1
|
Castillo G, Fustamante L, Delgado‐Kamiche AD, Camen‐Orozco RP, Clark T, Bernal E, Morales‐Alvarez J, Ferrufino M, Mamani‐Palomino J, Bustos JA, Garcia HH, Gavidia CM, Gilman RH, Verastegui M. Understanding the pathogenic mechanisms and therapeutic effects in neurocysticercosis. Brain Pathol 2024; 34:e13237. [PMID: 38212958 PMCID: PMC11328352 DOI: 10.1111/bpa.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024] Open
Abstract
Despite being a leading cause of acquired seizures in endemic regions, the pathological mechanisms of neurocysticercosis are still poorly understood. This study aims to investigate the impact of anthelmintic treatment on neuropathological features in a rat model of neurocysticercosis. Rats were intracranially infected with Taenia solium oncospheres and treated with albendazole + praziquantel (ABZ), oxfendazole + praziquantel (OXF), or untreated placebo (UT) for 7 days. Following the last dose of treatment, brain tissues were evaluated at 24 h and 2 months. We performed neuropathological assessment for cyst damage, perilesional brain inflammation, presence of axonal spheroids, and spongy changes. Both treatments showed comparable efficacy in cyst damage and inflammation. The presence of spongy change correlated with spheroids counts and were not affected by anthelmintic treatment. Compared to white matter, gray matter showed greater spongy change (91.7% vs. 21.4%, p < 0.0001), higher spheroids count (45.2 vs. 0.2, p = 0.0001), and increased inflammation (72.0% vs. 21.4%, p = 0.003). In this rat model, anthelmintic treatment destroyed brain parasitic cysts at the cost of local inflammation similar to what is described in human neurocysticercosis. Axonal spheroids and spongy changes as markers of damage were topographically correlated, and not affected by anthelmintic treatment.
Collapse
Affiliation(s)
- Gino Castillo
- Infectious Diseases Laboratory Research‐LID, Facultad de Ciencia e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
| | - Lizbeth Fustamante
- Infectious Diseases Laboratory Research‐LID, Facultad de Ciencia e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
| | - Ana D. Delgado‐Kamiche
- Infectious Diseases Laboratory Research‐LID, Facultad de Ciencia e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Rogger P. Camen‐Orozco
- Infectious Diseases Laboratory Research‐LID, Facultad de Ciencia e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Taryn Clark
- The Department of International Health, Bloomberg School of Hygiene and Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Emergency Medicine, SUNY Downstate Medical CenterKings County Hospital Medical Center, Brooklyn, New YorkNew YorkUnited States
| | - Edson Bernal
- Infectious Diseases Laboratory Research‐LID, Facultad de Ciencia e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
| | - Jemima Morales‐Alvarez
- Infectious Diseases Laboratory Research‐LID, Facultad de Ciencia e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
| | - Maria Ferrufino
- Department of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Javier Mamani‐Palomino
- Facultad de Medicina Veterinaria y Salud animalUniversidad Peruana Cayetano HerediaLimaPeru
| | - Javier A. Bustos
- Center for Global HealthUniversidad Peruana Cayetano HerediaLimaPeru
| | - Hector H. Garcia
- Cysticercosis UnitInstituto Nacional de Ciencias NeurológicasLimaPeru
| | - Cesar M. Gavidia
- School of Veterinary MedicineUniversidad Nacional Mayor de San MarcosLimaPeru
| | - Robert H. Gilman
- The Department of International Health, Bloomberg School of Hygiene and Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Manuela Verastegui
- Infectious Diseases Laboratory Research‐LID, Facultad de Ciencia e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
- Asociación Benéfica PrismaLimaPeru
| | | |
Collapse
|
2
|
Risch F, Kazakov A, Specht S, Pfarr K, Fischer PU, Hoerauf A, Hübner MP. The long and winding road towards new treatments against lymphatic filariasis and onchocerciasis. Trends Parasitol 2024; 40:829-845. [PMID: 39122645 DOI: 10.1016/j.pt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Although lymphatic filariasis and onchocerciasis have been targeted for global elimination, these helminth infections are still a major public health problem across the tropics and subtropics. Despite decades of research, treatment options remain limited and drugs that completely clear the infections, and can be used on a large scale, are still unavailable. In the present review we discuss the strengths and weaknesses of currently available treatments and new ones in development. Novel candidates (corallopyronin A, DNDi-6166, emodepside, and oxfendazole) are currently moving through (pre)clinical development, while the development of two candidates (AWZ1066S and ABBV-4083/flubentylosin) was recently halted. The preclinical R&D pipeline for filarial infections continues to be limited, and recent setbacks highlight the importance of continuous drug discovery and testing.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexander Kazakov
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Peter U Fischer
- Division of Infectious Diseases, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
3
|
Hudu SA, Jimoh AO, Adeshina KA, Otalike EG, Tahir A, Hegazy AA. An insight into the Success, Challenges, and Future perspectives of eliminating Neglected tropical disease. SCIENTIFIC AFRICAN 2024; 24:e02165. [DOI: 10.1016/j.sciaf.2024.e02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2024] Open
|
4
|
Hegde S, Marriott AE, Pionnier N, Steven A, Bulman C, Gunderson E, Vogel I, Koschel M, Ehrens A, Lustigman S, Voronin D, Tricoche N, Hoerauf A, Hübner MP, Sakanari J, Aljayyoussi G, Gusovsky F, Dagley J, Hong DW, O'Neill P, Ward SA, Taylor MJ, Turner JD. Combinations of the azaquinazoline anti- Wolbachia agent, AWZ1066S, with benzimidazole anthelmintics synergise to mediate sub-seven-day sterilising and curative efficacies in experimental models of filariasis. Front Microbiol 2024; 15:1346068. [PMID: 38362501 PMCID: PMC10867176 DOI: 10.3389/fmicb.2024.1346068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
Lymphatic filariasis and onchocerciasis are two major neglected tropical diseases that are responsible for causing severe disability in 50 million people worldwide, whilst veterinary filariasis (heartworm) is a potentially lethal parasitic infection of companion animals. There is an urgent need for safe, short-course curative (macrofilaricidal) drugs to eliminate these debilitating parasite infections. We investigated combination treatments of the novel anti-Wolbachia azaquinazoline small molecule, AWZ1066S, with benzimidazole drugs (albendazole or oxfendazole) in up to four different rodent filariasis infection models: Brugia malayi-CB.17 SCID mice, B. malayi-Mongolian gerbils, B. pahangi-Mongolian gerbils, and Litomosoides sigmodontis-Mongolian gerbils. Combination treatments synergised to elicit threshold (>90%) Wolbachia depletion from female worms in 5 days of treatment, using 2-fold lower dose-exposures of AWZ1066S than monotherapy. Short-course lowered dose AWZ1066S-albendazole combination treatments also delivered partial adulticidal activities and/or long-lasting inhibition of embryogenesis, resulting in complete transmission blockade in B. pahangi and L. sigmodontis gerbil models. We determined that short-course AWZ1066S-albendazole co-treatment significantly augmented the depletion of Wolbachia populations within both germline and hypodermal tissues of B. malayi female worms and in hypodermal tissues in male worms, indicating that anti-Wolbachia synergy is not limited to targeting female embryonic tissues. Our data provides pre-clinical proof-of-concept that sub-seven-day combinations of rapid-acting novel anti-Wolbachia agents with benzimidazole anthelmintics are a promising curative and transmission-blocking drug treatment strategy for filarial diseases of medical and veterinary importance.
Collapse
Affiliation(s)
- Shrilakshmi Hegde
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amy E. Marriott
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicolas Pionnier
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew Steven
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christina Bulman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Emma Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Ian Vogel
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Marianne Koschel
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, Unites States
| | - Denis Voronin
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, Unites States
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, Unites States
| | - Achim Hoerauf
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Ghaith Aljayyoussi
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Jessica Dagley
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David W. Hong
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Paul O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Steven A. Ward
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mark J. Taylor
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D. Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
5
|
Gokool S, Townson S, Freeman A, Siemienski-Kleyn J, Zubrzycki J, Tagboto S, Hübner MP, Scandale I. Onchocerciasis Drug Discovery: In Vitro Evaluation of FDA-Approved Drugs against Onchocerca gutturosa in Gambia. Pharmaceutics 2024; 16:210. [PMID: 38399264 PMCID: PMC10891533 DOI: 10.3390/pharmaceutics16020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Onchocerciasis treatment and control relies mainly on the use of ivermectin which has high activity against the microfilarial stage of Onchocerca volvulus but limited activity against the long-lived, tissue dwelling adult nematodes. As this neglected tropical disease has now been targeted for elimination, there is an urgent need for new drugs to combat these parasites, ideally with macrofilaricidal activity. In this study, we have examined the anti-Onchocerca activity of a range of existing FDA-approved drugs with a view to repurposing, which can lead to rapid and relatively inexpensive development. From the Pharmakon-1600 library, 106 drugs were selected and tested against O. gutturosa adult male parasites using a concentration of 1.25 × 10-5 M in an in vitro 5-day standard assay to assess motility and viability (using MTT/formazan colorimetry). The findings revealed that 44 drugs produced marginal/moderate activity (50-99% motility and/or MTT reductions) including cefuroxime sodium, methenamine, primaquine phosphate and rivastigmine tartrate, while 23 drugs produced good activity (100% motility reductions and significant MTT reductions), including atovaquone, isradipine, losartan, rifaximin, cefaclor and pyrantel pamoate. Although this study represents only a first step, some of the identified hits indicate there are potential anti-Onchocerca drug candidates worthy of further investigation.
Collapse
Affiliation(s)
- Suzanne Gokool
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Simon Townson
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Andrew Freeman
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Jadzia Siemienski-Kleyn
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Jakub Zubrzycki
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Senyo Tagboto
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, 1202 Geneva, Switzerland;
| |
Collapse
|
6
|
Risch F, Scheunemann JF, Reichwald JJ, Lenz B, Ehrens A, Gal J, Fercoq F, Koschel M, Fendler M, Hoerauf A, Martin C, Hübner MP. The efficacy of the benzimidazoles oxfendazole and flubendazole against Litomosoides sigmodontis is dependent on the adaptive and innate immune system. Front Microbiol 2023; 14:1213143. [PMID: 37440891 PMCID: PMC10335397 DOI: 10.3389/fmicb.2023.1213143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Filarial nematodes can cause debilitating diseases such as lymphatic filariasis and onchocerciasis. Oxfendazole (OXF) is one promising macrofilaricidal candidate with improved oral availability compared to flubendazole (FBZ), and OXF is currently under preparation for phase 2 clinical trials in filariasis patients. This study aimed to investigate the immune system's role during treatment with OXF and FBZ and explore the potential to boost the treatment efficacy via stimulation of the immune system. Wild type (WT) BALB/c, eosinophil-deficient ΔdblGata1, IL-4r/IL-5-/-, antibody-deficient μMT and B-, T-, NK-cell and ILC-deficient Rag2/IL-2rγ-/- mice were infected with the rodent filaria Litomosoides sigmodontis and treated with an optimal and suboptimal regimen of OXF and FBZ for up to 5 days. In the second part, WT mice were treated for 2-3 days with a combination of OXF and IL-4, IL-5, or IL-33. Treatment of WT mice reduced the adult worm burden by up to 94% (OXF) and 100% (FBZ) compared to vehicle controls. In contrast, treatment efficacy was lower in all immunodeficient strains with a reduction of up to 90% (OXF) and 75% (FBZ) for ΔdblGata1, 50 and 92% for IL-4r/IL-5-/-, 64 and 78% for μMT or 0% for Rag2/IL-2rγ-/- mice. The effect of OXF on microfilariae and embryogenesis displayed a similar pattern, while FBZ's ability to prevent microfilaremia was independent of the host's immune status. Furthermore, flow cytometric analysis revealed strain-and treatment-specific immunological changes. The efficacy of a shortened 3-day treatment of OXF (-33% adult worms vs. vehicle) could be boosted to a 91% worm burden reduction via combination with IL-5, but not IL-4 or IL-33. Our results suggest that various components of the immune system support the filaricidal effect of benzimidazoles in vivo and present an opportunity to boost treatment efficacy.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Johanna F. Scheunemann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Julia J. Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Joséphine Gal
- Unité Molécules de Communication et Adaptation des Microorganismes, Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Frédéric Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes, Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Martina Fendler
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes, Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
7
|
Pfarr KM, Krome AK, Al-Obaidi I, Batchelor H, Vaillant M, Hoerauf A, Opoku NO, Kuesel AC. The pipeline for drugs for control and elimination of neglected tropical diseases: 1. Anti-infective drugs for regulatory registration. Parasit Vectors 2023; 16:82. [PMID: 36859332 PMCID: PMC9979492 DOI: 10.1186/s13071-022-05581-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 03/03/2023] Open
Abstract
The World Health Organization 'Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030' outlines the targets for control and elimination of neglected tropical diseases (NTDs). New drugs are needed to achieve some of them. We are providing an overview of the pipeline for new anti-infective drugs for regulatory registration and steps to effective use for NTD control and elimination. Considering drugs approved for an NTD by at least one stringent regulatory authority: fexinidazole, included in WHO guidelines for Trypanosoma brucei gambiense African trypanosomiasis, is in development for Chagas disease. Moxidectin, registered in 2018 for treatment of individuals ≥ 12 years old with onchocerciasis, is undergoing studies to extend the indication to 4-11-year-old children and obtain additional data to inform WHO and endemic countries' decisions on moxidectin inclusion in guidelines and policies. Moxidectin is also being evaluated for other NTDs. Considering drugs in at least Phase 2 clinical development, a submission is being prepared for registration of acoziborole as an oral treatment for first and second stage T.b. gambiense African trypanosomiasis. Bedaquiline, registered for tuberculosis, is being evaluated for multibacillary leprosy. Phase 2 studies of emodepside and flubentylosin in O. volvulus-infected individuals are ongoing; studies for Trichuris trichuria and hookworm are planned. A trial of fosravuconazole in Madurella mycetomatis-infected patients is ongoing. JNJ-64281802 is undergoing Phase 2 trials for reducing dengue viral load. Studies are ongoing or planned to evaluate oxantel pamoate for onchocerciasis and soil-transmitted helminths, including Trichuris, and oxfendazole for onchocerciasis, Fasciola hepatica, Taenia solium cysticercosis, Echinococcus granulosus and soil-transmitted helminths, including Trichuris. Additional steps from first registration to effective use for NTD control and elimination include country registrations, possibly additional studies to inform WHO guidelines and country policies, and implementation research to address barriers to effective use of new drugs. Relative to the number of people suffering from NTDs, the pipeline is small. Close collaboration and exchange of experience among all stakeholders developing drugs for NTDs may increase the probability that the current pipeline will translate into new drugs effectively implemented in affected countries.
Collapse
Affiliation(s)
- Kenneth M. Pfarr
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Anna K. Krome
- grid.10388.320000 0001 2240 3300Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Issraa Al-Obaidi
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hannah Batchelor
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michel Vaillant
- grid.451012.30000 0004 0621 531XCompetence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Achim Hoerauf
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Nicholas O. Opoku
- grid.449729.50000 0004 7707 5975Department of Epidemiology and Biostatistics School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| |
Collapse
|
8
|
Song B, Park EY, Kim KJ, Ki SH. Repurposing of Benzimidazole Anthelmintic Drugs as Cancer Therapeutics. Cancers (Basel) 2022; 14:cancers14194601. [PMID: 36230527 PMCID: PMC9559625 DOI: 10.3390/cancers14194601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Although non-prescription anthelmintics are often used for cancer treatment, there is a lack of information regarding their anti-cancer effects in clinical settings. The aims of our review are to describe the possibilities and limitations of the anti-cancer effects of benzimidazole anthelmintics and to suggest ways to overcome these limitations. The results of the current review illustrate the potential development of anthelmintics as a useful strategy for cancer treatment based on much preclinical evidence. Furthermore, they suggest that more rigorous studies on whole anti-cancer pathways and development strategies, including formulations, could result in significantly enhanced anti-cancer effects of benzimidazoles as a repurposed cancer therapy in clinical settings. Abstract Benzimidazoles have shown significant promise for repurposing as a cancer therapy. The aims of this review are to investigate the possibilities and limitations of the anti-cancer effects of benzimidazole anthelmintics and to suggest ways to overcome these limitations. This review included studies on the anti-cancer effects of 11 benzimidazoles. Largely divided into three parts, i.e., preclinical anti-cancer effects, clinical anti-cancer effects, and pharmacokinetic properties, we examine the characteristics of each benzimidazole and attempt to elucidate its key properties. Although many studies have demonstrated the anti-cancer effects of benzimidazoles, there is limited evidence regarding their effects in clinical settings. This might be because the clinical trials conducted using benzimidazoles failed to restrict their participants with specific criteria including cancer entities, cancer stages, and genetic characteristics of the participants. In addition, these drugs have limitations including low bioavailability, which results in insufficient plasma concentration levels. Additional studies on whole anti-cancer pathways and development strategies, including formulations, could result significant enhancements of the anti-cancer effects of benzimidazoles in clinical situations.
Collapse
Affiliation(s)
- Bomi Song
- Graduate School of Clinical Pharmacy, Chosun University, Gwangju 61452, Korea
| | - Eun Young Park
- College of Pharmacy, Mokpo National University, Mokpo 58554, Korea
| | - Kwang Joon Kim
- College of Pharmacy, Mokpo National University, Mokpo 58554, Korea
- Correspondence: (K.J.K.); (S.H.K.); Tel.: +82-61-450-2334 (K.J.K.); +82-62-230-6639 (S.H.K.)
| | - Sung Hwan Ki
- Graduate School of Clinical Pharmacy, Chosun University, Gwangju 61452, Korea
- Correspondence: (K.J.K.); (S.H.K.); Tel.: +82-61-450-2334 (K.J.K.); +82-62-230-6639 (S.H.K.)
| |
Collapse
|
9
|
Deworming Schemes’ Efficacy for Adult Dogs with Mixed Gastro-Intestinal Helminthoses. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mixed gastrointestinal helminthoses, which combines Toxocara canis, Trichuris (T.) vulpis, Toxascaris leoninа, Uncinaria stenocephala, Ancylostoma caninum, and Dipylidium caninum in various combinations, are very common pets’ problems worldwide. It is unlikely necessary to choose between 100 % efficiency and for the patient’s body to heal the infected animals safely. The present work aims to develop an affordable scheme for adult dogs’ deworming, which will create a minimum load on the body due to the low drugs’ toxicity. Mixed breed dogs, 1—5 years old, representing both sexes, spontaneously infected with T. vulpis (100 % prevalence) in combination with other gastrointestinal helminths (from 12.7 to 45.1 %) were selected for study. Regimens combining Caniquantel® Plus (fenbendazole + praziquantel) and fenbendazole with a 24-hour interval were tested. After a single treatment of experimental animals with Caniquantel® Plus, no helminth eggs were detected in their faeces after three days, except for T. vulpis. Seven days after the start of the experiment, the intensity of infection of this nematode decreased by only 22.0 % (P < 0.001). Bodies and fragments of dead helminths were found in faeces 1—4 days after de-worming, with T. vulpis isolated only in 2 days in small quantities (4.54 ± 0.21 specimens per 100 g of faeces). Two-stage deworming with Caniquantel® Plus and fenbendazole after 24 hours resulted in 100 % efficiency against eggs of all parasites after five days. Helminths’ bodies stopped excreting after four days, and T. vulpis was detected within three days in substantive quantities (from 10.03 ± 0.45 to 36.8 ± 1.2 specimens per 100 g of faeces).
Collapse
|
10
|
Ehrens A, Hoerauf A, Hübner MP. Current perspective of new anti-Wolbachial and direct-acting macrofilaricidal drugs as treatment strategies for human filariasis. GMS INFECTIOUS DISEASES 2022; 10:Doc02. [PMID: 35463816 PMCID: PMC9006451 DOI: 10.3205/id000079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Filarial diseases like lymphatic filariasis and onchocerciasis belong to the Neglected Tropical Diseases and remain a public health problem in endemic countries. Lymphatic filariasis and onchocerciasis can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Current treatment recommendations by the WHO include mass drug administration with ivermectin for the treatment of onchocerciasis and a combination of ivermectin, albendazole and diethylcarbamazine (DEC) for the treatment of lymphatic filariasis in areas that are not co-endemic for onchocerciasis or loiasis. Limitations of these treatment strategies are due to potential severe adverse events in onchocerciasis and loiasis patients following DEC or ivermectin treatment, respectively, the lack of a macrofilaricidal efficacy of those drugs and the risk of drug resistance development. Thus, to achieve the elimination of transmission of onchocerciasis and the elimination of lymphatic filariasis as a public health problem by 2030, the WHO defined in its roadmap that new alternative treatment strategies with macrofilaricidal compounds are required. Within a collaboration of the non-profit organizations Drugs for Neglected Diseases initiative (DNDi), the Bill & Melinda Gates Foundation, and partners from academia and industry, several new promising macrofilaricidal drug candidates were identified, which will be discussed in this review.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
11
|
Dziduch K, Greniuk D, Wujec M. The Current Directions of Searching for Antiparasitic Drugs. Molecules 2022; 27:1534. [PMID: 35268635 PMCID: PMC8912034 DOI: 10.3390/molecules27051534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parasitic diseases are still a huge problem for mankind. They are becoming the main cause of chronic diseases in the world. Migration of the population, pollution of the natural environment, and climate changes cause the rapid spread of diseases. Additionally, a growing resistance of parasites to drugs is observed. Many research groups are looking for effective antiparasitic drugs with low side effects. In this work, we present the current trends in the search for antiparasitic drugs. We report known drugs used in other disease entities with proven antiparasitic activity and research on new chemical structures that may be potential drugs in parasitic diseases. The described investigations of antiparasitic compounds can be helpful for further drug development.
Collapse
Affiliation(s)
| | | | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (K.D.); (D.G.)
| |
Collapse
|
12
|
Magnaval JF, Bouhsira E, Fillaux J. Therapy and Prevention for Human Toxocariasis. Microorganisms 2022; 10:microorganisms10020241. [PMID: 35208697 PMCID: PMC8875715 DOI: 10.3390/microorganisms10020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
For the last four decades, knowledge about human toxocariasis with regard to its epidemiology, pathophysiology, clinical spectrum, and imaging or laboratory diagnosis has substantially progressed. Knowledge about specific therapy with anthelmintics has lagged behind. To date, only four drugs are registered for human use, and their efficacy has rarely been assessed in prospective controlled trials. It is likely that the repurposing of potent anthelmintics from veterinary medicine will improve this situation. Due to its wide availability and a lack of major side effects during short regimens, albendazole has become the drug of choice. However, its efficacy should be more precisely assessed. The role of anthelmintics in the treatment of neurological or ocular toxocariasis remains to be clarified. Prophylactic measures in humans or companion animals are efficient and represent first-line treatments for the control of this zoonosis. Unfortunately, their implementation in areas or countries where toxocariasis epidemiology is driven by poverty is quite difficult or unrealistic.
Collapse
Affiliation(s)
- Jean-François Magnaval
- Service de Parasitologie Médicale, Faculté de Médecine, Université de Toulouse, 37 Allées Jules-Guesde, 31000 Toulouse, France
- Correspondence:
| | - Emilie Bouhsira
- Service de Parasitologie, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, 31076 Toulouse, France;
| | - Judith Fillaux
- Service de Parasitologie-Mycologie, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, 330 Avenue de Grande-Bretagne, 31059 Toulouse, France;
| |
Collapse
|
13
|
Risch F, Ritter M, Hoerauf A, Hübner MP. Human filariasis-contributions of the Litomosoides sigmodontis and Acanthocheilonema viteae animal model. Parasitol Res 2021; 120:4125-4143. [PMID: 33547508 PMCID: PMC8599372 DOI: 10.1007/s00436-020-07026-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Filariae are vector-borne parasitic nematodes that are endemic worldwide, in tropical and subtropical regions. Important human filariae spp. include Onchocerca volvulus, Wuchereria bancrofti and Brugia spp., and Loa loa and Mansonella spp. causing onchocerciasis (river blindness), lymphatic filariasis (lymphedema and hydrocele), loiasis (eye worm), and mansonelliasis, respectively. It is estimated that over 1 billion individuals live in endemic regions where filarial diseases are a public health concern contributing to significant disability adjusted life years (DALYs). Thus, efforts to control and eliminate filarial diseases were already launched by the WHO in the 1970s, especially against lymphatic filariasis and onchocerciasis, and are mainly based on mass drug administration (MDA) of microfilaricidal drugs (ivermectin, diethylcarbamazine, albendazole) to filarial endemic areas accompanied with vector control strategies with the goal to reduce the transmission. With the United Nations Sustainable Development Goals (SDGs), it was decided to eliminate transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. It was also requested that novel drugs and treatment strategies be developed. Mouse models provide an important platform for anti-filarial drug research in a preclinical setting. This review presents an overview about the Litomosoides sigmodontis and Acanthocheilonema viteae filarial mouse models and their role in immunological research as well as preclinical studies about novel anti-filarial drugs and treatment strategies.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
14
|
Wanji S, Chunda VC, Fombad FF, Jélil Njouendou A, Gandjui NVT, Ritter M, Enyong PA, Mackenzie C, Taylor MJ, Hoerauf A, Turner JD. Advances in preclinical platforms of Loa loa for filarial neglected tropical disease drug and diagnostics research. FRONTIERS IN TROPICAL DISEASES 2021; 2:778724. [PMID: 38654889 PMCID: PMC7615857 DOI: 10.3389/fitd.2021.778724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
The tropical disease, loiasis, caused by the filarial parasite, Loa, has gained prominence in global public health as a cause of excess mortality and a barrier to the elimination of the related prioritized neglected tropical diseases (NTDs), lymphatic filariasis and onchocerciasis, within Central Africa. There are no effective drug cures or vaccines available to treat loiasis safely. Here we review recent advances in loiasis preclinical platform technologies, including novel in vitro culturing systems, animal models and innovations in experimental infections of the L. loa vector, Chrysops, that have facilitated access to all L. loa filarial life-cycle stages. We detail applications of these new model systems in anti-filarial drug screening, diagnostic development, immunology, and pathophysiology research. Finally, we provide an overview of how loiasis preclinical platforms may be further utilized in translational medicine applications to support the development of much needed new interventions against filarial NTDs.
Collapse
Affiliation(s)
- Samuel Wanji
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Valerine Chawa Chunda
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Abdel Jélil Njouendou
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Narcisse Victor T. Gandjui
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Peter A. Enyong
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Charles Mackenzie
- Neglected Tropical Diseases Support Center l The Task Force for Global Health, 325 Swanton Way, Decatur, Atlanta, Georgia, United States of America
| | - Mark J Taylor
- Centre for Drugs and Diagnostics Research and Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne partner site, Bonn, Germany
| | - Joseph D Turner
- Centre for Drugs and Diagnostics Research and Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
15
|
Ngwewondo A, Scandale I, Specht S. Onchocerciasis drug development: from preclinical models to humans. Parasitol Res 2021; 120:3939-3964. [PMID: 34642800 PMCID: PMC8599318 DOI: 10.1007/s00436-021-07307-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Twenty diseases are recognized as neglected tropical diseases (NTDs) by World Health Assembly resolutions, including human filarial diseases. The end of NTDs is embedded within the Sustainable Development Goals for 2030, under target 3.3. Onchocerciasis afflicts approximately 20.9 million people worldwide with > 90% of those infected residing in Africa. Control programs have made tremendous efforts in the management of onchocerciasis by mass drug administration and aerial larviciding; however, disease elimination is not yet achieved. In the new WHO roadmap, it is recognized that new drugs or drug regimens that kill or permanently sterilize adult filarial worms would significantly improve elimination timelines and accelerate the achievement of the program goal of disease elimination. Drug development is, however, handicapped by high attrition rates, and many promising molecules fail in preclinical development or in subsequent toxicological, safety and efficacy testing; thus, research and development (R&D) costs are, in aggregate, very high. Drug discovery and development for NTDs is largely driven by unmet medical needs put forward by the global health community; the area is underfunded and since no high return on investment is possible, there is no dedicated drug development pipeline for human filariasis. Repurposing existing drugs is one approach to filling the drug development pipeline for human filariasis. The high cost and slow pace of discovery and development of new drugs has led to the repurposing of “old” drugs, as this is more cost-effective and allows development timelines to be shortened. However, even if a drug is marketed for a human or veterinary indication, the safety margin and dosing regimen will need to be re-evaluated to determine the risk in humans. Drug repurposing is a promising approach to enlarging the pool of active molecules in the drug development pipeline. Another consideration when providing new treatment options is the use of combinations, which is not addressed in this review. We here summarize recent advances in the late preclinical or early clinical stage in the search for a potent macrofilaricide, including drugs against the nematode and against its endosymbiont, Wolbachia pipientis.
Collapse
Affiliation(s)
- Adela Ngwewondo
- Centre of Medical Research, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box13033, Yaoundé, Cameroon
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland
| | - Sabine Specht
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland.
| |
Collapse
|
16
|
Population pharmacokinetic-pharmacodynamic model of oxfendazole in healthy adults in a multiple ascending dose and food effect study and target attainment analysis. Antimicrob Agents Chemother 2021; 66:e0143221. [PMID: 34606333 DOI: 10.1128/aac.01432-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxfendazole is a potent veterinary antiparasitic drug undergoing development for human use to treat multiple parasitic infections. Results from two recently completed Phase I clinical trials conducted in healthy adults showed that the pharmacokinetics of oxfendazole is nonlinear, affected by food, and, after the administration of repeated doses, appeared to mildly affect hemoglobin concentrations. To facilitate oxfendazole dose optimization for its use in patient populations, the relationship among oxfendazole dose, pharmacokinetics and hemoglobin concentration was quantitatively characterized using population pharmacokinetic-pharmacodynamic modeling. In fasting subjects, oxfendazole pharmacokinetics was well described by a one-compartment model with first-order absorption and elimination. The change in oxfendazole pharmacokinetics when administered following a fatty meal was captured by an absorption model with one transit compartment and increased bioavailability. The effect of oxfendazole exposure on hemoglobin concentration in healthy adults was characterized by a lifespan indirect response model in which oxfendazole has positive but minor inhibitory effect on red blood cell synthesis. Further simulation indicated that oxfendazole has a low risk of posing a safety concern regarding hemoglobin concentration, even at a high oxfendazole dose of 60 mg/kg once daily. The final model was further used to perform comprehensive target attainment simulations for whipworm infection and filariasis at various dose regimens and target attainment criteria. The results of our modeling work, when adopted appropriately, have the potential to greatly facilitate oxfendazole dose regimen optimization in patient populations with different types of parasitic infections.
Collapse
|