known about the transferability of various drug resistance plasmids in bacterial biofilms. The goal of this study was to compare the efficiency of transfer of 19 multidrug resistance plasmids into Escherichia coli recipient biofilms and determine the effects of biofilm age, biofilm-donor exposure time, and donor-to-biofilm attachment on this process. An E. coli recipient biofilm was exposed separately to 19 E. coli donors, each with a different plasmid, and transconjugants were determined by plate counting. With few exceptions, plasmids that transferred well in a liquid environment also showed the highest transferability in biofilms. The difference in transfer frequency between the most and least transferable plasmid was almost a million-fold. The 'invasibility' of the biofilm by plasmids, or the proportion of biofilm cells that acquired plasmids within a few hours, depended not only on the type of plasmid, but also on the time of biofilm exposure to the donor and on the ability of the plasmid donor to attach to the biofilm, yet not on biofilm age. The efficiency of donor strain attachment to the biofilm was not affected by the presence of plasmids. The most invasive plasmid was pHH2-227, which based on genome sequence analysis is a hybrid between IncU-like and IncW plasmids. The wide range in transferability in an E. coli biofilm among plasmids needs to be taken into account in our fight against the spread of drug resistance.
Collapse
Affiliation(s)
- Jaroslaw E Król
- Department of Biological Sciences, University of Idaho, ID 83844-3051, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Wellington EMH, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM, Williams AP. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. THE LANCET. INFECTIOUS DISEASES 2013; 13:155-65. [PMID: 23347633 DOI: 10.1016/s1473-3099(12)70317-1] [Citation(s) in RCA: 643] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the past 10 years, multidrug-resistant Gram-negative Enterobacteriaceae have become a substantial challenge to infection control. It has been suggested by clinicians that the effectiveness of antibiotics is in such rapid decline that, depending on the pathogen concerned, their future utility can be measured in decades or even years. Unless the rise in antibiotic resistance can be reversed, we can expect to see a substantial rise in incurable infection and fatality in both developed and developing regions. Antibiotic resistance develops through complex interactions, with resistance arising by de-novo mutation under clinical antibiotic selection or frequently by acquisition of mobile genes that have evolved over time in bacteria in the environment. The reservoir of resistance genes in the environment is due to a mix of naturally occurring resistance and those present in animal and human waste and the selective effects of pollutants, which can co-select for mobile genetic elements carrying multiple resistant genes. Less attention has been given to how anthropogenic activity might be causing evolution of antibiotic resistance in the environment. Although the economics of the pharmaceutical industry continue to restrict investment in novel biomedical responses, action must be taken to avoid the conjunction of factors that promote evolution and spread of antibiotic resistance.
Collapse
|
42
|
Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 2013; 4:15. [PMID: 23508522 PMCID: PMC3589745 DOI: 10.3389/fmicb.2013.00015] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022] Open
Abstract
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Ana P. Tedim
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
43
|
Ilyina TS. Mobile ISCR elements: Structure, functions, and role in emergence, increase, and spread of blocks of bacterial multiple antibiotic resistance genes. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2012. [DOI: 10.3103/s0891416812040040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Galac MR, Lazzaro BP. Comparative genomics of bacteria in the genus Providencia isolated from wild Drosophila melanogaster. BMC Genomics 2012; 13:612. [PMID: 23145767 PMCID: PMC3542290 DOI: 10.1186/1471-2164-13-612] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/05/2012] [Indexed: 02/04/2023] Open
Abstract
Background Comparative genomics can be an initial step in finding the genetic basis for phenotypic differences among bacterial strains and species. Bacteria belonging to the genus Providencia have been isolated from numerous and varied environments. We sequenced, annotated and compared draft genomes of P. rettgeri, P. sneebia, P. alcalifaciens, and P. burhodogranariea. These bacterial species that were all originally isolated as infections of wild Drosophila melanogaster and have been previously shown to vary in virulence to experimentally infected flies. Results We found that these Providencia species share a large core genome, but also possess distinct sets of genes that are unique to each isolate. We compared the genomes of these isolates to draft genomes of four Providencia isolated from the human gut and found that the core genome size does not substantially change upon inclusion of the human isolates. We found many adhesion related genes among those genes that were unique to each genome. We also found that each isolate has at least one type 3 secretion system (T3SS), a known virulence factor, though not all identified T3SS belong to the same family nor are they in syntenic genomic locations. Conclusions The Providencia species examined here are characterized by high degree of genomic similarity which will likely extend to other species and isolates within this genus. The presence of T3SS islands in all of the genomes reveal that their presence is not sufficient to indicate virulence towards D. melanogaster, since some of the T3SS-bearing isolates are known to cause little mortality. The variation in adhesion genes and the presence of T3SSs indicates that host cell adhesion is likely an important aspect of Providencia virulence.
Collapse
Affiliation(s)
- Madeline R Galac
- Field of Genetics and Development, 3125 Comstock Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
45
|
Toleman MA, Walsh TR. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol Rev 2011; 35:912-35. [DOI: 10.1111/j.1574-6976.2011.00294.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Pinyon JL, Hall RM. Evolution of IncP-1α Plasmids by Acquisition of Antibiotic and Mercuric Ion Resistance Transposons. Microb Drug Resist 2011; 17:339-43. [DOI: 10.1089/mdr.2010.0196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jeremy L. Pinyon
- School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | - Ruth M. Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| |
Collapse
|
47
|
Garcillán-Barcia MP, Alvarado A, de la Cruz F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol Rev 2011; 35:936-56. [PMID: 21711366 DOI: 10.1111/j.1574-6976.2011.00291.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Plasmids contain a backbone of core genes that remains relatively stable for long evolutionary periods, making sense to speak about plasmid species. The identification and characterization of the core genes of a plasmid species has a special relevance in the study of its epidemiology and modes of transmission. Besides, this knowledge will help to unveil the main routes that genes, for example antibiotic resistance (AbR) genes, use to travel from environmental reservoirs to human pathogens. Global dissemination of multiple antibiotic resistances and virulence traits by plasmids is an increasing threat for the treatment of many bacterial infectious diseases. To follow the dissemination of virulence and AbR genes, we need to identify the causative plasmids and follow their path from reservoirs to pathogens. In this review, we discuss how the existing diversity in plasmid genetic structures gives rise to a large diversity in propagation strategies. We would like to propose that, using an identification methodology based on plasmid mobility types, we can follow the propagation routes of most plasmids in Gammaproteobacteria, as well as their cargo genes, in complex ecosystems. Once the dissemination routes are known, designing antidissemination drugs and testing their efficacy will become feasible. We discuss in this review how the existing diversity in plasmid genetic structures gives rise to a large diversity in propagation strategies. We would like to propose that, by using an identification methodology based on plasmid mobility types, we can follow the propagation routes of most plasmids in ?-proteobacteria, as well as their cargo genes, in complex ecosystems.
Collapse
Affiliation(s)
- Maria Pilar Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, C. Herrera Oria s/n, Santander, Spain
| | | | | |
Collapse
|
48
|
Abstract
Antibiotic resistance in Gram-negative bacteria is often due to the acquisition of resistance genes from a shared pool. In multiresistant isolates these genes, together with associated mobile elements, may be found in complex conglomerations on plasmids or on the chromosome. Analysis of available sequences reveals that these multiresistance regions (MRR) are modular, mosaic structures composed of different combinations of components from a limited set arranged in a limited number of ways. Components common to different MRR provide targets for homologous recombination, allowing these regions to evolve by combinatorial evolution, but our understanding of this process is far from complete. Advances in technology are leading to increasing amounts of sequence data, but currently available automated annotation methods usually focus on identifying ORFs and predicting protein function by homology. In MRR, where the genes are often well characterized, the challenge is to identify precisely which genes are present and to define the boundaries of complete and fragmented mobile elements. This review aims to summarize the types of mobile elements involved in multiresistance in Gram-negative bacteria and their associations with particular resistance genes, to describe common components of MRR and to illustrate methods for detailed analysis of these regions.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia.
| |
Collapse
|
49
|
Abstract
Plasmids are key vectors of horizontal gene transfer and essential genetic engineering tools. They code for genes involved in many aspects of microbial biology, including detoxication, virulence, ecological interactions, and antibiotic resistance. While many studies have decorticated the mechanisms of mobility in model plasmids, the identification and characterization of plasmid mobility from genome data are unexplored. By reviewing the available data and literature, we established a computational protocol to identify and classify conjugation and mobilization genetic modules in 1,730 plasmids. This allowed the accurate classification of proteobacterial conjugative or mobilizable systems in a combination of four mating pair formation and six relaxase families. The available evidence suggests that half of the plasmids are nonmobilizable and that half of the remaining plasmids are conjugative. Some conjugative systems are much more abundant than others and preferably associated with some clades or plasmid sizes. Most very large plasmids are nonmobilizable, with evidence of ongoing domestication into secondary chromosomes. The evolution of conjugation elements shows ancient divergence between mobility systems, with relaxases and type IV coupling proteins (T4CPs) often following separate paths from type IV secretion systems. Phylogenetic patterns of mobility proteins are consistent with the phylogeny of the host prokaryotes, suggesting that plasmid mobility is in general circumscribed within large clades. Our survey suggests the existence of unsuspected new relaxases in archaea and new conjugation systems in cyanobacteria and actinobacteria. Few genes, e.g., T4CPs, relaxases, and VirB4, are at the core of plasmid conjugation, and together with accessory genes, they have evolved into specific systems adapted to specific physiological and ecological contexts.
Collapse
|
50
|
Baharoglu Z, Bikard D, Mazel D. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet 2010; 6:e1001165. [PMID: 20975940 PMCID: PMC2958807 DOI: 10.1371/journal.pgen.1001165] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/17/2010] [Indexed: 11/21/2022] Open
Abstract
Conjugation is one mechanism for intra- and inter-species horizontal gene transfer among bacteria. Conjugative elements have been instrumental in many bacterial species to face the threat of antibiotics, by allowing them to evolve and adapt to these hostile conditions. Conjugative plasmids are transferred to plasmidless recipient cells as single-stranded DNA. We used lacZ and gfp fusions to address whether conjugation induces the SOS response and the integron integrase. The SOS response controls a series of genes responsible for DNA damage repair, which can lead to recombination and mutagenesis. In this manuscript, we show that conjugative transfer of ssDNA induces the bacterial SOS stress response, unless an anti-SOS factor is present to alleviate this response. We also show that integron integrases are up-regulated during this process, resulting in increased cassette rearrangements. Moreover, the data we obtained using broad and narrow host range plasmids strongly suggests that plasmid transfer, even abortive, can trigger chromosomal gene rearrangements and transcriptional switches in the recipient cell. Our results highlight the importance of environments concentrating disparate bacterial communities as reactors for extensive genetic adaptation of bacteria. Bacteria exchange DNA in their natural environments. The process called conjugation consists of DNA transfer by cell contact from one bacterium to another. Conjugative circular plasmids have been identified as shuttles and reservoirs for adaptive genes. It is now established that such lateral gene transfer plays an essential role, especially for the antibiotic resistance development and dissemination among bacteria. Moreover, integrons, platforms of mobile gene cassettes, have been instrumental in this phenomenon, through their successful association with conjugative resistance plasmids. We demonstrate in this study that the conjugative transfer of plasmids triggers a bacterial stress response—the SOS response—in recipient cells and can impact the cassette content of integrons. The SOS response is already known to induce various genome modifications. Human and animal pathogens cohabit with environmental bacteria, in niches which will favor DNA exchange. SOS induction during conjugation is thus most probably able to impact a wide range of genomes. Bacterial SOS response could then be a suitable target for co-treatment of infections in order to prevent exchange of antibiotic resistance/adaptation genes.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- CNRS, URA2171, Paris, France
| | - David Bikard
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- CNRS, URA2171, Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- CNRS, URA2171, Paris, France
- * E-mail:
| |
Collapse
|